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Pathogenesis and treatment of
wound healing in patients with
diabetes after tooth extraction

Shuting Yang, You Li, Chengcheng Liu, Yafei Wu,
Zixin Wan and Daonan Shen*

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu, China
Diabetes mellitus is a common systematic chronic disease amongst dental

patients. The elevated glucose microenvironment can prolong the healing of

tooth extraction sockets. Therefore, the promotion of healing up tooth

extraction sockets is of great clinical importance to the patients with

diabetes mellitus. The current evidence indicates the mechanism of the

recovery period of extraction sockets in hyperglycaemia conditions from

physiological, inflammation, immune, endocrine and neural aspects. New

advancements have been made in varied curative approaches and drugs in

the management of wound healing of tooth extraction sockets in diabetes.

However, most of the interventions are still in the stage of animal experiments,

and whether it can be put into clinical application still needs further

explorations. Specifically, our work showed topical administration of plasma-

rich growth factor, advanced platelet-rich fibrin, leukocyte- and platelet-rich

fibrin and hyaluronic acid as well as maxillary immediate complete denture is

regarded as a promising approach for clinical management of diabetic patients

requiring extractions. Overall, recent studies present a blueprint for new

advances in novel and effective approaches for this worldwide health ailment

and tooth extraction sockets healing.
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Introduction

Diabetes mellitus (DM) is recognized as an enormous menace to the general

population globally, which affects 463 million adults (1). It is a systematic metabolic

disorder characterized by defective insulin secretion and impaired insulin, resulting in

microvascular complications and hyperglcemia (2). Diabetes is divided into diabetes

mellitus type 1 (T1DM) and diabetes mellitus type 2 (T2DM), with T2DM making up

90% of cases worldwide and thus more relevant research (3). Patients with DM are
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associated with a high risk of hyperlipidemia, obesity, and

healing disorders. Considering that diabetes ranks 3th in the

most prevalent chronic disease in the oral field (4), number of

diabetic patients experiencing oral manifestations exceeded 90%

(5). Diabetic patients have a prevalence of missing teeth,

prolonged wound healing, xerostomia, caries, burning mouth

disorder, lichen planus, and even bacterial osteomyelitis of the

jaw, which could increase the treatment difficulty and

compromise the treatment outcome of various oral diseases

(6–13). A population-based cohort study proved that diabetic

patients have a higher risk of tooth extraction due to periodontal

disease than non-diabetic patients in South Korea (p <.01) (6).

The origin of the medication-related osteonecrosis of the jaws

tends to be tooth extraction in elderly patients with uncontrolled

diabetes (P < 0.0125) (14). Case reports proved that bacteraemia

and fungal infection caused by diabetes-related tooth extraction

seem to be a triggering factor for osteomyelitis and

mucormycosis, respectively (15, 16).Therefore, elucidating the

mechanism and investigating the approaches to promoting the

healing of tooth extraction sockets is of great clinical importance,

especially for the patients with DM. In this review, we

systematically searched and appraised the current literature to

summarize and discuss the mechanisms and managements of

delayed extraction sockets in patients with diabetes.
Mechanistic insight into delayed
tooth extraction socket healing
among diabetic patients

The histological healing process in extraction-sockets is a

four-stage process involving the blood clot phase, the

inflammation phase of granulation tissue formation, the

proliferation phase with woven bone formation and the

modeling and remodeling phase, as shown below (Figure 1)

(17, 18). Osteogenic tissue proliferates and bone maturity
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following trabecular bone formation occurs between 4 and 8

weeks after extraction (19, 20).

Delayed tooth extraction socket (TES) healing were often

found in patients with poorly controlled or untreated DM (21).

Tooth extraction healing is slower for diabetic than the group

without diabetes, particularly on day 7 post-operatively (22).

However, not all studies have reached the conclusion that

diabetics have increased delayed healing (23). In the study by

Goss et al. there was no statistically significant difference in

healing rate after tooth extraction in either T1DM or T2DM

compared to non-diabetic patients, a result that supports the

tendency for diabetic patients to recover well after tooth

extraction when they are well controlled (24, 25). For instance

it has been shown that the duration of bone healing is similar in

diabetic and normal individuals (24). Still, due to the specificity

of diabetes and the possibility of delayed-wound-healing risk

after tooth extraction, it is of great value to understand the

mechanisms involved and the potential treatments.

In recent years, the field of wound research has been

broadened by an in-depth understanding of diabetes and its

various aspects of physiological, inflammatory, immunological,

endocrine, neurological mechanisms and microRNAs (miRNAs)

associated with the healing of extracted tooth sockets (26). Long-

standing wound healing in patients with diabetes is generally

attributed to the abnormal expression of all the cells involved as

well as the dysregulation of the expression of growth factors,

cytokines required to coordinate the normal healing process as

suggested by these research. Factors accounting for the healing

process of diabetic extraction sockets is presented in Figure 2.
Physiological mechanism

Healing of extraction sockets is a complex process involving

the reconstruction of damaged soft and hard tissues. It embodies

the proliferation and differentiation of osteocytes, as well as the

synthesis and mineralization of extracellular matrix, resulting in
FIGURE 1

Main processes of wound healing occurring in the socket after tooth extraction depicted as four time-related phases.
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bone formation and remodelling. These activities are regulated

by various cytokines, comprising the transforming growth factor

b (TGFΒ), the vascular endothelial growth factor (VEGF), the

insulin-like growth factor (IGF) and the bone morphogenetic

protein (BMP) (27). The increased recovery rate was observed

through the local application of growth factors; however, the

deficiency of growth factors in hyperglycaemia conditions

caused a low level of wound healing in animal or clinical

studies (28, 29). Decreased expression levels of these TGFΒ1-3,

TGFbRII and TGFbRIII genes may be linked to impaired oral

mucosa healing in diabetic mice (30). Diabetes-induced

detrimental effects on TES healing under the palatal plate may

be mitigated due to the rise in salivary VEGF elicited by T2DM

in clinical trials (31). However, the presence of VEGF would be

insufficient to produce new bone under hyperglycemic

conditions. The bone formation is disrupted due to

crosslinking of advanced glycation end products (AGEs)

unfavorably, in spite of induction of VEGF-C and VEGF

receptor-3 positivity in Akita mouse osteoblasts after

extraction (19). IGF-1 could foster the osteogenic

differentiation of apical papillae stem cells, which is likely to

be induced by c-Jun N-terminal kinase and p38 mitogen-

activated protein kinase signaling pathways (32). In addition,
Frontiers in Endocrinology 03
the concentration alterations in tissue growth factors, such as

IGF-1, may be strongly correlated with wound healing of the

epithelium in rats (33). Noticeably, non-enzymatic glycosylation

of collagen in hyperglycaemic rats was found to impair the

collagen metabolism, thus producing highly soluble and easily

degradable collagen. In this case, the mechanical properties of

the formed bone were weakened, and led to the delayed healing

and increased alveolar destruction (34).

Interestingly, the gene expression profile of T2DM was

distinguishable from control subjects (35). According to Liang

et al. (36), 11 differentially expressed genes were substantially

higher in the non-diabetic control group than in the T2DM

group, and among these genes, BMP-4, which is significantly

under-expressed in T2DM blood, is the most important gene

regulating bone marrow mesenchymal stromal cells (MSCs)

osteogenic differentiation based on gene ontology annotation

and random forest analysis. Among BMP family, BMP-4 was

shown bone-forming potential in rat tooth sockets (37). BMP-4,

associated with bone morphogenetic protein receptor 1,

enhances the osteogenic differentiation of stem cells via

activation of Smad signaling (38). It is noteworthy that

recombinant BMP4/7 has a higher potential to induce MSC

differentiation than BMP4 (39). With high concentrations of
FIGURE 2

Factors responsible for the healing process of diabetic extraction sockets. Diabetes inhibits mitotic growth factor expression through epigenetic
mechanisms; difficulty in wound healing after tooth extraction is associated with diminished osteogenic differentiation of mesenchymal stem
cells, activation of matrix metalloproteinase-9, persistent imbalance of RANKL/OPG ratio, and reduced expression of neuropeptides.
Hyperglycemia affects hormone receptor conversion as well as the formation of new blood vessels, and impaired angiogenesis not only hinders
bone formation but also affects the rate of wound healing. Diabetic wounds are characterized by chronic inflammation due to high levels of
reactive oxygen species, dysregulated M1/M2 macrophage polarization, and pro-inflammatory chemokines. High glucose levels have a negative
impact on macrophage function, mainly in the form of dysregulated levels of cytokine secretion such as TNF-a, IL-6 and IL-1b, in addition to
the inability of neutrophils to function in the inflammatory response phases of wound healing, migration, chemotaxis and adhesion. MicroRNAs
also influence the different phases of diabetic wound healing.
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glucose (25mmol/l), the levels of BMP-4, bone sialoprotein and

osteopontin expression, expression of Shh and alkaline

phosphatase (ALP) were greatly reduced compared with low

glucose (5.5mmol/l) (40).

The nature of diabetic wounds that are resistant to healing is

also connected to the involvement of matrix metalloproteinase

(MMP). The higher activity of MMP-2 and MMP-9 in diabetic

mice wounds is similar to that of hard-to-heal wounds caused by

ulcers or burns (41), and subsequently studies have identified

MMP-8 and MMP-9 from diabetic wounds and demonstrated

that MMP-8 inhibits apoptosis and favors wound healing, while

conversely MMP-9 promotes apoptosis and renders wounds

unhealable in mice (42). Infection of wounds increases MMP-9

activity, facilitates macrophage infiltration and diminishes

angiogenesis in animal and clinical experiments (43). Selective

inhibition of MMP-9 together with locally applied active

recombinant MMP-8 supports wound healing in diabetes in

mice (44). Hyperglycaemia (25mmol/L) can affect the regulation

of cellular Na+/K+ adenosine triphosphate enzyme activity,

increase protein kinase C activity, influence the conversion of

hormone receptors and the formation of new blood vessels in vitro

(45, 46). This is corroborated by the fact that lower ATP

concentrations in plasma are coupled with lower blood flow in

T2DM patients compared to healthy subjects (47). High blood

glucose (>13.9mmol/L) can also contribute to the production of

AGEs as well as receptor for AGEs (RAGE) under metabolic

disorders and inflammatory conditions in diabetic rats (48). In in

vitro experiments, increased AGE levels elevate extracellularMMP

inducer content and stimulate the secretion of MMP,

accompanied by collagen degradation and a decrease in bone

strength (49). Large amount of aldoses of AGEs has been found to

cause dysfunction of the endothelial cells and extracellular matrix

of the microvascular wall by covalently bounding to active amino

groups, and damage blood vessels by up-grading oxidative stress

and inducing monocytes to produce platelet-derived growth

factors (50). Thus the blood vessels became pathologically

permeable and inelastic, and block the blood flow (51).

Receptor activator of nuclear factor kappa B (RANK) and its

ligand (RANKL), as well as the deceptive receptor

osteoprotegerin (OPG), are the three main proteins of the

RANKL/RANK/OPG signaling pathway encoded by

TNFRSF11B (52). RANKL-RANK interaction increases

osteoclast production, whereas OPG inhibits their binding.

This pathway is famed for its roles in bone remodeling and

may have an impact on the pathogenesis of T2DM women (53).

For poorly controlled T2DM patients, a continual imbalance in

RANKL/OPG ratio may be produced in periodontal tissues (54).

Angiogenesis is described as new vessel formation out of

pre-existing ones and exerts its effects on wound healing (55).

The functional vascular supply is responsible for proper

ossification of newly deposited bone (56). Impaired

angiogenesis in patients with hyperglycaemia affects the rate of

wound healing, in addition to impeding bone formation (57).
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Over and above that, hypoxia-inducible factor 1amay stimulate

angiogenesis and enhance new bone formation as a transcription

factor in vitro (58). During bone repair, its expression is

upregulated due to hypoxia, but its function of mediating

angiogenesis and osteogenesis is suppressed due to high

glucose conditions in diabetic mice (59).
Inflammation and immune mechanism

Alterations in inflammation levels and reductions in new

connective tissue and bone formation played an essential role in

diabetic oral wound healing. Diabetes suppresses mitogenic

growth factor expression and increases pro-inflammatory

cytokine expression mediated by epigenetic mechanisms (60).

Chronic diabetic wounds are chronically inflamed due to a great

deal of reactive oxygen species (ROS), dysregulated M1

macrophage polarization and pro-inflammatory chemokines in

mice (61). TNF-a is acknowledged to stimulate inflammatory

response by increasing the number of blood vessels and vessel

density and regulating M1/M2 macrophage polarization in in

vitro and animal studies (62–64). However, it is stated that

elevated TNF-a and promoting inflammatory cytokines in a

hyperglycemic state (>16.7mmol/L) instead spur bone

resorption on the one hand and restrain bone formation on

the other hand in rats (65). Runx2, important for the

differentiation of osteoblasts and maturation of chondrocytes,

is inhibited by pro-inflammatory cytokines in vitro (66, 67). A

reduction of Runx2 diminished MSC differentiation and the

production of osteoblast cells (68). Besides, granulocytes were

unable to function during the inflammatory response stage of

the wound healing, migration, chemotaxis and the adhesion of

neutrophil in T1DM patients (69). The impaired neutrophil

function, however, was found not related to the increased risk of

short-term postoperative complications in T2DM (70). No

cor r e l a t ion was found be tween ex t ended wound

epithelialization and reduced neutrophil function at three

weeks postoperatively (70).

Uncontrolled DM patients are regarded as immunosuppressed,

considering the negative impact of hyperglycaemia on the immune

system. It has been confirmed that high blood sugar (25mmol/L)

causes damage to the cellular immune response, inflammatory

cytokines and microcirculation during the healing process (71,

72). The mechanism of impaired immune system is mainly

related to immune cells, such as macrophages and granulocytes.

High glucose levels (>16.7mmol/L) have a negative impact on the

function of macrophages, mainly in the form of dysregulated

secretion levels of cytokines such as TNF-a, IL-6 and IL-10, and

decreased metabolic activity in T1DM mice (73); in combination

with enhanced pro-inflammatorymacrophages was found in T1DM

mice in in vitro experiments, resulting in a higher risk of infection

(74). Defects in phagocytosis may interfere with the inflammatory

response and microbial uptake, causing accumulated debris in the
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wound and preventing the formation of granulation tissues both in

vivo and in vitro (75). Notably, abnormal inflammatory responses

coordinated by M1 or M2 macrophages are also usually associated

with delayed healing. In a vitro co-culture model, M1 pro-

inflammatory macrophages were found to act primarily by

inhibiting capability of MSCs as well as the angiogenic ability of

endothelial cells, while the opposite role was found for M2 anti-

inflammatory macrophages (76). High glucose (25mmol/L) could

drive M1 macrophage polarization via overproducing ROS under

inflammatory stimulation in T1DM rats (77). The polarization of

elevated M1 and reduced M2 macrophage may take responsibility

for slowed TES healing in subjects with T2DM through aberrant

expression of tumor necrosis factor-a (TNF-a) and peroxisome

proliferator-activated receptor-g (21).
Endocrine mechanism and
neural mechanism

In diabetic patients, their hyperglycemic condition affects a

wide range of cell functions, for example, the regulation of bone-

forming differentiation. Osteoblast proliferation and

differentiation can be inhibited by hyperglycemia (25mmol/L)

through caspase-1-mediated pyroptosis in vivo and in vitro (78).

It may cause osteoblast bone formation disorders and result in

pathological changes, such as diminished bone formation and

reduced alveolar bone height of tooth extraction wounds. It has

been suggested that the increased expression of glucose

transporter 1 might be part of the reasons for the inadequate

mineralization of osteoblasts during hyperglycaemia in vitro

(79) . Excess ive prote in- l inkedΒ-acety lg lucosamine

glycosylation (-GlcNAcylation) induced by O-GlcNAc

transferasewith high glucose (46,60 mmol/L), glucosamine

(2.5-5mmol/L) or N-acetylglucosamine (5mmol/L) leads to a

reduction in RUNX2 gene expression and thus has an inhibitory

effect on osteogenic differentiation in vitro (80). Furthermore,

the weakening of MSC osteogenic differentiation might be an

essential factor responsible for TES healing for T2DM pig

models (81). Growth differentiation factor 11 was related to

the inhibited osteogenic differentiation of MSCs in TES in

patients with T2DM (82).

Sensory nerves contribute to inflammation and immune

response, in particular, possess trophic-facilitating wound

healing generally (83). Neuropeptides are neuromodulators

involved in a variety of processes, diabetic wound healing

released by sensory nerves included (84). Insufficiency of

neurogenic mediators such as substance P (SP), secreted

from sensory neurons , may part ic ipate in wound

epithelization in mutant diabetic mice with delayed healing

(85). Moreover, SP stimulates bone formation in osteoblasts by

neurokinin-1 receptors at advanced stages of bone formation
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in rats (86). Diabetes can lead to autonomic and small sensory

nerve fiber neuropathy and dysregulation of inflammation, as

evidenced by reduced expression of neuropeptide and

imbalance in pro- and anti-inflammatory cytokine responses

(87). It has been found that the exogenous SP improved wound

repair kinetics and suggested that the chronic trauma in DM

patients may be attributable to downgraded levels of

neuropeptide nutrition (85).
The function of microRNAs in the
healing of diabetic wound

MiRNAs, regulating expression of mRNA, are a kind of

short non-coding single-stranded RNAmolecules (88). MiRNAs

influence several physiological and pathological processes, the

most notable being metabolism, proliferation, differentiation

and apoptosis. Therefore, they are being investigated as vital

markers at different stages of the wound healing process (89).

There are several miRNAs involved in the regulation of

inflammatory phase of wound healing in a hyperglycemic

environment. For example, inflammation in unhealed wounds

of patients with T2DM affects plasma miRNA concentrations,

whereas miR-191 affects angiogenesis through its target zonula

occludens-1 in order to slow down the tissue reparative process

(90). MiR-497, with its down-regulation activity for pro-

inflammatory cytokines, to such factors as TNF-a, IL-1b, IL-6,
is considered as a promising curative factor for diabetic wound

healing in mice (91). MiR-129-2-3p at wound sites in type 2

diabetic mice may expedite wound healing by mediating the

function of neutrophils (92).

Other miRNAs participating in angiogenesis and

remodeling stages consist of miR-15b, miR-20b, miR-21, etc.

Both 15b and 200b can inflict impaired angiogenesis by

repressing the expression of VEGF in diabetic mice (93). In

diabetic mice, knockdown of miR-20b-5p was found to

significantly potentiate wound repair and facilitate wound

angiogenesis by regulating the Wnt9b/b-catenin signaling

pathway (94). It has been shown that miR-21 expression is

engaged in early healing of the incisor extraction sockets in mice

(95). Strauss et al. demonstrated that miR-21 knockout mice had

approximately 15% reduced bone formation in the mesial and

coronal portions of the extraction socket compared to wild-type

controls (95). MiR-27b was revealed to prompt wound healing

by rescuing damaged angiogenic cells in T2DM mice (96). For

pigs and mice, anti-angiogenic MiR-92a, its inhibitor, possesses

the ability to accelerate wound healing (97). In in vitro

experiments, upregulated MiR-140-3p exosomes promoted the

differentiation of MSCs into osteoblasts (98).

Nevertheless, the study of miRNAs and diabetic TES healing

paves the way for miRNA-based dental regeneration strategies.
frontiersin.org

https://doi.org/10.3389/fendo.2022.949535
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yang et al. 10.3389/fendo.2022.949535
Potential interventions in the
management of extraction sockets
healing in patients with diabetes

Ideal interventions used in oral surgery should facilitate the

repair of extraction sockets, and reduce the postoperative

infection, pain and complications. Plenty of investigations

have explored pathways to acceleration of TESs healing under

high-glucose conditions based on molecular regulators of their

activity, either directly or indirectly. It is encouraging to see that

a considerable number of results have entered clinical trials, as

shown in the table below (Table 1). Directly interacting targets

include growth factors, BMPs, parathyroid Hormone (PTH),

and stem cells. A variety of drugs may act indirectly on

molecular targets by up- or down-regulating the expression of

growth factors, MMP, collagen synthesis/degradation, pro- and

anti-inflammatory cytokines, and pro-angiogenic factors. Drugs

or natural products or formations of molecular targets that are

involved on a direct or indirect basis in a proposed treatment

will be described below.
Molecular targets

Local delivery of growth factors, as for instance by the

delivery of platelet-derived growth factor (99), IGF (79),

fibroblastic growth factor (105), has been verified to favor

wound healing in poorly controlled diabetes. Systematic

reviews and meta-analyses have found the efficacy of platelet

derivatives to improve the wound healing and bone density,

thereby stimulating the soft tissues and bone regeneration (106,

107). Platelet-rich plasma is dependent on platelets to exert great

influence on healing. In a split-mouth study recruiting 34

patients with T1DM, the application of plasma-rich growth

factor after extraction yielded remarkably diminished residual

TES volumes and improved Healing Indices by accelerating the

socket closure (epithelialization) and tissue maturation in
Frontiers in Endocrinology 06
diabetic patients (99). Another animal research study assessed

the effect of topical application of autologous platelet-rich

plasma on extraction wound and found that it prevents the

medication-related osteonecrosis of the jaws (108). Activated

platelet lysates induce OPG expression and stimulate soft tissue

healing and osteoblast differentiation in rats (109). IGF-I was

found to increase the volume of neoformed bone after tooth

extraction in diabetic rats by regulating glucose transporter 1

expression, as well as increases osteoblast mineralization during

extraction wound healing (79, 110). For those patients with

insulin resistance, IGF-I treatment can be considered, but the

effectiveness and safety of IGF-I for long-term use in the

management of diabetes and complications involved need

further studies (111). Hence, locally delivered growth factors

to promote healing may be a potential therapy for the treatment

of diabetic osteopathy.

Local hemostatics are beneficial in reducing underlying

postsurgical bleeding and to pace healing (112). Leukocyte-

and platelet-rich fibrin (L-PRF) enhanced bone density and

reduced inflammation, used as a graft to fill the TES and

stabilize the blood clot in patients (100). L-PRF alone or in

combination with hyaluronic acid (HA) was effective in

improving mucosal healing and preventing alveolar osteitis

and infection following mandibular third molars extraction

(101). However, it has also been the finding that L-PRF adds

to the growth factors concentration in the TES but has no

positive outcome on bone healing (113). Additionally, the

finding demonstrated the potential of advanced platelet-rich

fibrin (A-PRF) as a therapeutic biomaterial for bone

regeneration after surgical extractions of third molars in

clinical trials, but further studies with larger sample sizes and

more systematic and rel iable evaluat ion tools are

necessary (102).

Treating the diabetic sockets with BMPmay be useful to TES

healing. Controlled local release of recombinant human BMP-2

dramatically promoted bone production in diabetic mice to near

normality and potentiates bone rejuvenation in normal mice

(114). BMP-6 can facilitate the osteoblast differentiation from
TABLE 1 List of clinical trials studies on extraction sockets healing in patients with diabetes.

Intervention Year Study design Results Reference

PRGF 2014 Retrospective, split-mouth study PRGF reduced residual socket volumes and improved Healing Indices (99)

L-PRF 2019 Prospective, double-blind, split-mouth study L-PRF enhanced bone density (p=0.007) (100)

2019 Prospective, randomized, double-blind,
controlled study

L-PRF and HA mucosa improved healing scores within 3 weeks (101)

A-PRF 2019 Randomized, split-mouth, double-blind
Study

A-PRF slightly affected PD positively (102)

HA 2020 Randomized controlled split-mouth study The sockets healing was better in the HA group, especially on day 10 (p=0.006)
and day 15 (p=0.021)

(103)

MICD 2016 Prospective study MICD reduced SOD significantly and improved chewing ability within 3 weeks (104)
fro
L-PRF leukocyte- and platelet-rich fibrin, A-PRF advanced platelet-rich fibrin, HA hyaluronic acid, PD pocket depth, MICD maxillary immediate complete denture, SOD socket
opening diameters
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MSCs and the chondrocyte maturation by signalling through

type I and type II BMP receptors (115). The extra-alveolar tissue

of diabetic rats showed a subcellular periosteal reaction by day 3,

and a large amount of cartilage had been formed by day 7

following the application of BMP-6 (116). It has been reported

that down-regulated BMP-6 in certain tissues such as

myofibroblast progenitor cells in diabetic patients thereby

inhibited the cartilage formation delaying the healing (117).

Therefore, the topical application of BMP-6 is promising to

reverse the healing inhibition of diabetes. Moreover, the level of

expressed BMP-4, bone sialoprotein and osteopontin, ALP

activity and the increased number of matrix mineralized

nodules in MSCs correlated with the Lenti – Shh activated Shh

signaling pathway; in vivo experiments revealed that Lenti – Shh

invoked additional osteogenesis (40). The intraoral injection of

the inhibitor of growth differentiation factor 11 has been found

to promote the bone healing in the post-extraction site as well as

the osteogenic differentiation of porcine MSCs (82).

Furthermore, activating macrophages by mannose receptor

clustering and enhancing M2 macrophage polarization were

found to contribute to accelerated wound healing, increase the

collagen expression and reduce the infection in hyperglycemic

conditions in mice (118). Sustained Interleukin-4 released

markedly enhanced osteogenic and angiogenic gene expression

with improved socket healing in T2DM mice by inducing

macrophage transformation towards M2 polarization (21).

PTH is an important hormone to regulate the bone

metabolism. PTH has been shown to reduce the alveolar bone

loss in the intermittent and systemic administrations by

decreasing the RANKL/OPG ratio in diabetic rats (119).

However, some studies found that PTH did not improve the

post-extraction wound healing or stimulate the osseointegration

in hyperglycemic rats, regardless of administration of PTH

(intermittent versus continuous) (120). This can be explained

by the overall inhibitory effect of high levels of AGEs and

collagen cross-linking on bone formation under diabetic

metabolism (121). The anabolic role of PTH in the repair after

DM extraction needs to be confirmed by further studies.
Synthetic drugs

The acceleration of TES recovery with insulin or metformin

has already been reported in previous research (34, 122). Insulin,

a first-line drug in the clinical therapy of DM, can directly hasten

TES healing by raising TGFb-3 expression and lowering IGF-1R

expression in diabetic rabbits (27). Moreover, the consequences

of high blood glucose and metformin on peri-implant healing

should be attached importance to. Metformin is the most

commonly employed oral hypoglycemic agents; its benefit

attributed to its preferential influence on endothelial cells, as

well as its antioxidant and anti-inflammatory properties (123).

Metformin not only remarkably reduced both intracellular ROS
Frontiers in Endocrinology 07
and apoptosis, but also increased osteoblast differentiation at

varied glucose levels (0.99, 1.98, 3.96, and 7.92 g/L), which may

be related to the promotion of Runx2 and IGF-1 expression in

vitro (122). Noticeably, osteogenic differentiation potential of

MSCs could be enhanced by metformin in T2DM patients

through the BMP-4/Smad/Runx2 signaling pathway (36).

Goto-Kakizaki rats with T2DM showed improved blood

glucose and bone volume percentage, the number of

trabecular, as well as bone density after using metformin (124).
Natural product-based treatment

Natural ingredients, namely obtained from natural sources,

often stand for the topic of further research and have been

exploited as an alternative therapy like spirulina, chitosan,

flavonoids and many more. Chitosan is a deacetylated

polysaccharide from chitin, which can accelerate new bone

formation and enhance neovascularization in vivo (125).

Besides chitosan, spirulina, a microalgae containing

kaempferol, also has antioxidant and anti-inflammatory

effects (126). Due to the fact that the addition of 12%

spirulina and 20% chitosan to the dental socket of mice

yielded an alkaline pH that was suited to ALP activity, the

bone remodeling process can be completed by promoting an

increase in osteoblast cells and a decrease in osteoclasts (127).

Ellagic acid is a natural component that effectively prevents

bone loss induced by tooth removal in diabetic rats; diabetic

ra t s t r ea ted wi th e l l ag ic ac id express a s t ronger

immunohistochemical response to fibroblastic growth factor-

2 and ALP than non-treated diabetic rats (105).

Flavonoids are known as a natural component that can

inhibit inflammation whilst speeding up wound healing.

Morin, as a pleiotropic dietary flavonoid, may prevent bone

histomorphological alterations in diabetic rats through a

potential mechanism of the insulin/IGF-1 pathway (128).

Extract of okra fruit containing flavonoid, possesses strong

antioxidant and anti-inflammatory properties. Okra fruit

extract (250 mg/kg) increased TGFΒ1 levels in post-

extraction wounds of diabetic Wistar rats (129). Treatment

of hyperglycemic diabetic rats with a new chemically

modified curcumin 2.24 contributed to the alleviation of

local and systemic inflammation and reduced bone loss,

plus inhibition of collagenolytic MMPs as well as pro-

inflammatory cytokines (130). A modified curcumin was

found to accelerate skin wound healing in hyperglycemic

rats induced by streptozotocin (131). Probiotics serve as a

potential strategy to augment insulin sensitivity and

minimize autoimmune responses by modifying intestinal

flora and reducing inflammatory responses and oxidative

stress (132). It is showed that exogenous SP favourably

promotes wound healing kinetics in Mutant diabetic mice

(85) . Further , new bone format ion was enhanced
frontiersin.org

https://doi.org/10.3389/fendo.2022.949535
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yang et al. 10.3389/fendo.2022.949535
histomorphometrically when using deproteinized bovine

bone mineral containing 10% collagen with hypoxia-

inducible factor 1a in dogs (133). These materials provide a

clue for latent auxiliary therapies in the management of post-

extraction wound in patients with DM.
Other approaches

HA could be a reliable approach to wound closure. One

study investigated the underlying role of HA, a component of

extracellular matrix, in promoting TES healing in diabetic

patients. In a randomized controlled split-mouth study

including 30 patients with poorly controlled T2DM who

required tooth extraction, 0.8% HA placed in post-extraction

socket improved the wound healing, in particular on the first

days after applying (103). In addition, sodium hyaluronate (HY)

is the product of the neutralization of the carboxyl groups of HA,

which has been proved to enhance the healing process in the

extraction sockets of rats (134). Diabetic rats gained greater

percentage of newly formed trabeculae in the post-extraction

wound treated with HY or carbon nanotubes functionalized with

HY (135).

Low-level laser therapy offered a good treatment option for

TES healing in T2DM patients (136). Rat sockets irradiated by

808 nm or 660 nm laser had less inflammatory cell infiltration

and more angiogenesis than unirradiated sockets apparently

(137). Low-level laser therapy at 808 nm was able to

considerably improve osteoid regeneration, while no

substantial difference was observed in the amount of bone

formation with 660 nm (137). Park et al. agreed that 980-nm

laser irradiation in diabetic and normal rats for 1 minute per day

contributed to early TES healing and further calcification with a

high expression of Runx2 and collagen type I mRNA (138).

Maxillary immediate complete denture has been considered as a

feasible treatment for TES healing in T2DM patients with lower

reduction of socket opening diameters, as it offers an

opportunity to train chewing ability, and thus maintaining

good nutrition in post-extraction period (104).

To date, the clinically safe and effective therapy to facilitate

the healing of TESs in patients with DM is still lacking. Many

clinical trials and animal experiments have explored the

interventions for facilitating the healing of extraction sockets

and improving clinical symptoms (24, 105). However, the

efficacy of these methods is not satisfactory because of the

complicated nature of diabetes, the fragility of the oral

environment and short-term assessment. Well-designed large-

scale multi-centre clinical trials are still required for the

investigation of interventional wound healing diabetics.
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Conclusions

This review investigated the mechanism and treatment of

the extraction sockets healing process in diabetic patients.

Approaches involving the growth factor, growth factors, BMP,

PTH, stem cells, synthetic drugs, natural product, HA, Low-level

laser therapy have been evaluated with limited achievement.

Various clinical trials have been explored to enhance the healing

process of post-extraction sockets under hyperglycemic

conditions, including plasma-rich growth factor, L-PRF, A-

PRF, HA, maxillary immediate complete denture. However,

most of these interventions are mostly still in the stage of

animal experiments, and further studies are still needed before

they can be applied in clinical practices. In the light of these facts,

they present a hope that new approaches development will

further supervene for this worldwide health ailment and

healing of tooth extraction sockets.
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