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ABSTRACT
Background. This study aims to identify potential biomarkers associated with acute
kidney injury (AKI) post kidney transplantation.
Material andMethods. Two mRNA expression profiles from Gene Expression Om-
nibus repertory were downloaded, including 20 delayed graft function (DGF) and 68
immediate graft function (IGF) samples. Differentially expressed genes (DEGs) were
identified betweenDGF and IGF group. The GeneOntology and Kyoto Encyclopedia of
Genes andGenomes pathway analysis ofDEGswere performed. Then, a protein-protein
interaction analysis was performed to extract hub genes. The key genes were searched by
literature retrieval and cross-validated based on the training dataset. An external dataset
was used to validate the expression levels of key genes. Receiver operating characteristic
curve analyses were performed to evaluate diagnostic performance of key genes for AKI.
Results. A total of 330 DEGs were identified between DGF and IGF samples, including
179 up-regulated and 151 down-regulated genes. Of these,OLIG3, EBF3 and ETV1were
transcription factor genes. Moreover, LEP, EIF4A3, WDR3, MC4R, PPP2CB, DDX21
and GPT served as hub genes in PPI network. EBF3 was significantly up-regulated in
validation GSE139061 dataset, which was consistently with our initial gene differential
expression analysis. Finally, we found that LEP had a great diagnostic value for AKI
(AUC = 0.740).
Conclusion. EBF3 may be associated with the development of AKI following kidney
transplantation. Furthermore, LEP had a good diagnostic value for AKI. These
findings provide deeper insights into the diagnosis and management of AKI post renal
transplantation.

Subjects Bioinformatics, Biotechnology, Nephrology, Surgery and Surgical Specialties, Medical
Genetics
Keywords Acute kidney injury, Biomarkers, Diagnosis, Kidney transplantation

BACKGROUND
Kidney transplantation currently is an operative therapeutic strategy for patients under-
going advanced renal disease (Wolfe et al., 1999; Yunhua et al., 2018). Although effective
pharmaceutical interventions after surgery greatly improve survival prognosis of renal
transplantation recipients, many risk factors, such as immune injury and ischemia-
reperfusion injury, inevitably cause kidney allograft rejection (Cantaluppi et al., 2015;
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Meier-Kriesche et al., 2004). Emerging evidence has demonstrated that acute kidney injury
(AKI) is the most common symptom in deceased patients and leads to a relatively high
incidence of delayed graft function (DGF) (Kim et al., 2017;Wu et al., 2014). Notably,
DGF is typically observed in the first week post renal transplant and predominately
associated with graft rejection (Siedlecki, Irish & Brennan, 2011). The statistical data
suggests that the occurrence rate of DGF was approximately 4%–10% in living donor
transplants and 5–50% in deceased donor transplants (Yarlagadda et al., 2008). Therefore,
it is a pressing need to screen several powerful biomarkers for early assessment and
prediction of kidney function after kidney transplantation, which will provide early
clinical decision support and improve survival.

Numerous studies are currently ongoing to identify effective molecular markers to
predict AKI following renal transplantation. For example, serum creatinine is typically
used for the assessment of kidney function in a clinical context. Its level generally is not
elevated until 50% of kidney function is lost (Lee et al., 2012). However, renal function
will be seriously damaged when serum creatinine level is increased. Therefore, serum
creatinine cannot reflect the degree of impaired kidney function. Existing evidence has
demonstrated that NGAL (neutrophil gelatinase-associated lipocalin) is a generally
acknowledged biomarker for the progression of AKI (Haase et al., 2009; Korbely et
al., 2011).Mishra et al. (2006) examined the expression of NGAL in biopsy specimens
after transplantation of cadaveric and living-related renal allografts. They found that
NGAL level was markedly elevated in cadaveric samples than living-related samples.
More interestingly, NGAL staining in early cadaveric biopsies was closely related to peak
postoperative serum creatinine (Mishra et al., 2006).

However, the detailed role of this gene in AKI development after kidney transplanta-
tion has not been completely fully elucidated, restricting its potential clinical application.
Notably, the extensive popularization and application of high throughput sequencing
provides a new approach for the identification of biomarkers-related AKI.Wilflingseder
et al. (2014) emphasized that SLPI and miR-182-5p may play important roles in post-
transplant AKI by analyzing the whole-genome mRNA and miRNA expression profiles
of kidney transplant recipient with AKI. Unfortunately, the underlying molecular
mechanism of AKI following kidney transplantation has not been extensively investigated.

In this study, we performed an integrated bioinformatics analysis to identify potential
novel gene signatures related to AKI after kidney transplantation using two gene expres-
sion profiles, which will supply a research basis for AKI prediction in the clinical practice
and contribute to deeper understanding of pathogenesis mechanism of AKI after renal
transplantation.

MATERIALS AND METHODS
Data collection and pre-processing
Two microarray datasets (GSE53769 and GSE37838) were retrieved and obtained from
the National Center for Biotechnology Information Gene Expression Omnibus (GEO)
(http://www.ncbi.nlm.nih.gov/geo/) repository. The GSE53769 dataset contained 18
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samples (8 DGF samples and 10 IGF samples) and these samples were subjected to
GPL16686 [HuGene-2_0-st] Affymetrix Human Gene 2.0 ST Array for sequencing.
For the GSE37838 dataset, there were 70 samples, including 12 DGF samples and 58
immediate graft function (IGF) samples. The platform for this dataset was GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. Afterwards, the raw data
was standardized based on fragments per kilobase million and normalized by quantile
normalization method, respectively. The expression files were further processed according
to the following criteria: (1) the probes that mapped to multiple genes were removed
during annotation processes; (2) for the genes matched by multiple probes, the probe
with maximum expression value was retained. In total 31,135 genes and 51,877 genes were
respectively obtained in GSE53769 and GSE37838. Finally, 18,651 overlapping genes were
extracted between these two datasets and used for following analysis.

DEGs identification and functional analyses
We used the limma and metaMA package in R 3.6.2 software to screen differentially
expressed genes (DEGs) between DGF and IGF samples according to the cutoff value
of P value < 0.05 (Marot et al., 2009). Herein, raw data was processed using remove-
BatchEffect() function in limma package to eliminate the batch effect from sample
preparation, library preparation and sequencing. The inverse normal method was utilized
for P value combination in meta-analysis. The heatmap of top 50 DEGs was plotted by
R_boxplot() function. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis of DEGs were performed using GOstats
and KEGG.db package in R3.6.2 based on the threshold of P value < 0.01. Here, the GO
analysis contained three categories: molecular function (MF), cellular component (CC)
and biological process (BP).

Protein–protein interaction (PPI) analysis
To explore whether there were close interactions among protein products of DEGs, we
carried out a PPI analysis of DEGs using the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) database, which provides an online PPI prediction analysis
(Szklarczyk et al., 2015). All DEGs were considered as the input gene set. A PPI network
was established and visualized by Cytoscape software (http://apps.cytoscape.org/apps/
cytonca). Moreover, topological feature of this network was evaluated by degree centrality
score of nodes. A high node score indicated this protein had a key role in this network and
acted as the hub genes in network. The top seven nodes were listed.

Validation analysis of key DEGs and receiver operating characteristic
(ROC) analysis
The seven hub genes and three transcription factor genes were considered as candidates in
following analysis. Firstly, these genes were searched in Pubmed to investigate whether
they had been reported to be associated with AKI. Then, the cross validation for these
genes was carried out using createFolds() function in caret package based on the training
datasets (GSE37838 and GSE53769). Subsequently, the expression of these ten genes
were examined in another GEO dataset. Specifically, the GSE139061 dataset, including
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39 AKI renal biopsy samples and nine nephrectomies, was obtained from GEO database,
which was generated based on Illumina HiSeq 4000 platform. This dataset was then used
to evaluate the expression levels of key DEGs. P value < 0.05 indicates a statistically
significant difference. In addition, the pROC package (https://cran.r-project.org/web/
packages/pROC/index.html) in R 3.6.2 was used to perform ROC analysis to assess the
diagnostic performance of key DEGs for AKI. The area under the ROC curve (AUC)
value was calculated. Herein, if AUC values of the genes were greater than 0.7, these genes
will be considered to discriminate AKI samples from controls with high specificity and
sensitivity (Lin et al., 2015;Mandrekar, 2010).

RESULTS
DEGs screening
After data pre-processing, no DEGs were identified based on the screening threshold
of adjusted P value < 0.05. Our results showed that a total of 330 DEGs between DGF
and IGF samples were extracted according to the screening criteria of P value < 0.05,
which contained 179 up-regulated genes and 151 down-regulated genes (Supplemental
Information). Among these, up-regulated OLIG3 (oligodendrocyte transcription factor
3) and EBF3 (early B-cell factor transcription factor 3) as well as down-regulated ETV1
(E twenty-six variant transcription factor 1) were three transcription factor genes. The
heatmaps of top 50 DEGs were exhibited in Fig. 1, which indicated that these genes can
distinguish DGF and IGF samples in GSE53769 and GSE37838.

GO and KEGG enrichment analysis
To explore underlying biological function of identified DEGs, the GO and KEGG enrich-
ment analysis were carried out. The results revealed that these DEGs were significantly
enriched in 67 GO-BP terms, such as pigmentation (P = 7.36E−06), regulation of
transforming growth factor beta1 production (P = 0.0004) and developmental pigmen-
tation (P = 0.0005; Table 1). Fig. S1 showed top 15 markedly enriched GO-BP terms.
Meanwhile, there were 13 significant GO-MF terms, including phosphatidylcholine-
translocating ATPase activity (P = 0.001), phospholipid-translocating ATPase activity
(P = 0.002) and BH3 domain binding (P = 0.002; Table 1; Fig. S2). We also found that
numerous DEGs were closely associated with three GO-CC terms (pore complex, P =
0.003; outer dynein arm, P = 0.005; nuclear speck, P = 0.006; Table 1; Fig. S3). Besides,
KEGG enrichment analysis suggested that the DEGs were involved in cyanoamino acid
metabolism pathway (P = 0.004; Table 1).

PPI network analysis
A PPI network of DEGs was constructed based on the STRING database as displayed in
Fig. 2, containing 182 gene nodes (102 up-regulated genes and 80 down-regulated genes).
The top seven gene nodes were considered as hub gene in PPI network, which included
LEP (leptin; up-regulation; degree= 13), EIF4A3 (eukaryotic translation initiation factor
4A3; down-regulation; degree= 10),WDR3 (WD repeat domain 3; up-regulation; degree
= 8),MC4R (melanocortin 4 receptor; down-regulation; degree= 8), PPP2CB (protein
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Figure 1 The heatmap of top 50 differentially expressed genes. (A) The top 50 differentially expressed
genes can distinguish DGF and IGF samples in GSE53769; (B) the top 50 differentially expressed genes can
distinguish DGF and IGF samples in GSE37838. DGF delayed graft function; IGF immediate graft func-
tion.

Full-size DOI: 10.7717/peerj.10441/fig-1

phosphatase 2 catalytic subunit beta; up-regulation; degree= 8), DDX21 (DExD-Box
Helicase 21; down-regulation; degree= 8) and GPT (glutamic-pyruvic transaminase;
down-regulation; degree= 8). Notably, transcription factor gene ETV1 was also involved
in PPI network (degree= 1).

Validation of key DEGs and ROC analysis
Three transcription factors and seven hub genes in PPI network were regarded as key
biomarkers associated with AKI and subjected to further analysis. By literature mining,
we found that ETV1, LEP, PPP2CB and GPT have been reported in several kidney-related
studies (Table 2). In addition, the average accuracy of ten-fold cross validation analysis
for ten feature genes was 0.829 in GSE37838 dataset. However, cross validation for these
genes was not performed in the GSE53769 due to the limited sample size. Subsequently,
an external dataset (GSE13906) was downloaded from the GEO database to verify the
expression levels of key genes (EBF3, LEP ETV1, EIF4A3, DDX21 and GPT ). The results
suggested that only EBF3 was significantly up-regulated, which was consistently with our
initial gene differential expression analysis (P = 0.01; Fig. 3). Other genes results did not
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Table 1 The significantly enriched GO terms and KEGG pathway by differentially expressed genes.

Category Term P value Count Gene Symbol

GO-BP* Pigmentation 7.36E−06 9 SPNS2;MYO7A; BAX ; RAB1A; BCL2; HPS6 ;
VANGL1; ATRN ; CD63

Regulation of transforming growth factor beta1 production 0.0004 3 GATA6 ; THBS1; SERPINB7
Developmental pigmentation 0.0004 5 SPNS2; BAX ; BCL2; HPS6 ; CD63
Transforming growth factor beta1 production 0.0005 3 GATA6 ; THBS1; SERPINB7
Regulation of developmental pigmentation 0.0010 3 SPNS2; BAX ; BCL2
Post-embryonic animal organ development 0.0010 3 LDHA;MYO7A; BAX
Regulation of nitrogen utilization 0.0011 2 BAX ; BCL2
Retinal cell programmed cell death 0.0011 2 BAX ; BCL2
Neuron migration 0.0014 8 OLIG3; ASTN1; NKX6-1; NRCAM ; ULK4;

SH3RF1; BAX ; NRP2
Response to organic cyclic compound 0.0016 24 AKAP13; CATSPER1; RFTN2;

ABCA1; ALAD; FOXF1; GABRB3; AQP1;
LDHA; LEP ; ARRB2;MSN ; DHH; TRIM68;
MAVS; RBBP8; BCL2; SHMT1; THBS1;
WNT8B; PIAS1;MBD4; DDX21; EIF4A3

L-serine catabolic process 0.0018 2 SHMT1; CBS
Nitrogen utilization 0.0018 2 BAX ; BCL2
Positive regulation of apoptotic process involved in
morphogenesis

0.0018 2 BAX ; TNFRSF1B

Cellular modified amino acid metabolic process 0.0018 9 AHCYL1; CGA; HOGA1; CKMT2; GGT6 ;
ALDH1L2; GSS; GCNT4; SHMT1

Regulation of postsynapse organization 0.0021 6 CUX2; NRCAM ; LRFN1; CBLN1; NRP2;
KALRN

GO-MF Phosphatidylcholine-translocating ATPase activity 0.0012 2 ABCA1; ABCB1
Phospholipid-translocating ATPase activity 0.0020 2 ABCA1; ABCB1
BH3 domain binding 0.0020 2 BAX ; BCL2
Glycerol transmembrane transporter activity 0.0029 2 AQP1; AQP10
Hemoglobin binding 0.0040 2 HP ; AHSP
7SK snRNA binding 0.0040 2 CCNT1; DDX21
MAP-kinase scaffold activity 0.0053 2 AKAP13; SH3RF1
Hydroxymethyl-, formyl- and related transferase activity 0.0053 2 ALDH1L2; SHMT1
Polyol transmembrane transporter activity 0.0068 2 AQP1; AQP10
Cyclin-dependent protein serine/threonine kinase activator
activity

0.0068 2 CKS2; CCNT1

Phosphatidylcholine transporter activity 0.0084 2 ABCA1; ABCB1
BH domain binding 0.0084 2 BAX ; BCL2
Death domain binding 0.0084 2 BAX ; BCL2

GO-CC Pore complex 0.0032 3 BAX ; BCL2; C9
Outer dynein arm 0.0045 2 DNAH5; DNAI1
Nuclear speck 0.0063 12 SF3B2; NOSTRIN ; ZCCHC12; NSL1;

GPATCH2; PRPF40A; RREB1; SRP54; PIAS1;
STK19 ;MBD4; EIF4A3

KEGG Cyanoamino acid metabolism 0.0044 2 SHMT1; GGT6

Notes.
*top 15 significantly enriched GO-BP terms.
GO, Gene Ontology; BP, Biological Process; MF, Molecular Function; CC, Cellular Component; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 2 Protein-protein interaction (PPI) network of DEGs. The node size represents the degree score.
DEGs differentially expressed genes.

Full-size DOI: 10.7717/peerj.10441/fig-2

Table 2 The literature retrieval of key genes in this study.

Symbol Regulation Pubmed ID and Related diseases Detail

ETV1 Up-regulation 27278120; Renal cell carcinoma Transcription factor, PPI degree= 1
OLIG3 Up-regulation Transcription factor
EBF3 Up-regulation Transcription factor
LEP Down-regulation 30517161; Acute kidney injury PPI degree= 13
EIF4A3 Up-regulation PPI degree= 10
WDR3 Down-regulation PPI degree= 8
MC4R Up-regulation PPI degree= 8
PPP2CB Down-regulation 31464346; End-stage renal disease PPI degree= 8
DDX21 Down-regulation PPI degree= 8
GPT Up-regulation 20220435; 23587212; Acute renal failure PPI degree= 8

reach statistical significance (P > 0.05), which can be partly explained by sample size and
selection bias.

In this study, six genes (EBF3, LEP, ETV1, EIF4A3, DDX21 and GPT ) were chosen
as the focus of ROC analysis. Our findings indicated that only LEP exhibited a good
discriminative ability for identifying AKI samples (AUC= 0.740), suggesting that this
gene had great diagnostic value for AKI (Fig. 4). However, remaining five genes were not
capable of discriminating DGF and IGF samples (AUC < 0.7).
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Figure 3 Validation of the expression levels of key differentially expressed genes based on the
GSE139061 dataset.

Full-size DOI: 10.7717/peerj.10441/fig-3

DISCUSSION
AKI represents one of important complications induced by kidney transplantation
(Qaqish et al., 2019). DGF is considered as a manifestation of AKI and strongly related
to a high risk of graft loss (Yarlagadda et al., 2019). Therefore, it is urgently needed to
identify key biomarkers associated with DGF, which will help predict AKI during the
early periods following renal transplantation. In this study, we systematically analyzed
two gene expression profiles of AKI post-kidney transplantation. Totally, 330 DEGs
(179 up-regulated and 151 down-regulated genes) were extracted between DGF and IGF
samples. Moreover, the protein products of three DEGs (OLIG3, EBF3 and ETV1) were
also key transcription factors. There were seven hub genes (LEP, EIF4A3,WDR3,MC4R,
PPP2CB, DDX21 and GPT ) in PPI network. The expression levels of six genes (EBF3, LEP,
ETV1, EIF4A3, DDX21 and GPT ) were confirmed in an external GEO dataset. Among
them, only EBF3 was statistically significant in expression analysis of validation dataset.
Additionally, LEP had a good diagnostic value for AKI.

LEP can encode a mall peptide hormone leptin (16kDa), which is primarily secreted
from adipocytes and cleared by the kidneys (Stern, Rutkowski & Scherer, 2016; Zhang
et al., 1994). Previous studies suggested that serum leptin level was decreased during
the period shortly after kidney transplantation (Kayacan et al., 2003; Souza et al., 2008).
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Figure 4 ROC curves of LEP. The ROC curves were used to evaluate the diagnostic value of LEP with
sensitivity and 1-Specificity. The X-axis indicates 1-specificity and the Y -axis indicates sensitivity. ROC,
Receiver operating characteristic; AUC, Area under the ROC curve.

Full-size DOI: 10.7717/peerj.10441/fig-4

Nicoletto et al. (2012) pointed out that there was an increase for serum leptin level in
patients who received renal transplantation a few months later. Similarly, our result
showed that the expression of LEP was elevated in DGF samples compared with that in
IGF samples. Leptin plays its biological roles principally via interacting with its receptors,
including ObRa, ObRb, ObRc, ObRd, ObRe, and ObRf (Barreto et al., 2009).Wang et al.
(2014) investigated the underlying roles of leptin deficiency in endotoxin (LPS)-associated
early acute renal failure and found that elevated levels of endogenous leptin that binds
to their many receptors in db/dbmice was possibly crucial for renoprotection against
endotoxin. Dong et al. (2013) suggested that leptin level was significantly increased in
lung following LPS administration and leptin deficiency promote lung injury develop-
ment through by aggravating inflammatory responses. Notably,Mantula et al. (2018)
previously highlighted that a low level of leptin at the acute phase of puumala hantavirus
infection may be closely related to the development of AKI. In this study, the diagnostic
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value of LEP was firstly evaluated. Our findings indicated that this gene was capable of
distinguishing AKI and control samples. Taken together, these evidences implied that LEP
may be involved in the development of AKI following kidney transplantation and a novel
diagnostic maker for AKI.

Up-regulated EBF3 and down-regulated ETV1 were two transcription factor genes.
Their expression levels were validated in an external GEO dataset. EBF3 can encode a
member of the early B-cell factor family of DNA binding transcription factors and was
involved in tumor angiogenesis (Daiqing, 2009; Kim et al., 2012). Our analysis indicated
that this gene acted as a hub gene in PPI network. ETV1 encodes a member of the ETS (E
twenty-six) family of transcription factors (Coutte et al., 1999). An early research showed
ETV1 was a downstream target of constitutive photomorphogenic 1 (COP1) and down-
regulated by COP1 in human renal cell line ACHN. Furthermore, under-expressing
ETV1may inhibit migration and invasion of the ACHN cells (Ta et al., 2016). However,
no few studies focused on exploring the potential influences of EBF3 and ETV1 on AKI.
Therefore, an additional study should be performed on this target.

Three down-regulated genes (EIF4A3, DDX21 and GPT ) also served as hub genes in
PPI network. Moreover, their expression levels were confirmed by a gene differential
analysis based on an external dataset. Our results suggested that these three genes may be
involved in the molecular mechanism of AKI after renal transplantation. EIF4A3 encodes
a protein that belongs to Asp-Glu-Ala-Asp (DEAD) box-family adenosine triphosphate
(ATP)-dependent RNA helicase family (Linder & Jankowsky, 2011). DDX21 is also a
member of RNA helicases which is highly conserved enzymes and participates in RNA
metabolism process (Russell, Jarmoskaite & Lambowitz, 2013). Existing evidence suggested
that these two gene were associated with occurrence and development of several cancers
(Lin et al., 2018; Santoriello et al., 2020;Wang et al., 2018). In addition, we noted that
there was no strong laboratory evidence for supporting the hypothesis that GPT played
a prominent role in AKI following kidney transplantation.

Although we have screened multiple novel biomarkers related to AKI after renal
transplantation, there are still limitations in this study. On the top of that, the experi-
mental research such as quantitative PCR analysis is needed to perform to confirm our
conclusion. In addition, although six genes (EBF3, LEP, ETV1, EIF4A3, DDX21 and GPT )
had a similar expression pattern in our current training and validation dataset, the results
of five genes (LEP, ETV1, EIF4A3, DDX21 and GPT ) were not statistically significant
in expression analysis of validation dataset. Therefore, a comprehensive bioinformatics
analysis or some other datasets based on a larger sample size is required to validate our
findings. Finally, the clinical information is also needed to integrate into further study.

CONCLUSION
We identified a novel gene markers EBF3 associated with the development of AKI after
kidney transplantation. Additionally, our analysis also provided indirect evidence that
LEP was involved in AKI. Moreover, LEP had a good diagnostic values for identifying
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DGF. However, additional experimental assays need to be carried out to validate our
conclusion in future.
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