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Abstract 

Background:  Epimedin C, one of the main active ingredients of Epimedium, has been reported to have potential 
hepatotoxicity. However, the mechanism of Epimedin C-induced liver injury has not been studied. mRNA methylation, 
mainly including N6-methyladenosine and N5-methylcytidine, is implicated in the regulation of many biological pro-
cesses and diseases. The study of quantifying mRNA methylation alterations in Epimedin C-induced liver injury mice 
may contribute to clarify the mechanism of its hepatotoxicity. Therefore, an analysis method needs to be established 
to determine nucleoside and methyl-nucleoside levels in liver mRNA.

Methods:  An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method 
was developed and validated to simultaneously determine six nucleosides (adenosine, uridine, cytidine, guanosine, 
N6-methyladenosine and N5-methylcytidine) in liver mRNA. Besides, the Epimedin C-induced liver injury mouse 
model was studied by intragastrical administration Epimedin C at a daily dose of 10 or 40 mg/kg for 4 weeks. The 
nucleoside samples of the mice liver mRNA were prepared and separated on an UPLC column using 0.1% formic acid 
water and methanol after enzymatic digestion. Then the sample was detected by a Qtrap 6500 mass spectrometer.

Results:  In this method, calibration curves of the six nucleosides showed good linearity over their concentration 
ranges. The linear ranges were 40–20,000 pg/mL for adenosine, cytidine, N6-methyladenosine and N5-methylcytidine, 
0.2–100 ng/mL for guanosine, and 2–1000 ng/mL for uridine. Epimedin C-induced liver injury mouse model was 
successfully established, which could be proved by the elevation of serum aminotransferase levels, and the increased 
inflammatory cell infiltration as well as vacuolar degeneration in liver. The N6-methyladenosine and N5-methylcyti-
dine levels, and the ratios of N6-methyladenosine to adenosine and N5-methylcytidine to cytidine of the mice liver 
mRNA were all significantly increased after Epimedin C treatment.

Conclusion:  The established method was successfully applied to the determination of six nucleosides levels in liver 
mRNA of the Epimedin C-induced liver injury mice model and the control group. The results indicated that mRNA 
methylation might be associated with Epimedin C-induced liver injury. This study will facilitate the mechanism 
research on the hepatotoxicity of Epimedin C.
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Background
In recent years, the incidence of drug-induced liver 
injury has been dramatically increased due to the surg-
ing demand for herbal medicine and health care products 
[1]. Epimedium, an ancient herb medicine, was wildly 
used in Asia countries. In China, many herbal prescrip-
tions containing Epimedium have been used for rheu-
matism, arthritis, osteoporosis, and other diseases [2, 
3]. In the past few years, varying degrees of liver damage 
have been frequently reported in Epimedium consuming 
patients [4, 5]. However, few studies have been conducted 
on potential mechanism and underlying substance for 
its hepatotoxicity. As one of the main active ingredients 
and quality indicator of Epimedium, Epimedin C has 
shown strong cytotoxicity to HL-7702 and HepG2 cells 
[6–8]. Therefore, Epimedin C has been proposed as the 
substance responsible of Epimedium related liver injury. 
As far as we known, no Epimedin C-induced liver injury 
has been reported in animal models, which shall prompt 
investigation of underlying mechanisms.

Methylation modifications of messenger RNAs 
(mRNA), another layer of epigenetic regulation in 
addition to DNA and histone modifications, include 
N6-methyladenosine (m6A), N5-methylcytidine (m5C), 
N1-methyladenosine (m1A), N7-methylguanosine (m7G), 
pseudouridine (ψ), and so on [9, 10]. Among the methyla-
tion modifications of mRNA, m6A and m5C are the most 
common internal modifications in eukaryotic mRNA, 
and have been implicated in a variety of biological pro-
cesses and diseases [9–11]. For example, m6A alteration 
was associated with the progression and metastasis of 
hepatocellular carcinoma [12, 13], and acetaminophen-
induced liver injury in mice [14]. Besides, m5C played 
an important role in regulation of cell stress response, 
apoptosis, and hepatocellular carcinoma [15, 16]. How-
ever, the relationship between mRNA methylation and 
Epimedin C-induced liver injury is still unknown. It was 
expected that revealing of m6A and m5C alterations in 
Epimedin C-induced liver injury may contribute to clar-
ify the liver toxicity mechanism of Epimedin C. In con-
sequence, the content of m6A and m5C in liver mRNA 
of Epimedin C-induced liver injury mice needs to be 
quantified.

To the best of our knowledge, some liquid chromatog-
raphy–tandem mass spectrometry (LC-MS/MS) meth-
ods have been reported for the determination of m6A 
or m5C in total RNA or mRNA [14, 17–22]. However, 
there are some limitations in those methods. For exam-
ple, the run time of one sample was long [20], or it need 
a large amount of mRNA [21, 22], or the lower limit of 
quantification was high [14]. Therefore, a rapid and sen-
sitive ultra-high performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS) method for 

determination of six nucleosides in mRNA is necessary 
to be developed for our study.

In this study, the Epimedin C-induced liver injury 
mouse model was established, and a selective, rapid 
and sensitive UPLC-MS/MS method was developed for 
simultaneous determination of six nucleosides in liver 
mRNA of the mouse model. This work may provide a 
new idea for further research on the mechanism of Epi-
medin C or herbal medicine-induced liver injury.

Materials and methods
Chemicals and reagents
Epimedin C (purity ≥ 98%), used as the dosage adminis-
tration, was purchased from Cdmust Biology Technology 
Ltd. (Chengdu, China). Lamivudine (internal standard, 
IS, Batch No. J0820AS, purity > 99%) was purchased from 
Meilun Biotechnology company Ltd. (Dalian, China). 
Adenosine (Batch No. NFVEH-MG, purity > 99%), 
guanosine (Batch No. DLJPH-CK, purity > 98%), and 
cytidine (Batch No. 5PV0G-QR, purity > 98%) were 
purchased from Tokyo Chemical Industry (Shanghai) 
(Shanghai, China). Uridine (Batch No. LM90Q27, purity 
99%), m6A (Batch No. LK70U69, purity 97%), and m5C 
(Batch No. L370O143, purity 98%) were purchased from 
J&K Chemical (Shanghai, China). Nuclease P1 and alka-
line phosphatase were purchased from Takara Biotech-
nology (Dalian, China). Methanol (HPLC grade) and 
Formic acid (chromatographic grade) were obtained 
from Fisher Scientific (Shanghai, China). Ultra-purified 
water was used throughout this study and was prepared 
using a Milli-Q purification system (Millipore, Milford, 
MA, USA). All of the other chemicals and reagents were 
of analytical grade.

Animals
Male Balb/c mice (6–8  weeks old and weighing 18.0–
22.0 g) were obtained from Beijing HFK bioscience Co., 
Ltd. (Beijing, China). Mice were kept in cages under con-
trolled conditions of 22 ± 0.5 °C, 50 ± 2.0% RH and main-
tained with free access to standard laboratory food and 
water for 1 week before experiments.

Establishment of the Epimedin C‑induced liver injury 
model and experimental groups
Animals were randomly divided into three groups (n = 7 
each): the normal control group, the Epimedin C (10 mg/
kg) group, and the Epimedin C (40  mg/kg) group. Epi-
medin C were completely dissolved in 0.9% saline before 
passing through a 0.22 μm cell strainer. The Epimedin C 
was intragastrically administered at a single dose of 10 
or 40  mg/kg body weight per day. Meanwhile, the nor-
mal control mice were given the same volume of saline. 
After 4  weeks of intragastric administration, all mice 
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were sacrificed, then blood samples and liver tissues were 
collected. The procedures for the present study were 
approved by the Guide for the Care set by the National 
Institutes of Health.

Assessment of liver injury
Serum alanine transaminase (ALT) and aspartate 
transaminase (AST) levels in serum were analyzed using 
colorimetric tests (Nanjing Jiancheng Bioengineering 
Research Institute, Nanjing, China). Liver tissues fixed in 
4% paraformaldehyde were embedded in paraffin using 
a tissue procedure, and 4-μm-thick slices were prepared 
and stained with hematoxylin and eosin (H&E) reagent. 
Photomicrographs were observed with a light micro-
scope to evaluate liver injury.

UPLC‑MS/MS instruments and conditions
The LC was performed using an ExionLC™ analytical 
(UPLC) system (AB Sciex, USA). Chromatographic sepa-
ration was carried out on a Kinetex® 2.6  μm Polar C18 
100A LC column (100 mm × 2.1 mm i.d.). The flow rate 
was 0.3 mL/min. The mobile phase included ultra-puri-
fied water containing 0.1% formic acid (solvent A) and 
methanol (solvent B) in a linear gradient. The gradient 
program was as follows: 0 to 0.5 min, 95% A; 0.5 to 3 min, 
95 to 30% A; 3 to 4 min, 30% A; 4 to 4.1 min, 30 to 95% 
A; 4.1 to 6 min, 95% A. The injection volume was 10 μL 
and the total run time was 8 min. The temperature of the 
autosampler was set at 4 °C, and the column temperature 
was maintained at 40 °C. MS/MS analysis was carried out 
on a Qtrap 6500 mass spectrometer (AB Sciex, Redwood 
City, CA, USA) equipped with Turbo Ionspray interface 
operating in positive ESI mode. The instrument was 
operated with an ion spray voltage of 4.5 kV and a heater 
gas temperature of 500  °C. Mass-dependent parameters 
(declustering potential, entrance potential, collision 
energy, and collision cell exit potential) were set to the 
optimal values obtained by automated optimization. Data 
acquisition was achieved by multiple reaction monitoring 
(MRM). The precursor-product ion pair and the optimal 

values of mass parameters are listed in Table 1. Positive 
ion mode was used and the dwell time was set at 100 ms. 
Data acquisition was generated and processed using the 
Analyst 1.6.2 software (AB Sciex).

Preparation of calibration standards and QC samples
Stock solutions for calibration and quality control (QC) 
were accurately weighed and dissolved in dimethylsulfox-
ide (2% of the total volume) before adding an appropriate 
volume of methanol to final concentration of 1 mg/mL. 
Working solutions were prepared by serially diluting the 
stock solutions with water, and then the corresponding 
working solutions were mixed to prepare mixed work-
ing solutions with concentration in the ranges of 160–
80,000 pg/mL for A, C, m5C and m6A, 0.8–400 ng/mL for 
G, and 8–4000  ng/mL for U. The stock solution (1  mg/
mL) of the IS was dissolved in water to 4 ng/mL contain-
ing 0.4% formic acid. All solutions were kept at − 20  °C 
and brought to room temperature before use. The cali-
bration standards were prepared by spiking 7.5 μL of the 
corresponding working solutions mentioned above into 
22.5  μL of mixtures of nuclease P1 (0.1  U) and alkaline 
phosphatase (2 U) to yield concentrations of 40, 120, 500, 
1000, 2000, 4000, 8000 and 20,000 pg/mL for A, C, m5C 
and m6A, 0.2, 0.6, 2.5, 5, 10, 20, 40 and 100  ng/mL for 
G, and 2, 6, 25, 50, 100, 200 400 and 1000 ng/mL for U. 
The QC samples were prepared in the same way as the 
calibration samples at three concentrations 120, 1600, 
16,000 pg/mL for A, C, m5C and m6A, 0.6, 8, 80 ng/mL 
for G, 6, 80, 800 ng/mL for U.

RNA isolation from liver tissues and Enzymatic digestion 
of the mRNA
100  mg of liver tissue was completely disrupted and 
homogenized into 1 mL TRIzol reagent. Then, the total 
RNA of liver tissue was isolated according to the manu-
facturer’s instructions. After analyzed by a NanoDrop 
One (Thermo Scientific), the Dynabeads® mRNA Purifi-
cation Kit (Ambion) was used to enrich mRNA. The con-
taminant DNA was removed from the mRNA samples by 

Table 1  Multiple reaction monitoring transitions and optimized mass parameters for the analytes

DP declustering potential, EP entrance potential, CE collision energy, CXP collision cell exit potential

Analytes Precursor ion (m/z) Product ion (m/z) DP (V) EP (V) CE (V) CXP (V)

Adenosine (A) 268.1 136.1 30 10 22 10

Uridine (U) 245.0 113.1 12 10 12 10

Cytidine (C) 244.1 112.0 30 10 13 10

Guanosine (G) 284.2 152.1 30 10 15 10

N6-Methyladenosine (m6A) 282.2 150.2 30 10 24 10

N5-Methylcytidine (m5C) 258.2 126.1 30 10 15 10

Lamivudine (IS) 230.2 112.0 30 10 14 10
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using DNase, and the concentration was analyzed by a 
Qubit 3.0 Fluorometer (Invitrogen).

Referring to the methods reported, enzymatic diges-
tion of the mRNA was performed [14]. The mixture sam-
ple was made included 100 ng mRNA, 1 μL of nuclease 
P1 (0.1 U/μL, Takara), and 2 μL of alkaline phosphatase 
(calf intestine, 1 U/μL, Takara), and the total volume was 
brought to 30 µL with ultrapure distilled water. After fully 
vortexed, the mixtures were incubated at 37 °C for 12 h. 
Then, 10  μL IS solution (IS, lamivudine, 4  ng/mL) con-
taining 0.4% formic acid was added. The mixtures were 
vortexed for 15 s and transferred into ultrafiltration tubes 
(MW cutoff of 3 kDa, Pall Corporation), and centrifuged 
at 4 °C, 14,000×g for 15 min. The filtrate was added to an 
autosampler vial, then 10 μL of the filtrate was used for 
UPLC-MS/MS analysis.

Method validation
The analytical methodology was under the guidelines set 
by the United States Food and Drug Administration [23] 
and the Chinese Pharmacopoeia Commission [24].

The selectivity was evaluated by comparing chroma-
tograms of mRNA-free blank enzymolysis matrix, blank 
enzymolysis matrix with all analytes, and a liver mRNA 
enzymolysis sample containing IS from a mouse after 
Epimedin C treatment. The absence of peaks at retention 
times of seven analytes indicated no interference in the 
test samples.

After detection of the upper limit of the quantifica-
tion (ULOQ) samples, blank samples were injected to 
evaluate the carryover effects. The response peak of any 
analytes must be < 10% of the lower limit of the quantifi-
cation (LLOQ) samples.

The linearity was investigated by plotting the peak-area 
ratios of the analytes (A, U, C, G, m6A and m5C) to the 
IS versus the concentrations of the calibration standards. 
The calibration equations were fitted using a weighed 
least-squares linear regression analysis (weighing fac-
tor of 1/x2). The accuracy, expressed as the mean rela-
tive error (RE, %), should be ≤ 20% for LLOQ and ≤ 15% 
for the other seven concentrations of the calibration 
standards.

To assess the precision and accuracy of the method, 
five replicates of QC (at three concentration levels) and 
LLOQ were prepared and analyzed within 3 validation 
days. Both the accuracy (RE, %) and intra- and inter-pre-
cision (RSD, %) for LLOQ should be less than or equal to 
20%. The accuracy and precision for the QC levels should 
be within ± 15%.

To determine whether matrix components affected 
the ion suppression or enhancement in the method, the 
matrix effect (ME) was assessed by comparing the corre-
sponding peak area responses of enzymolysis matrix with 

all analytes and the blank samples in which the enzymol-
ysis matrix was replaced with water. In this method, the 
variability values of the MEs (RSD, %) should be less than 
15%.

To evaluate the stability of the analytes in the enzy-
molysis matrix during sample preparation and storage, 
the low and high QC concentration levels in different 
storage conditions were detected. The storage conditions 
included room temperature for 6  h, three freeze–thaw 
cycles, autosampler at ambient temperature for 20 h, and 
freezing at − 20 °C for 30 days. The analytes were stable 
when 85–115% of the initial concentration was retained.

The dilution integrity was assessed by testing the solu-
tion which was diluted 100-fold with blank enzymolysis 
matrix before ultra-filtration from highly concentrated 
samples above the upper limit of standard curves. The 
accuracy and precision should be within ± 15%.

Data analysis
The data were presented as the arithmetic mean ± SD. 
Statistical analyses were performed using SPSS software 
for Windows. Statistical significance was assessed by 
unpaired two-tailed Student’s t-test between two sam-
ples. p value < 0.05 was considered statistically significant.

Results
Chromatography and mass spectrometry
The chromatographic conditions of an UPLC-MS/MS 
method were important for the chromatographic behav-
ior of the analytes. A Kinetex® 2.6 μm Polar C18 100A LC 
column was proved to be more suitable for the separation 
of the targeted compounds in the sample. The composi-
tion of mobile phase and the gradient elution programs 
were optimized to obtain better sensitivity, better peak 
shape, and mass response to the analytes. Ionization was 
achieved using the positive ion-monitoring mode with 
ESI. The precursor ions and product ions of six nucleo-
sides and lamivudine (IS) for the MRM transition were 
obtained. The MS/MS product ion spectra of the analytes 
are shown in Fig. 1.

Method validation
Selectivity, linearity, and carryover
Typical chromatograms of six nucleosides and lamivu-
dine (IS) are shown in Fig. 2. No significant interference 
was observed at the retention times of A, U, C, G, m6A, 
m5C and IS which were 1.73, 1.31, 0.91, 1.94, 2.46, 1.07 
and 1.56  min, respectively. The calibration curves were 
linear over the concentration ranges of 40–20,000 pg/mL 
(r > 0.99, n = 8) for A, C, m5C and m6A, 0.2–100 ng/mL 
for G, and 2–1000 ng/mL for U (r > 0.99, n = 8). Carryo-
ver effects were absent for analytes.
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Accuracy and precision
Three batches of LLOQ and QC samples were evalu-
ated to obtain the intra- and interday precision and 
accuracy with the current method. The validation 
results of accuracy and precision for A, U, C, G, m6A 

and m5C are listed in Table 2, which demonstrated that 
the values of RSD and RE were all inside the acceptable 
variability limits. It indicates that the method is accu-
rate and precise.

Fig. 1  Chemical structures and product ion spectra. A A; B U; C C; D G; E m6A; F m5C; G lamivudine
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Fig. 2  Typical MRM chromatograms of A, U, C, G, m6A, m5C and lamivudine (IS). A Blank enzymolysis matrix sample; B blank enzymolysis sample 
mixed with the six nucleosides and IS; C a liver mRNA enzymolysis matrix sample from Epimedin C-treated mouse
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Matrix effects and stability
The results of ME and extraction recovery were evalu-
ated using QC samples at the low and high QC lev-
els. The IS-corrected matrix factors of the six different 
batches of enzymolysis matrix at low- and high-concen-
trations were 96.1 ± 3.1 and 97.8 ± 3.1% for A, 105.4 ± 8.3 
and 100.0 ± 3.2% for U, 100.2 ± 7.5 and 97.1 ± 4.2% for 
C, 100.1 ± 4.6 and 98.6 ± 4.9% for G, 98.3 ± 3.0 and 
98.5 ± 3.7% for m6A, and 100.5 ± 5.0 and 95.0 ± 3.9% for 
m5C, respectively. These data indicated that the MEs 
for all the analytes were negligible following the current 
method.

The stability results of the analytes are summarized 
in Table 3. A, U, C, G, m6A and m5C remained stable at 
room temperature for 6  h and after three freeze–thaw 
cycles. All the analytes were also stable in the autosam-
pler at ambient temperature for 20 h and after freezing at 
− 20 °C for 30 days.

Dilution integrity
Results of the dilution integrity were shown in Table 4. 
The precision and accuracy of the dilution test at the 

low and high concentration levels were within the 
acceptable criteria, indicated that A, U, C, G, m6A and 
m5C were assayed reliably by diluting 100-fold with 
blank enzymolysis matrix. Samples could be tested by 
dilution when the analyte concentration exceeded the 
linear range of the standard curve.

Epimedin C‑induced liver injury
Hematoxylin and eosin staining of the liver was per-
formed in order to evaluate the pathological changes in 
liver. Epimedin C increased the inflammatory cell infil-
tration (the red arrow) and vacuolar degeneration (the 
black arrow) observed in liver, and these effects were 
induced with the increased dose of Epimedin C (Fig. 3). 
Serum aminotransferase levels were in good agreement 
with histopathological changes in our study. The serum 
levels of transaminase were measured to evaluate hepa-
tocellular damage. The results showed that serum ALT 
and AST levels were significantly increased after oral 
administration of 40 mg/kg Epimedin C compared with 
the normal control group (Fig. 3).

Table 2  Precision and accuracy data for the quantification of six nucleosides in mRNA (n = 5)

Analytes Concentration levels (mean ± SD, pg/mL) RSD (%) RE (%)

Added Measured Intra-day Inter-day Accuracy

Adenosine (A) 40 40.8 ± 1.9 6.5 4.3 2.0

120 133.3 ± 3.1 3.9 2.0 11.1

1600 1792.7 ± 33.7 3.6 1.4 12.0

16,000 15,120.0 ± 270.4 4.0 1.0 − 5.5

Uridine (U) 2000 1919.3 ± 96.0 6.5 4.7 − 4.0

6000 6101.3 ± 220.7 7.4 2.5 1.7

80,000 83,680.0 ± 1235.9 2.6 1.2 4.6

800,000 710,133.3 ± 10,405.1 2.1 1.3 − 11.2

Cytidine (C) 40 36.7 ± 2.3 0.5 6.8 − 8.3

120 117.3 ± 5.4 4.8 4.5 − 2.3

1600 1672.7 ± 26.0 1.5 1.6 4.5

16,000 15,953.3 ± 247.5 1.2 1.6 − 0.3

Guanosine (G) 200 195.0 ± 12.0 12.7 4.1 − 2.5

600 630.4 ± 21.8 6.4 2.7 5.1

8000 8472.0 ± 280.3 4.3 3.1 5.9

80,000 78,180.0 ± 1894.1 4.5 1.9 − 2.3

N6-Methyladenosine (m6A) 40 36.2 ± 2.0 13.8 1.9 − 9.5

120 131.2 ± 6.9 2.4 5.6 9.3

1600 1733.3 ± 96.0 7.2 5.2 8.3

16,000 15,806.1 ± 196.9 1.2 1.2 − 1.2

N5-Methylcytidine (m5C) 40 38.4 ± 1.6 2.1 4.3 − 4.0

120 122.3 ± 3.3 4.2 2.3 1.9

1600 1697.3 ± 39.9 6.0 0.6 6.1

16,000 15,726.7 ± 286.5 3.3 1.4 − 1.7
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Application for quantifying the nucleosides
The mean concentration levels of m6A and m5C 
in prepared test samples of mice liver mRNA in 
the control and Epimedin C-induced liver injury 
model groups are presented in Fig.  4. The ratios of 
m6A to A (m6A/A% = Cm6A/CA × %) and m5C to C 
(m5C/C% = Cm5C/CC × %) expressed the content of 
modified nucleoside in mouse liver mRNA. The results 
showed that both the concentration levels of m6A and 
m5C, and the ratio of m6A/A and m5C/C in the mRNA 
of in Epimedin C-induced mice live injury mice were 
significantly increased when compared with the nor-
mal control mice. According to these results, it could 
be indicated that epigenetic modification in mice liver 
were impacted by Epimedin C treatment.

Discussion
Some studies indicated that the Epimedin C had the 
potential hepatotoxicity [6–8], but the mechanism of 
Epimedin C-induced liver injury has not been stud-
ied. In this study, the Epimedin C-induced liver injury 
mouse model was established for the first time. The 
oral dose (10  mg/kg, equivalent dose) of Epimedin C 
in mouse model is calculated according to the clinical 
dosage of Epimedin C in the Xian-Ling-Gu-Bao cap-
sule. Meanwhile, four times equivalent dose (40  mg/
kg) of Epimedin C was also investigated for the liver 
injury mouse model. The results showed that the 
mouse model was induced successfully by intragastrical 
administration Epimedin C at a daily dose of 40 mg/kg 
for 4 weeks in mice. The mouse model provides useful 

Table 3  The stability test results in enzymolysis matrix under various storage conditions (n = 5)

Analytes Added (pg/mL) Room temperature for 6 h Autosampler for 20 h (RT) Three freeze–thaw cycles Freezing for 30 days (− 20℃)

Measured (pg/mL) RE (%) Measured (pg/mL) RE (%) Measured (pg/mL) RE (%) Measured (pg/mL) RE (%)

Adenosine 120 130.0 ± 2.1 8.3 133.0 ± 1.0 10.8 134.2 ± 3.6 11.8 133.0 ± 1.6 10.8

16,000 15,360.0 ± 230.2 − 4.0 15,380.0 ± 164.3 − 3.9 15,240.0 ± 54.8 − 4.8 14,840.0 ± 167.3 − 7.3

Uridine 6000 6316.0 ± 170.7 5.3 6052.0 ± 169.9 0.9 5986.0 ± 141.2 − 0.2 5868.0 ± 140.2 − 2.2

800,000 706,000.0 ± 12,308.5 − 11.8 688,800.0 ± 6760.2 − 13.9 687,200.0 ± 15,073.2 − 14.1 716,600.0 ± 13,794.9 − 10.4

Cytidine 120 120.8 ± 2.9 0.7 121.0 ± 1.9 0.8 119.0 ± 4.4 − 0.8 117.2 ± 4.1 − 2.3

16,000 16,140.0 ± 240.8 0.9 16,040.0 ± 230.2 0.3 16,080.0 ± 238.7 0.5 15,980.0 ± 228.0 − 0.1

Guanosine 600 653.0 ± 16.3 8.8 625.8 ± 14.8 4.3 628.2 ± 14.8 4.7 605.2 ± 28.1 0.9

80,000 79,200.0 ± 748.3 − 1.0 77,520.0 ± 1158.4 − 3.1 76,300.0 ± 1647.7 − 4.6 77,320.0 ± 2008.0 − 3.4

m6A 120 132.4 ± 3.0 10.3 126.0 ± 3.4 5.0 123.8 ± 3.0 3.2 132.2 ± 12.1 10.2

16,000 15,962.0 ± 205.7 − 0.2 15,561.0 ± 218.9 − 2.7 15,490.8 ± 269.4 − 3.2 15,841.8 ± 281.8 − 1.0

m5C 120 123.4 ± 3.8 2.8 121.6 ± 2.2 1.3 120.0 ± 2.2 0 122.2 ± 3.7 1.8

16,000 15,720.0 ± 130.4 − 1.8 15,600.0 ± 100.0 − 2.5 15,600.0 ± 308.2 − 2.5 15,980.0 ± 249.0 − 0.1

Table 4  Precision and accuracy of the dilution QC samples (n = 5)

Analytes Added (ng/mL) Dilution factor Caculated (pg/mL) Measured (pg/mL) RSD (%) RE (%)

Adenosine 12 100 120 137.8 ± 2.2 1.6 14.8

1600 100 16,000 14,940.0 ± 167.3 1.1 − 6.6

Uridine 600 100 6000 5862.0 ± 99.3 1.7 − 2.3

80,000 100 800,000 716,000.0 ± 10,583.0 1.5 − 10.5

Cytidine 12 100 120 115.8 ± 5.4 4.6 − 3.5

1600 100 16,000 16,100.0 ± 339.1 2.1 0.6

Guanosine 60 100 600 635.2 ± 26.0 4.1 5.9

8000 100 80,000 78,920.0 ± 1856.6 2.4 − 1.4

m6A 12 100 120 126.4 ± 10.2 8.0 5.3

1600 100 16,000 15,631.2 ± 212.5 1.4 − 2.3

m5C 12 100 120 125.8 ± 4.5 3.6 4.8

1600 100 16,000 16,540.0 ± 320.9 1.9 3.4
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Fig. 3  Representative photomicrographs of liver histopathological examination and serum aminotransferase levels after Epimedin C treatment. A 
Epimedin C was absent in the normal control group; B the mice were treated with Epimedin C (10 mg/kg) in the EL group; C the mice were treated 
with Epimedin C (40 mg/kg) in the EH group. *P < 0.05 vs. the normal control group. The black arrow represents the vacuolar degeneration and the 
red arrow stands for the inflammatory cell infiltration

Fig. 4  Concentration levels of six nucleosides and relative contents of m6A and m5C in test samples. The concentration levels of A A, B U, C C, D G, 
E m6A and F m5C in test samples; G, H the content of modified nucleoside m6A (ratio of m6A/A) and m5C (ratio of m5C/C). Epimedin C was absent 
in the normal control group. The mice were treated with Epimedin C (10 mg/kg) in the EL group. The mice were treated with Epimedin C (40 mg/
kg) in the EH group. *P < 0.05 and **P < 0.01 vs. the normal control group
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tools for evaluating the hepatotoxicity and mechanism 
of Epimedin C in future studies.

To the best of our knowledge, methylation modification 
disorders of mRNA are closely related to the occurrence 
and development of many liver diseases. The study of 
investigating the connection of mRNA methylation and 
Epimedin C-induced liver injury was performed. A new 
UPLC-MS/MS method was developed for simultaneously 
determination of six nucleosides in mice liver mRNA. 
Compared to previous reports, this present method has 
higher sensitivity, wider linear range, and more analytes. 
Due to consisting of multiple compounds in mRNA, the 
simultaneous quantitation of six nucleoside encounters 
the great challenge in short running time using UPLC. 
Multiple reaction monitoring, a highly specific technique, 
was used for quantifying the targeted analyte without the 
considering of baseline chromatographic separation [25]. 
Furthermore, ultra-purified water containing 0.1% for-
mic acid/methanol in a linear gradient was the optimum 
mobile phase to achieve the chromatogram. Because of 
the much higher concentrations of A, U, C and G than 
that of m6A and m5C, different ranges were designed for 
the standard curves. In addition, saturation nonlinearity 
is unavoidable in the highly sensitive mass spectromet-
ric detector, when the concentrations of analytes are too 
high. In this study, the concentrations of A, U, C and G 
in the samples were above the upper limit of standard 
curves. Therefore, the samples were diluted 100-fold with 
blank enzyme matrix when detecting A, U, C and G.

Although one study has reported the content of m6A 
in liver mRNA of drug-induced liver injury mouse model 
[14], m5C alteration in liver injury mouse model is dis-
covered firstly in our study. Additionally, it is the first 
time to reveal mRNA methylation alteration in liver 
mRNA of liver injury mice induced by Chinese herbal 
medicine. Our study validates the changes of m6A and 
m5C in mice liver mRNA after Epimedin C treatment, 
but the relationship between modified nucleosides and 
the mechanism of Epimedin C-induced liver injury is not 
well understood, which requires further investigation. 
This study may offer a new idea and approach for study-
ing the mechanism of Epimedin C-induced liver injury.

Conclusions
An UPLC-MS/MS method for the simultaneous deter-
mination of A, U, C, G, m6A and m5C in mRNA was 
presented and validated. The method was applied to the 
detection of six nucleosides in liver mRNA of Epimedin 
C-induced liver injury mice. The results demonstrated 
that epigenetic modification changed in mice liver after 
Epimedin C treatment with test dose, and the m6A and 
m5C might be associated with Epimedin C-induced liver 
injury, which were reported for the first time. Our study 

provides a new idea for further research on the mecha-
nism of Epimedin C or herbal medicine-induced liver 
injury.
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