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Abstract: Glomerular filtration is a pivotal process of renal physiology, and its alterations are a
central pathological event in acute kidney injury and chronic kidney disease. Creatinine clearance
(ClCr), a standard method for glomerular filtration rate (GFR) measurement, requires a long and
tedious procedure of timed (usually 24 h) urine collection. We have developed a neural network
(NN)-based calculator of rat ClCr from plasma creatinine (pCr) and body weight. For this purpose,
matched pCr, weight, and ClCr trios from our historical records on male Wistar rats were used. When
evaluated on the training (1165 trios), validation (389), and test sets (660), the model committed
an average prediction error of 0.196, 0.178, and 0.203 mL/min and had a correlation coefficient of
0.863, 0.902, and 0.856, respectively. More importantly, for all datasets, the NN seemed especially
effective at comparing ClCr among groups within individual experiments, providing results that
were often more congruent than those measured experimentally. ACLARA, a friendly interface for
this calculator, has been made publicly available to ease and expedite experimental procedures and
to enhance animal welfare in alignment with the 3Rs principles by avoiding unnecessary stressing
metabolic caging for individual urine collection.

Keywords: rat glomerular filtration rate; creatinine clearance; calculator; neural network; machine
learning

1. Introduction

Alterations in GFR are a hallmark of many renal ailments, including acute kidney
injury (AKI) [1] and chronic kidney disease (CKD) [2,3], and a gold standard diagnostic
parameter [4–6]. Methods to measure GFR are based on the clearance of specific probe
molecules from the blood. These must be cleared solely by renal excretion, not metabolized,
freely filtered at the glomerulus, or secreted or reabsorbed by the tubule, and must not
interfere with the GFR [7,8]. Different exogenous molecules with these characteristics have
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been used [8–10], but the clearance of inulin (ClIn), a plant fructan oligosaccharide, is still
the gold standard GFR measurement method [7,11–13].

These clearance methods are overtly inconvenient for routine clinical practice [14,15]
due to the time-consuming and costly procedures, such as the need for exogenous probe
administration, timed urine and blood collection and analysis, and the involvement of
radioactivity [9]. For these reasons, GFR measurement turned to endogenous probes [16],
the most used of which is creatinine (Cr), a metabolite of phosphocreatine and a waste
product of muscle activity. Creatinine clearance (ClCr) is not the ideal method for GFR
measurement either, because Cr is also secreted in the tubule and, in some circumstances,
can also be cleared from the organism with the feces [17]. In fact, 10–40% of the creatinine
found in the urine is secreted in normal individuals [18], which leads to an overestimation of
the GFR when measured as ClCr, compared to ClIn [19]. Yet endogenous ClCr, introduced
in 1937 [20], avoids probe administration and the use of radioactivity because Cr can be
measured with a colorimetric reaction known as Jaffe’s method [7,21,22], or with enzymatic
assays [23]. Its reduced complexity, cost, and risk rapidly led to the adoption of ClCr [7],
which still requires timed urine sampling (usually 24-h collection).

Serum creatinine concentration (sCr) is a gross and inverse reflection of ClCr and, thus,
of the GFR because it is produced in the muscle at a more or less constant average daily rate.
Variations in sCr are therefore mostly derived from changes in ClCr. Accordingly, with
all its limitations [24,25], sCr was progressively adopted as the election proxy to estimate
GFR, especially after methods for automatic analysis were developed by the 1960s [21,25].
Still, sCr is dependent on muscle mass, race, and other factors; thus, algorithms have
been developed to estimate GFR from sCr and personal and body habitus data [9]. In
1976, the Schwartz formula (adjusted by height) [26] and the Cockroft–Gault equation
(adjusted by age and weight) [27] were published. Over 25 formulas have been developed
thereafter [28], most notably including the Modification of Diet in Renal Disease equation
(MDRD) [29] and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)
group equation [30], both adjusted by age, sex, and ethnicity. Due to its reasonably high
accuracy and practicality, estimated GFR has substituted measured GFR (i.e., clearance
methods) in most clinical situations [4]. Recently, a novel approach has been proposed
to efficiently estimate GFR from sCr through a numerical algorithm based on bivariate
numerical modeling [31].

Similarly, in experimental research with animals, ClIn [32,33] is the preferred method
for GFR assessment, but endogenous ClCr [34,35] is most widely used due to reduced com-
plexity. Still, individual, laborious 24-hour urine collection is necessary. A transcutaneous
exogenous fluorescence-labeled sinistrin clearance (ClSin) method has been developed
which avoids individual housing and allows longitudinal studies with minimal invasive-
ness [36]. However, ClSin is also laborious and technically more demanding than traditional
clearance techniques. Due to simplicity, sCr is again the most frequent surrogate for GFR.

In this study we developed and experimentally validated a neural network-based
calculator of ClCr for rats from a single analyte (i.e., sCr) and body weight data, useful in
both healthy and disease conditions. This calculator may be used in many acute and chronic
pathophysiological circumstances to prevent long, tedious, and costly procedures and avoid
the stressful conditions for experimental animals associated with ClCr measurement.

2. Materials and Methods
2.1. Data Mining and Database Generation

To train the model, 1554 data trios of measured ClCr (mClCr), pCr, and body weight
were collected from the historical records of our laboratory. These datasets came from
published and unpublished experiments with AKI and CKD models (and their healthy,
normal controls) (Figure 1 and Table 1). A random subset with 75% of the data trios (1165)
was used for model training (i.e., the training set), and the remaining 25% (389) was used
for validation (i.e., the validation set), which was utilized for making design decisions (e.g.,
model selection, preprocessing pipeline design, etc.). Once the final model was obtained, it
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was field-tested against a third dataset with 660 data trios (i.e., the test set) from rats and
experiments different from those used for training and validation. In all cases, the data
arose from male Wistar rats, with no exclusion criteria. ClCr had been measured as we
previously described [37,38]. Briefly, ClCr had been determined with the following formula:
ClCr = UF24h × uCr/pCr, where UF24h is the volume of urine collected in 24 h, pCr is the
plasma concentration of creatinine, and uCr is the urinary concentration of creatinine. For
individual urine collection, rats had been allocated in metabolic cages and allowed free
access to water and regular chow. Blood samples had been collected from a small incision
in the tail and immediately centrifuged to obtain the plasma, which was frozen at −80 ◦C
until use. Both pCr and uCr had been measured with a commercial colorimetric assay
based on Jaffe’s method (Quantichrom Creatinine Assay Kits, BioAssay Systems, Hayward,
CA, USA) following the manufacturer’s instructions. A database was generated with rat
identifiers, experimental model, ClCr, pCr, and body weight values.
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Figure 1. Summary of the datasets used for model development and field testing. Data trios were
composed of matched pCr, ClCr, and body weight data.

Table 1. Characteristics of the datasets used for model development and field testing. CTRL, control.
T-AKI, toxic acute kidney injury. I/R, ischemia/reperfusion. M, male. RMR, 5/6 renal mass reduction.
PRD, predisposed-to-AKI (as in [39–42]).

Model n
(Rats)

Age
at Start
(Weeks)

Duration
(Weeks)

n
(Data Trios)

Model Development (Training + Validation Datasets)

CTRL 9 8 1 51
34 8 2–28 194

T-AKI 109 8 1 583
19 8 2–8 98
64 8 2–28 381

I/R 15 8 2–8 63
RMR 35 8 2–28 184

Test Dataset

CTRL 13 8 1 59
2 8 5 10
3 8 7 21

PRD 61 8 1 279
T-AKI 9 8 5 38

7 8 7 49
50 8 1 204
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2.2. Algorithm Description

Linear regression (LR), random forest (RF), and feedforward neural network (FFNN) [43,44]
models were evaluated comparatively. Among them, LR is the simplest algorithm as it
can only learn independent linear relationships between each input feature and the output.
Conversely, RF is a non-linear model able to capture complex relationships among input
and output features as it uses the compound prediction from many (e.g., 100) decision
trees to perform regression. Finally, FFNNs are connectionist models that allow for fitting
non-linear relationships by stacking many LR units (i.e., neurons) with non-linear activation
functions in between, similar to how simple biological neurons combine to form a complex
net: the brain. For the LR and RF models, the Scikit-learn library (version 0.24.1) [45] was
employed, while for the FFNN, TensorFlow (version 2.1.0) [46] was used.

2.3. Data Preprocessing

The relationship between pCr and mClCr was linearized by logarithmic transfor-
mation (Equation (1) and Supplementary Figure S1) to help the ML algorithms better
capture the relationship. The input features (pCr and weight) were then standardized by
Equation (2), which centers the data distribution around zero and scales it to unit variance.
Standardization is required by LR, and it is helpful for training other ML models too since
it equalizes the relative importance of the features.

f (x) = log
(

1
x

)
(1)

x̃ =
x−mean(x)

std(x)
(2)

2.4. Neural Network Training, Validation, and Testing

For FFNN training, the parameters, i.e., weights, minimizing the model’s prediction
error, i.e., the mean squared error (MSE, Equation (3)), between eClCr and mClCr in the
training set were found by the stochastic gradient descent (SGD) [47] iterative optimizer.

MSE(eClCr, mClCr) = mean
(
(eClCr −mClCr)

2
)

(3)

Model performance was mainly assessed with the mean absolute error (MAE) and
the Pearson product-moment correlation coefficient (Equations (4) and (5), respectively),
although p10 and p30 metrics were also included for completeness. The MAE represents
the absolute error (in mL/min) that is committed on average in every prediction. The
correlation coefficient measures the strength of the relationship between mCl_Cr and eCl_Cr
with a value between 0 and 1, where 1 stands for a perfect prediction performance (i.e.,
eClCr = mClCr for all data trios). Finally, p10 and p30 represent the fraction of predictions
(eCl_Cr) that fall within 10% and 30% of the mCl_Cr, respectively.

MAE(eClCr, mClCr) = mean(|eClCr −mClCr|) (4)

corr(eClCr, mClCr) =
cov(eClCr, mClCr)

std( mClCr)·std(eClCr)
(5)

To avoid potential overfitting, all engineering decisions (FFNN architecture, number
of layers, neurons per layer, activation functions, etc.) were made based on the validation
MAE and correlation coefficient.

Once the model (NN architecture + weights) was finalized, it was challenged with the
test set as a proxy for field performance.
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3. Results
3.1. Model Development, Evaluation, and Validation

With the objective of developing a machine learning (ML) model (i.e., a calculator)
to estimate rat ClCr (i.e., estimated ClCr; eClCr) from plasma creatinine concentration
(pCr) and body weight, three ML algorithms were assessed and compared: LR, RF, and
FFNN. Table 2 shows the performance metrics for the three models after training and
tuning them. The FFNN outperformed the LR and RF models on the validation set and
was therefore selected for further testing. Values of eClCr were compared to the measured
(i.e., experimental) values of ClCr (mClCr).

Table 2. Performance metrics for the three considered models in the training and validation sets. LR,
linear regression. RF, random forest. FFNN, feed forward neural network. MAE, mean average error.
Correlation, Pearson product-moment correlation coefficient. P10/P30, fraction of predictions with
an error within the 10%/30% threshold. Best results for each set are highlighted in bold.

Training Set Validation Set Test Set

LR RF FFNN LR RF FFNN LR RF FFNN

MAE 0.2210 0.1801 0.1956 0.1975 0.1894 0.1780 0.2515 0.2257 0.2035
Correlation 0.8402 0.8869 0.8632 0.8732 0.8871 0.9028 0.7922 0.7450 0.8563

P10 0.2635 0.3322 0.3099 0.2699 0.2828 0.2879 0.2530 0.2803 0.3136
P30 0.6901 0.7751 0.7391 0.7044 0.7189 0.7532 0.6394 0.6727 0.6955

The optimal FFNN architecture was found to have three intermediate (hidden) layers
with 30, 20, and 10 neurons respectively, with the hyperbolic tangent as an activation
function and using the Adam SGD optimizer with a learning rate of 0.001 and a batch size
of 400 with MSE as the loss function. With the aid of the early stopping technique, training
was stopped after 200 SGD iterations without improvement of the validation loss. The
characteristics of the final FFNN architecture are shown in Supplementary Figure S2 and
a decision surface map for the FFNN is shown in Supplementary Figure S3. Agreement
between eClCr and mClCr was also studied in the test set by means of a Bland–Altman
plot (Supplementary Figure S4).

In addition to analyzing the global performance of the model, the results of eClCr
were also compared with their corresponding mClCr values in the context of individual
experiments. Figure 2 shows the mClCr and eClCr for four representative experiments
(from the training and validation datasets). In general terms, the information provided
by measured ClCr (mClCr) and eClCr is almost identical. In particular, in those cases in
which mClCr and eClCr are less similar (e.g., groups D2.1 and D2.5 in Figure 2), eClCr is
consistently more congruent within its context. Just as an example, the group D2.1 is a
control, and groups D2.2 to D2.5 refer to animals treated with cisplatin in several conditions.
There is no reason for mClCr to increase in group D2.5 on day 5. On the contrary, following
a similar pattern to the other AKI groups, eClCr shows a more logical result for group D2.5
and overall.
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Figure 2. Comparison of the measured ClCr and estimated ClCr, corresponding to four exemplifying
actual experiments using data from the training and validation sets. ClCr, creatinine clearance. CORR,
Pearson product-moment correlation coefficient. MAE, mean average error.

3.2. Model Field Testing

As shown in Table 2, the MAE and Pearson product-moment correlation coefficient
for the test set were 0.2035 and 0.8564, respectively, which are similar to those obtained
in the training and validation sets, hence proving that the model is not overfitted and
can generalize to unseen data. Furthermore, a paired t-test was employed to compare
the mean of the absolute error committed by the NN and the LR models in the test set;
the NN was found to be superior with very high statistical significance (p < 0.001, using
SciPy library [48], version 1.5.2). As above, eClCr predictions were compared with their
corresponding mClCr values in the context of specific experiments. Figure 3 shows the
mClCr and eClCr for four illustrative experiments (from the test data). There is a good
match at the whole experiment level between mClCr and eClCr. Again, eClCr is more
congruent than mClCr. As exemplifying tokens, the mClCr in group T1.5 by day 2 and
group T1.1 by day 8 (a control) shows illogical increments that are normalized or softened
by the corresponding eClCr. In experiment T2, the open circles correspond to the control
group and the filled circles to a highly nephrotoxic, one-dose treatment. As expected, by
day 4, there is a notorious drop in the GFR, which is progressively restored afterwards. The
gradual recovery described by eClCr contrasts with the more erratic trajectory depicted
by mClCr.
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moment correlation coefficient. MAE, mean average error.

The influence of weight and mClCr on the distribution of the prediction error (eClCr-
mClCr) in the whole test set is shown in Figure 4. The variance of the prediction error
grows (top panel) with the weight, probably as a result of an increasingly lower amount
of data for higher weights. The medians suggest that the model may underestimate the
ClCr for high weights. In contrast, the variance of the prediction error seems to be similar
for all ClCr values (bottom panel). Yet the medians show that the model tends to slightly
overestimate ClCr for small to medium mClCr values (below 0.683 mL/min) and to slightly
underestimate ClCr for medium to larger mClCr values (above 1.138 mL/min).
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4. Discussion

Our study reveals that an FFNN fed with pCr and weight values as inputs predicts
ClCr (i.e., eClCr) with reasonably high accuracy, regardless of additional variables such
as age, comorbidities, or treatment. This calculator may be useful for the estimation of
ClCr in those laboratories where metabolic cages are not available, or when avoidance of
experimental complexity and resource optimization are sought.

When evaluated with the training, validation, and test datasets, the model showed a
relatively low average error. Furthermore, the model proved especially useful for evaluating
experiments on the whole. In fact, the behavior and evolution of eClCr for each group
was, in general, more homogeneous and congruent than the behavior of mClCr, while the
relations among experimental groups resulting from eClCr remained extremely similar to
those obtained with mClCr. Our interpretation of this data-equalization effect is that, as
opposed to mClCr, eClCr obviates the error introduced by urine collection in metabolic
cages, which is unavoidably translated to uCr estimation and, in turn, to mClCr, and
thus sometimes yields unexplainable and illogical fluctuations (as argued in the Results
section). This advantage adds to the procedural simplicity of eClCr compared to mClCr.
Accordingly, this calculator is not aimed at being a method for the precise determination of
ClCr but a practical tool providing rapid, easy, and sufficiently accurate results for many
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purposes of basic research with rats, in the same way that human GFR-estimating formulas
are useful in the clinical setting. In our view, this calculator is particularly appropriate
for those experiments in which it is not the exact individual value of ClCr that is required
but rather its comparison among experimental groups or time points. In addition to
facilitating preclinical research, eClCr also provides an alternative to mClCr that improves
experimental animal welfare. Individual confinement in metabolic cages [37,38] required
for urine collection is known to stress social animals such as rats [49]. Hence, this method is
tightly aligned with the 3Rs principles (replacement, reduction, and refinement) concerning
animal research [50].

In rats, pCr is mostly constant throughout their lifespan. However, the GFR (and thus
ClCr) increases within an initial age range, after which it largely stabilizes [51]. Therefore,
age should be taken into account when modeling the ClCr–pCr relationship. Yet because
rat age might not be precisely known by the researcher in some cases, we used weight
as a surrogate and found that its inclusion significantly improved model performance
(even more than age itself). Furthermore, we contend that weight recapitulates other
potential sources of disparity related to body habitus. Ethnicity and sex were not included
in the model as we did not have sufficient data from other rat strains, nor of female rats.
Accordingly, this model is adjusted only for male Wistar rats. Its performance must also be
tested, and the model adjusted (if and as necessary), for different rat strains and female sex.

Another important factor potentially uncoupling the relationship between pCr and
ClCr is creatinine secretion. Differential affecting of creatinine secretion by different experi-
mental conditions might increase variability and hamper model performance. However, the
model was generated on heterogeneous data from etiologically diverse disease models, and
there were no deviation tendencies to specific characteristics. This implies that creatinine
secretion is not significantly modified by the treatments or conditions included and that
the observed data variability mainly reflects experimental variability derived from sample
collection and analytic error.

5. Conclusions

The proposed model is a reasonably accurate surrogate for mClCr, solves some of its
faults, and even provides more congruent results. eGFR in humans is known to be less
accurate in specific populations and circumstances, such as individuals with abnormal
muscle mass or body surface area; during changes in metabolism and pregnancy; and when
GFR is rapidly changing, such as during growth, AKI, or high-protein ingestion [16,52]. In
contrast, laboratory rats present a lower phenotypic heterogeneity as compared to humans,
so a higher accuracy is therefore expected. Lastly, we have released ACLARA, a web-based,
openly available eClCr calculator (http://idal.uv.es/aclara, accessed on 5 February 2022),
to facilitate its use and encourage further research on the topic.
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Bland–Altman plot of agreement between eClCr and mClCr in the test set.
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