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METHODOLOGY

A threshold‑free approach 
with age‑dependency for estimating malaria 
seroprevalence
Irene Kyomuhangi*   and Emanuele Giorgi 

Abstract 

Background:  In malaria serology analysis, the standard approach to obtain seroprevalence, i.e the proportion of 
seropositive individuals in a population, is based on a threshold which is used to classify individuals as seropositive or 
seronegative. The choice of this threshold is often arbitrary and is based on methods that ignore the age-dependency 
of the antibody distribution.

Methods:  Using cross-sectional antibody data from the Western Kenyan Highlands, this paper introduces a novel 
approach that has three main advantages over the current threshold-based approach: it avoids the use of thresholds; 
it accounts for the age dependency of malaria antibodies; and it allows us to propagate the uncertainty from the clas-
sification of individuals into seropositive and seronegative when estimating seroprevalence. The reversible catalytic 
model is used as an example for illustrating how to propagate this uncertainty into the parameter estimates of the 
model.

Results:  This paper finds that accounting for age-dependency leads to a better fit to the data than the standard 
approach which uses a single threshold across all ages. Additionally, the paper also finds that the proposed threshold-
free approach is more robust against the selection of different age-groups when estimating seroprevalence.

Conclusion:  The novel threshold-free approach presented in this paper provides a statistically principled and more 
objective approach to estimating malaria seroprevalence. The introduced statistical framework also provides a means 
to compare results across studies which may use different age ranges for the estimation of seroprevalence.

Keywords:  Malaria serology, Geostatistical model, Reversible catalytic model, Antibody acquisition model, Unified 
mechanistic model
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Introduction
Thanks to increased diagnostic capacity, preventative 
measures and a scale-up of interventions, there has been 
an overall decrease in malaria burden worldwide [1, 2]. 
However, malaria still remains a significant global public 
health threat in sub-Saharan Africa, where Plasmodium 
falciparum (P. falciparum) is the predominant parasite. 
A total 229 million cases and 409,000 deaths have been 

estimated globally in 2019 [3]. Additionally, the decrease 
in malaria is heterogeneous across regions, countries 
and communities [2–6], posing additional challenges 
to malaria elimination efforts. These challenges require 
robust surveillance mechanisms which can adapt to 
the changing epidemiology, enabling a more targeted 
approach to intervention strategies [4, 7].

To estimate malaria exposure and transmission, analy-
sis of human serology data has emerged as a viable alter-
native approach to disease risk metrics that are based on 
the detection of malaria parasites in humans and mos-
quito populations [8–10]. Because of the persistence 
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of antibodies after infection, their concentration is less 
influenced by the seasonality of transmission and can 
be used as an indicator of the cumulative exposure to 
malaria. Additionally, antibodies, unlike the Plasmodium 
parasite, can be easily detected even in low transmission 
areas [8, 11–13].

Analysis of seroprevalence—i.e the proportion of ‘sero-
positive’ individuals—is often carried out using reversible 
catalytic models (RCM). These models allow for the esti-
mation of seroconversion rates which quantify the trans-
mission intensity and correspond to the rate at which 
individuals convert from seronegative to seropositive 
through exposure to malaria parasites over time [8, 9]. 
Alternatively, continuous antibody measurements can be 
used in antibody acquisition models to estimate boost-
ing rates, another measure of transmission intensity, 
which represents the rate at which antibodies are boosted 
upon exposure to parasites [9, 10, 14]. Such indicators of 
transmission intensity can be used to inform decisions on 
intervention strategies by identifying hot-spots of trans-
mission where individuals are likely to exceed a specified 
degree of exposure [15, 16].

To estimate seroprevalence, classification of individu-
als as seropositive or seronegative is required. The most 
commonly used approach is to identify a suitable thresh-
old of antibody density beyond which individuals are 
classified as seropositive, and below as seronegative [8, 
9, 11]. To this end, mixture distributions are first fitted 
to the antibody density data, assuming that continuous 
antibody measurements consists of two latent distri-
butions, one for the seronegative and one for the sero-
positive populations. By using the point estimates of the 
mean, µS− and standard deviation, σS− , of the seronega-
tive distribution S− , the seropositivity threshold is often 
set to µ+ 3σ [9, 17–19], while other studies have instead 
used µ+ 2σ [20–22]. An alternative to this approach is to 
define thresholds based on the predictive probability of 
being seropositive resulting from the fitted mixture dis-
tribution [9].

The major drawback of threshold-based approaches 
is that the choice of the threshold is arbitrary and it is 
unclear to what extent this affects the results of the sta-
tistical analysis of serological data, as biased estimates 
of seroprevalence can in fact arise from the misclas-
sification of individuals as seronegative or seropositive 
[23]. Additionally, in the case of the probability thresh-
olds, individuals whose probability of belonging to either 
the seronegative or seropositive groups is close to 50% 
are often classified as ‘intermediate’, and are therefore 
excluded from analysis [9, 23]. Furthermore, the uncer-
tainty around the estimated thresholds and probabilities 
used for the classification of individuals, is ignored.

In addition to these drawbacks, classical analysis 
of malaria serology data does not account for the age 
dependency of antibody distribution when calculat-
ing thresholds. Typically in mixture models, a threshold 
is obtained by assuming a constant mixing probabil-
ity across all ages [14]. This assumption is questionable 
since, in malaria endemic settings, it is well known that 
antibody levels are in fact age-dependent [24, 25] and 
thus the likeihood of being seropositive is expected to 
increase with age. A 2011 study by Ster [26] incorporated 
age-dependency for varicella zoster virus serology mix-
ture models, however, this principle has not been applied 
to malaria serology data

To address these issues, Kyomuhangi and Giorgi [14] 
proposed a unified modelling framework for the analysis 
of malaria serology data that uses the continuous anti-
body measurement rather than thresholds to estimate 
transmission parameters. However, as acknowledged by 
the authors, this modelling framework requires a larger 
amount of data than is usually available in serological 
studies to reliably estimate all the model parameters, thus 
limiting its applicability.

This paper proposes a novel modelling approach for the 
analysis of serological data that retains the same proper-
ties of the approach proposed in Kyomuhangi and Giorgi 
[14], but is also more parsimonious. More specifically, 
this novel approach satisfies the following requirements: 
(1) it accounts for age dependency of antibody levels; 
(2) it avoids the use of any threshold; and (3) it enables 
accounting for and propagating the uncertainty in the 
classification of seropositive and seronegative individu-
als. Using cross-sectional antibody data from Western 
Kenya, this paper demonstrates (1) the properties of this 
new methodology for estimating malaria seroprevalence, 
and (2) how to incorporate the uncertainty around the 
resulting seroprevalence estimates, using the standard 
RCM as an example. The discussion section in this paper 
explains how the principles used to develop this novel 
approach can be extended to more complex analysis of 
serological data.

Methods
Existing methods for estimating seroprevalence
This section outlines the most commonly used methods 
in the analysis of malaria serology data, to classify indi-
viduals as seropositive and seronegative, using a two-
component mixture distribution.

Let Yi denote the log-transformed antibody measure-
ment for the i-th individual in a sample, S− denote the 
seronegative classification, and S+ denote the seroposi-
tive classification. Assuming independent and identically 
distributed realizations for a sample of n individuals, and 
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µ to be the mean level of antibodies in the S− distribu-
tion, the density function of Y = (Y1, . . . ,Yn) is

where fS− is a univariate log-normal distribution with 
mean µ and variance σ 2

S− for the S− population, and anal-
ogously for S+ , with δ > 1 being a multiplicative factor 
accounting for higher mean antibodies in the S+ distribu-
tion. p is the probability of being S+ . Let Ci and C∗

i  denote 
the random variables representing classification based on 
the mixture model and true classification of the i-th indi-
vidual, respectively. Based on the seropositivity threshold 
κ , the classification of individuals, say Ci , into S+ and S− 
is defined as

Since most statistical analyses of malaria serology data 
use κ = µS− + 3σS− as the threshold, this will also be 
used in this paper.

Proposed method for estimating seroprevalence
This paper proposes a novel modelling framework that 
overcomes the limits of the approach described in the 
previous section, by incorporating age-dependency into 
the mixture distribution in (1), and by propagating the 
uncertainty in the classification of individuals into S+ and 
S− using a Monte Carlo approach.

In this framework, age dependency is introduced into 
(1) using linear regression, as described in Kyomuhangi 
and Giorgi [14]. Assuming µ(ai) to be the mean level of 
antibodies in the S− distribution for a given age ai , (1) 
becomes

where p(ai) is the probability of being S+ at age a. Note 
that the seronegative distribution is also modelled as age-
dependent to account for potential residual antibody lev-
els due to previous infections. The age dependencies in 

(1)

f (y) =

n
∏

i=1

[

(1− p)fS−(yi;µ, σ
2
S−)+ pfS+(yi; δµ, σ

2
S+)

]

(2)Ci =

{

S− if Yi < κ

S+ if Yi ≥ κ
.

(3)f (y) =

n
∏

i=1

[

(1− p(ai))fS−(yi;µ(ai), σ
2
S−)+ p(ai)fS+(yi; δµ(ai), σ

2
S+)

]

p(a) and µ(a) are modeled using logit linear and log lin-
ear regression, respectively, such that

where g2(a) is a function of age that can be specified 
through empirical inspection of the data. In the case of 
g1(a) , identifying a suitable specification may be more 
problematic because of the need to dichotomize the data. 
However, because it is well established that p(a) increases 
for increasing a, a pragmatic approach would be, for 
example, to specify a logit-linear regression on a as illus-
trated later in this paper. Note that predictor for these 
models can take other functional forms such as polyno-
mials and smoothing splines to increase their flexibility.

Using the resulting mixture distribution, the predictive 
probability of belonging to the S+ distribution for each 
sampled individual is computed by conditioning on the 
observed antibody measurement Yi = yi and age ai , to 
give

where θS− = (µ(ai), σ
2
S−
) and θS+ = (δµ(ai), σ

2
S+ ). Based 

on the above expressions, when then simulate 10,000 
classifications C∗

i  for a every single sampled individual. 
The resulting 10,000 data-sets generated from this pro-
cess are then fed into the second stage of the analysis, 
which is explained in the next section.

There are two main advantages of this modelling 
approach. The first is that it avoids the use of a threshold 
κ as in (2) and uses the generated samples Ci to propagate 
the uncertainty of the classification into S+ and S− . The 
second is that the empirical approach used to account the 
age-dependency combines information across all ages as 
described in (4), and is therefore more efficient than fit-
ting separate mixtures distribution for each age.

The structure of this modeling framework is illustrated 
in Fig. 1.

The reversible catalytic model
The RCM assumes that individuals are born S− and, after 
becoming S+ upon exposure to malaria, can revert to 
S− in the absence of exposure. Since antibody data are 

(4)
log

{

p(a)

1− p(a)

}

= α1 + g1(a)

log{µ(a)} = α2 + g2(a)

(5)P(C∗
i = S+|yi, ai) =

p(ai)fS+(yi; θS+)

(1− p(ai))fS−(yi; θS−)+ p(ai)fS+(yi; θS+)

P(C∗
i = S−|yi, ai) = 1− P(C∗

i = S+|Yi = yi, ai)
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believed to represent the cumulative exposure of indi-
viduals during their lifetime, an individual’s age prior to 
the sample collection is used as proxy for historical time.

Let �(a) denote the seroconversion rate for an individ-
ual at age a and ω the seroreversion rate. According to 
the RCM, the temporal dynamics that regulate the pro-
portion of S+ individuals of age a, i.e. p(a), are expressed 
by the following differential equation

The seroconversion rate �(a) can be modelled using a 
variety of approaches, the simplest of which assumes 
constant transmission, i.e. �(a) = � for all a. Due to poor 
identifiability of the seroreversion rate ω , this is typically 
fixed and assumed to be constant across ages [9, 10, 14, 
27]. Assuming a constant � and ω in (6) gives the follow-
ing solution

More flexible models could also be used to account for 
the temporal variation in � , including a step-wise reduc-
tion or linear reduction in transmission [9, 27]. Addition-
ally, other specifications of the RCM, for example the 
superinfection RCM [19] could be applied in the pro-
posed approach. However in this paper, while comparing 
existing methods and the proposed approach described 
in the previous sections, attention is restricted to the 
RCM defined in the above equation for simplicity.

In order to propagate the uncertainty in classification 
of individuals as S+ and S− , for the purpose of estimat-
ing parameters of the RCM, the likelihood of a Binomial 

(6)
dp

da
= �(a)(1− p(a))− ωp(a).

(7)p(a) =
�

�+ ω

(

1− e−(�+ω)a
)

.

distribution with probability p(a) is maximized, as indi-
cated in (7), for each of the 10,000 data-sets for the out-
come Ci as described in the previous sections. This gives 
10,000 different estimates for � , which is summarized by 
taking their mean and 2.5% and 97.5% quantiles.

The estimation of the model parameters is conducted 
using the maximum likelihood estimation method. Let 
zi denote the binary variable indicating seropositivity 
( zi = 1 ) or seronegativity ( zi = 0 ) for the i-th individual; 
the likelihood function for the RCM in (7) is then

Data
Data is taken from a cross-sectional survey which 
was conducted in Rachuonyo South District (34.75 to 
34.95◦ E, 0.41 to 0.52◦S), in the western Kenyan highlands 
(1400 m to 1600 m altitude), in 2011 over a 100 km2 area. 
This survey was the baseline for a cluster-randomized 
controlled trial whose aim was to determine the com-
munity effect of interventions targeted at malaria prev-
alence hotspots. Further details of the study protocol 
can be found in [28]. At the time of the survey, malaria 
transmission in this area was described as low but highly 
heterogeneous, and seasonal, following peaks in rainfall, 
typically between March–June and October–November 
[16, 28].

The majority of malaria cases were attributed to 
P. falciparum, with Anopheles gambiae sensu stricto 
(s.s.), Anopheles arabiensis, and Anopheles funestus 
being the predominant vector species. Malaria control 

(8)f (zi|p(ai)) =

n
∏

i=1

p(ai)
zi(1− p(ai))

1−zi

Fig. 1  An illustration of the empirical model introduced in [14]. This model is used to describe the antibody mixture distribution as indicated in Eqs. 
(3) and (4)
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interventions at the time included distribution of insec-
ticide-treated nets which had been ongoing for many 
years, and indoor residual spraying which started in 2009 
[29, 30].

To generate the serology data, finger prick blood sam-
ples were collected from participants on filter paper and 
used to detect total Immunoglobulin G (IgG) antibod-
ies against the blood-stage P. falciparum antigens, apical 
membrane antigen 1 (PfAMA1) and merozoite surface 
protein-119 (PfMSP119 ). Standard Enzyme-linked immu-
noassay (ELISA) methods [11, 31] were used to obtain 
Optical density (OD) values. Further details of the study 
design and data collection can be found in [28].

Analysis is first restricted to individuals between 1 and 
16 years. Additional analysis on 1–20 year olds, 1–30 year 
olds, and 1–50 year olds is presented in Additional file 1. 
The data is split this way in order to investigate the effect 
of selecting different age-groups on the performance of 
M1 and M2. In what follows, the focus of analysis is the 
1–16 year old age group.

The data-set consists of n = 9549 children for the 
PfAMA1 analysis and n = 9576 for the PfMSP119 analy-
sis. Figure  2 shows the age and OD distributions of the 
individuals included in the analyses.

Specifications of the model components
In this analysis, a comparison is conducted between two 
modelling approaches in the estimation of seroconver-
sion rates, for both PfAMA1 and PfMSP119.

The first, which is denoted as M1, is the classic thresh-
old-based approach as defined in (1), which considers 
seropositivity according to (2). After dichotomization of 
the antibody measurements, the RCM, as described by 
(6), is fitted using the maximum likelihood method.

The second modelling approach, which is denoted as 
M2, is the proposed threshold-free approach described in 
the previous sections. For this analysis, the age-depend-
ency of the mixture models for the two antigens is mod-
elled using an empirical approach. Based on the Fig.  3a 
for PfAMA1, a linear spline with a knot at the age of 10 
years is used. This is formally expressed as

Fig. 2  Descriptive plots of PfAMA1 and PfMSP119 antibodies for individuals between ages 1 and 16. The top row shows the age distribution, the 
bottom row shows the log OD distribution of individuals included in the analysis
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where I(a > 10) is an indicator function that takes value 
1 if a > 10 , and 0 otherwise. For PfMSP119 , based on the 
trend observed in Fig. 3b, a log-linear model is used. This 
is given by

To account for the age dependency in p(a), age is intro-
duced as a logit-linear predictor of p(a), i.e.

Note that M1 is recovered when all the regression 
parameters except β0 and β̃0 in (9), (10) and (11) are set to 
0. Therefore for M1, only the estimates for β0 and β̃0 will 
be reported.

For both M1 and M2, due to the truncated nature of 
the antibody distributions, truncated log-normal dis-
tributions are used for both antigens. The upper limit, 
say ymax(ai) , of the truncation is estimated for each age 
group as the maximum observed value of OD. Hence, the 
likelihood function in (3) now becomes

where FS+ and FS− are the cumulative distribution func-
tions of seropositive and seronegative probability distri-
butions, respectively.

(9)µ(a) = exp{β0 + β1a+ β2(a− 10)I(a > 10)},

(10)µ(a) = exp{β0 + β1a}.

(11)p(a) =
exp{β̃0 + β̃1a}

1+ exp{β̃0 + β̃1a}
.

(12)f (y) =

n
∏

i=1

[

(1− p(ai))fS−(yi;µ(ai), σ
2
S−
)+ p(ai)fS+(yi; δµ(ai), σ

2
S+
)
]

[

(1− p(ai))FS−(ymax;µ(ai), σ
2
S−
)+ p(ai)FS+(ymax; δµ(ai), σ

2
S+
)
] ,

Finally, for the RCM, a range of values from 0.01 to 1 
for ω are used, hence assuming that seroreversion events 
for individuals would occur between 1 and 100 years [8, 
11, 15, 32]. Profile likelihood analysis indicated flat likeli-
hood surfaces for PfMSP119 , and a tendency to ω = 0 for 
PfAMA1 (see Additional file 1: Fig. S1), therefore ω is set 
to three values, namely 0.01, 0.5 and 1 to represent low, 
medium and high seroconversion rate respectively. In 
what follows, results are presented for the best perform-
ing value of ω for each antigen, i.e. ω = 0.01 for PfAMA1 
and ω = 1 for PfMSP119 . Note that these values are not 
the maximum likelihood estimates for ω , but rather the 
best performing values out of the three choices stated 
above.

A summary of model parameters to estimate in this 
analysis is provided in Table 1. In order to compare how 
well M1 and M2 fit the data, the Akaike information 
criterion (AIC) is used. This is defined as 2p− 2 log(L̂) , 
where p is the number of parameters in the model and 
L̂ is the value of the likelihood function evaluated at the 
maximum likelihood estimate. The AIC is used to quan-
tify the goodness of fit of a model to the data while penal-
izing models that contain a larger number of parameters. 
The AIC can be used to compare models that are not 
nested, i.e. models that are not contained within each 

other. A lower AIC usually indicates a better fit to the 
data. All statistical analyses are conducted in the R ver-
sion 4.1.1 (2021-08-10) [33] software environment, and 

Fig. 3  Exploratory analysis of PfAMA1 and PfMSP119 antibodies for individuals between ages 1 and 16. The figure shows the geometric mean OD by 
age, with associated error bars
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maximization of the likelihood estimation is carried 
through unconstrained optimization using PORT rou-
tines as implemented in the “nlminb” function in R. The 
full reproducible code is available on GitHub (see ‘Avail-
ability of data and material’).

Results
Figure  4 shows the antibody distribution and sero-
positivity thresholds for both antigens, as derived from 
M1.  PfAMA1 shows greater  separation between the 
components, as well as lower seropositivity threshold. A 
comparison of AIC in Table 2 shows a lower value for M2 
than M1 for both antigens (29,669.940 versus 33,354.100 
for PfAMA1, and 31,162.920 versus 31,886.310 for 
PfMSP119 ), indicating that the age-dependent mixture 
model in M2 is a better fit to the data compared to M1, 
which assumes a single mixture distribution across all 
ages. This age dependency is illustrated in Figs. 5 and 6, 
which show an increase in mean antibody levels and the 
mixture distribution with age. Of note, the increase is 
much more prominent for PfAMA1, than for PfMSP119 .  

Additionally, in both M1 and M2, the separation 
between the two components of the mixture distribution 
is more prominent in PfAMA1 (Fig. 5) than in PfMSP119 
(Fig. 6) where there is poor separation of the S+ and S− 
distributions. In the M2 PfAMA1 analysis, the bi-modal 
distribution is more pronounced between the ages of 5 
to 10 years, and less so in younger and older individuals. 

Figs.  5 and  6 also indicate that age modulates the sero-
positivity threshold.

Figure  7 shows the difference in seroprevalence esti-
mation between M1 and M2, with overall higher esti-
mates across age in the latter model. For both antigens, 
the uncertainty resulting from M2, as quantified by the 
95% confidence intervals (CIs), in the seroprevalence esti-
mates of the RCM is considerably larger than M1. This is 
because the M2 estimates are obtained by incorporating 
the uncertainty in the seropositivity classification, while 
M1 ignores this uncertainty, resulting in very narrow 
confidence intervals for M1.

Figure  7 also shows that the RCM fitted using M2, 
provides a good interpolation of the seroprevalence for 
PfMSP119 but less so for the PfAMA1. Although most 
of the seroprevalence points fall within the 95% confi-
dence interval, it is evident that, approaching 15 years of 
age, where the observed seroprevalence is not contained 
within the 95% intervals, the model underestimates sero-
prevalence. This is made more clear by visualizing the the 
y-axis of the plot in Fig.  7 on the logit-scale (see Addi-
tional file  1: Fig. S2). This indicates that, in the case of 
PfAMA1, the assumptions of the standard RCM may not 
be fully supported by the data, which is undetected by 
the standard threshold-based model M1.

The distributions of � estimates derived from M2 for 
both antigens are shown in Fig. 8. For PfAMA1, � is 0.175 
(0.109, 0.286), while for PfMSP119 , this is 1.459 (0.760, 

Table 1  Model specification for the analysis

Model Equations Age-dependency Threshold Parameters to estimate

M1 (1), (9), (10), (11), (7) No Yes δ , σ 2

S−
 , σ 2

S+
 , β0 , β̃0 , �

M2 (3), (9), (10), (11), (7) Yes No δ , σ 2

S−
 , σ 2

S+
 , β0 , β1 , β2 , β̃0 , β̃1 , �

Fig. 4  Mixture distributions of PfAMA1 and PfMSP119 antibodies for individuals between ages 1 and 16 using M1. These mixture distributions are 
derived from Eq. (1), and all the data of individuals aged 1–16 are analysed together. The red dotted lines illustrate the seropositivity thresholds 
( µS− + 3σS− ), above which individuals are be classified as S+ in traditional analysis
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Table 2  Maximum likelihood estimates with associated 95% CIs (within brackets) for M1 and M2, fitted to PfAMA1 and PfMSP119 
antibody data. The Akaike Information Criterion (AIC) is also reported for the mixture models

Parameter M1 M2

PfAMA1  Mixture model β0 − 2.338 (− 2.428, − 2.249) − 3.164 (− 3.217, − 3.111)

β1 0.052 (0.045, 0.058)

β2 − 0.037 (− 0.052, − 0.023)

β̃0 − 0.565 (− 0.671, − 0.460) − 2.085 (− 2.281, − 1.890)

β̃1 0.401 (0.371, 0.432)

δ 11.706 (10.778, 12.722) 30.613 (26.224, 35.764)

σ 2

S−
0.014 (0.011, 0.019) 1.665 · 10−3 ( 1.383 · 10−3 , 

2.003 · 10−3)

σ 2

S+
0.884 (0.716, 1.092) 43.521 (25.898, 73.138)

AIC 33354.100 29669.940

 RCM � 0.022 (0.020, 0.023) 0.175 (0.109, 0.286)

PfMSP119  Mixture model β0 − 2.165 (− 2.2656, − 2.064) − 2.915 (− 2.989, − 2.841)

β1 0.031 (0.028, 0.034)

β̃0 − 1.220 (− 1.429, − 1.010) 0.081 (− 0.114, 0.277)

β̃1 0.038 (0.022, 0.054)

δ 9.256 (8.624, 9.941) 11.698 (10.385, 13.193)

σ 2

S−
0.021 (0.015, 0.028) 2.770 · 10−3 ( 2.081 · 10−3 , 

3.687 · 10−3)

σ 2

S+
0.994 (0.735, 1.346) 5.340 (3.387, 8.420)

31162.920

AIC 31886.310

 RCM � 0.060 (0.055, 0.066) 1.459 (0.760, 2.675)

Fig. 5  Age-dependent mixture distributions of PfAMA1 antibodies for individuals between ages 1 and 16 using M2. The blue line shows fitted 
distributions derived from Eqs. (3), (9) and (11). The red dotted lines illustrate the seropositivity thresholds ( µS− + 3σS− ), above which individuals 
would be classified as S+ in M1. Note that the red dotted lines are for illustration only—M2 does not use thresholds
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Fig. 6  Age-dependent mixture distributions of PfMSP119 antibodies for individuals between ages 1 and 16 using M2. The blue line shows fitted 
distributions derived from Eqs. (3), (10) and (11). The red dotted lines show the seropositivity thresholds ( µS− + 3σS− ), above which individuals 
would be classified as S+ in M1. Note that the red dotted lines are for illustration only—M2 does not use thresholds

Fig. 7  PfAMA1 and PfMSP119 seroprevalence estimates from M1, and seroprevalence distributions from M2, for individuals between ages 1 and 16. 
The top row shows M1 seroprevalence point estimates (blue dots), as well as the fitted seroprevalence curve (purple curve) and 95% CIs (purple 
dotted curves) from the RCM. The bottom row shows the mean of the seroprevalence distribution derived from M2 (blue dots), as well as the fitted 
seroprevalence curve (purple curve) and 95% CIs (purple dotted curves) from the RCM



Page 10 of 12Kyomuhangi and Giorgi ﻿Malaria Journal            (2022) 21:1 

2.675). Note that these estimates represent the mean, 
2.5% and 97.5% quantiles from the Monte Carlo distribu-
tions of the maximum likelihood estimates for �.

Finally, Additional file 1: Figs. S3 and S4 show that M2 
is consistent in the estimation of both seroprevalence and 
� , even when different age groups are considered in anal-
ysis, unlike M1. Additional file 1: Fig. S5 also shows the 
additional variation in seroprevalence estimates for M1 
when different seropositivity thresholds are used. Note 
the marked decrease in seroprevalence estimates as the 
threshold increases (see Additional file 1).

Discussion
This paper presents a threshold-free method for estimat-
ing seroprevalence that incorporates the age dependency 
of malaria antibodies in the classification of individu-
als into seropositive and seronegative. Additionally, the 
paper demonstrates how the uncertainty of this classifi-
cation can be accounted for in a the RCM. Note that this 
approach can be applied to other types of analyses that 
require the use of models different from the RCM. For 
example, if the goal of the study is to map seroprevalence 
data within a study area, the simulated classifications (pre-
viously denoted by Ci ) could be used as the input of a geo-
statistical model whose results are then summarized in a 
similar fashion as presented for the RCM in this paper.

In the application of the proposed modelling frame-
work to the RCM, seroprevalence is modelled into two 
different stages, using two different approaches: first, in a 
mixture distribution, using a logit-linear regression; and 
secondly, in an RCM, using Eq. (7). This raises the ques-
tion of a mathematical inconsistency since both equa-
tions cannot be simultaneously true. Note that this issue 
also applies to previous work which uses threshold-based 
RCMs [8, 11, 15, 17], whereby the threshold is first gen-
erated using a constant mixing probability, which would 
correspond to an intercept-only logit-linear regression in 

this paper, and is then modelled using Eq. (7). To avoid 
this issue, one solution would be to replace the logit-linear 
regression on age for seroprevalence, with Eq. (7), hence 
embedding the assumptions of the RCM directly into the 
mixture distribution. However, the preference remains 
with the approach illustrated in this paper for the follow-
ing reasons. First, the use of a logit-linear regression on 
age in the mixture distributions allows us to develop an 
empirical approach that is more flexible than an RCM and 
can better capture the variations of the antibody distribu-
tions across age. Secondly, the use of the RCM-based Eq. 
(7) for seroprevalence also in the mixture distributions 
would yield a circular argument, whereby the outcome to 
be modelled with the RCM would be already generated 
under an RCM, thus making any validation of the RCM 
assumptions a vain exercise. As shown in the case-study 
with western Kenya data, the approach presented in this 
paper can in fact better detect the inadequacy of the RCM 
than the current threshold-based approach.

The results in this paper show clear age-dependency 
in the mean antibody levels, the mixture distribution, 
and the threshold. The differences between PfAMA1 and 
PfMSP119 indicate that the magnitude of this dependency 
is likely dependent on the type of antigen and the dynamics 
of the immune response to it. Notably, results provide evi-
dence that different combinations of age-groups in analysis 
lead to different seropositivity thresholds and, therefore 
different seroprevalence estimates. This inconsistency has 
significant implications for control programmes which 
rely on these results to direct intervention strategies. A key 
advantage of the threshold-free approach is that it is unaf-
fected by the age limits considered for the analysis.

Furthermore, different definitions of the seropositivity 
threshold (i.e. between 2 and 5 standard deviations of the 
mean of the seronegative distribution) are an additional 
source of inconsistency in current literature. This makes 
the comparability of results reported across malaria 

Fig. 8  Distributions of the seroconversion rate � derived from M2 for PfAMA1 and PfMSP119 . The mean and 95% CIs for � are indicated by blue and 
red dotted lines respectively. For PfAMA1, these are 0.175 (0.109, 0.286), while for PfMSP119 , they are 1.459 (0.760, 2.675)
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serology studies more difficult. Avoiding the use of an 
arbitrary threshold, as described in this paper, provides 
a statistically rigorous solution to this problem and facili-
tates the comparison of results across studies.

The limitations of dichotomizing continuous measure-
ments into positive and negative for statistical analysis are 
well established in the literature, and include loss of infor-
mation which affects the ability to reliably recover regres-
sion relationships, as well as reducing the the precision of 
parameter estimates [34–36]. However when the scientific 
interest is in estimating seroprevalence—as this paper sets 
out to do—rather than modeling the dynamics that affect 
mean antibody antibody levels, dichotomization may be 
appropriate. This is because the approach presented in 
this paper results in a more parsimonious model than the 
unified mechanistic model presented in Kyomuhangi and 
Giorgi [14], allowing for a more efficient estimation of 
parameters that only modulate seroprevalence.

Depending on the degree of overlap between the seron-
egative and seropositive populations in the sample, mix-
ture models can be difficult to estimate. The PfMSP119 
analysis illustrates this key limitation. Due to the poor 
separation of the seronegative and seropositive popu-
lations, the estimate for � shows a large value, which is 
inconsistent with other epidemiological data from the 
study site. This poor separation could be a biological fea-
ture of the antibody response to PfMSP119 , or due to poor 
dynamic range of the serological assay that generated the 
data. Similarly, in areas of high transmission where the 
majority of the population is seropositive [10, 13], or in 
elimination settings where there are very few seroposi-
tive cases, estimating the model parameters may be dif-
ficult. In these scenarios, if prior knowledge on some 
of the components of the model is available, Bayesian 
methods of inference can be used to alleviate estimation 
issues though the specification of suitable prior distribu-
tions. Additionally, to deal with skewness of the antibody 
distributions which can still persists after taking the log-
arithmic transformation, a mixture of skew-Normal dis-
tributions can be used in the mixture model to model the 
left asymmetry of the seropositive population [37].

When fitting the RCM, the seroreversion rate may also 
be difficult to estimate, hence ω is usually fixed [9]. In 
this paper, the simplest form of the RCM, which assumes 
constant transmission was used. This ignores possible 
changes in transmission due to, for example interven-
tions in the recent past. While the resulting seropreva-
lence curves from the RCM do not fit the data very well 
in Fig. 7, the majority of seroprevalence points fall within 
the 95% CIs of the seroprevalence curves. Several studies 
have proposed modifications which relax this assump-
tion of constant transmission [9, 17, 27, 38], and each of 
these can be fitted by using the Monte Carlo approach 

proposed in this paper to propagate the uncertainty in 
the classification of seropositive individuals.

Conclusion
This paper proposes a new threshold-free method for 
estimating malaria seroprevalence which accounts for age 
dependency of antibodies through regression, and incor-
porates uncertainty around the estimates in subsequent 
analysis of the data. This method is more robust to vary-
ing conditions of analysis and provides more consistent 
estimates than the traditional threshold-based approach.
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