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Loss of polycomb repressive complex 1 activity and
chromosomal instability drive uveal melanoma
progression
Mathieu F. Bakhoum1,2,17✉, Jasmine H. Francis3,4,17, Albert Agustinus 5,6, Ethan M. Earlie 7,8,9,

Melody Di Bona 5, David H. Abramson3,4, Mercedes Duran5, Ignas Masilionis 10, Elsa Molina11,

Alexander N. Shoushtari 12,13, Michael H. Goldbaum2, Paul S. Mischel 14,15✉, Samuel F. Bakhoum 5,16✉ &

Ashley M. Laughney 7,8,9✉

Chromosomal instability (CIN) and epigenetic alterations have been implicated in tumor

progression and metastasis; yet how these two hallmarks of cancer are related remains

poorly understood. By integrating genetic, epigenetic, and functional analyses at the single

cell level, we show that progression of uveal melanoma (UM), the most common intraocular

primary cancer in adults, is driven by loss of Polycomb Repressive Complex 1 (PRC1) in a

subpopulation of tumor cells. This leads to transcriptional de-repression of PRC1-target genes

and mitotic chromosome segregation errors. Ensuing CIN leads to the formation of rupture-

prone micronuclei, exposing genomic double-stranded DNA (dsDNA) to the cytosol. This

provokes tumor cell-intrinsic inflammatory signaling, mediated by aberrant activation of the

cGAS-STING pathway. PRC1 inhibition promotes nuclear enlargement, induces a transcrip-

tional response that is associated with significantly worse patient survival and clinical out-

comes, and enhances migration that is rescued upon pharmacologic inhibition of CIN or

STING. Thus, deregulation of PRC1 can promote tumor progression by inducing CIN and

represents an opportunity for early therapeutic intervention.
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Uveal Melanoma (UM), a lethal eye cancer of adults and the
second most common subtype of melanoma, is char-
acterized by striking variability in metastatic tendency1–3.

Once metastases are detected, median survival is less than twelve
months4–9. Therefore, identifying patients at high-risk for
metastasis and developing ways to intervene are critical priorities.
Highly metastatic UM tumors differ from their more indolent
counterparts in at least three ways1,3. First, they tend to have an
“epithelioid” morphology with enlarged nuclei10,11. Second, they
are often monosomic for chromosome 32,12,13, and frequently
harbor mutations in the BAP1 gene (located on chromosome
3)2,14—a component of the polycomb repressive deubiquitinase
(PR-DUB) complex that hydrolyzes ubiquitin at lysine 119 of the
repressive Histone 2A (H2AK119)15,16. Third, they exhibit a
distinctive gene expression signature2,17. A clinically-validated
12-gene signature—representative of the transcriptional changes
that distinguish the two prognostic groups—is often used to
identify patients with low-risk UM (Gene expression profile 1,
GEP1) and high-risk tumors (Gene expression profile 2,
GEP2)18,19 in the clinical setting. Currently, it is not known
whether high-risk and low-risk UMs are fundamentally distinct
disease subtypes or whether genetic and/or epigenetic changes in
a subpopulation of tumors cells can lead to evolution from a
relatively indolent to an aggressive UM (Fig. 1a). Identifying the
underlying molecular basis for such a transition would provide
insight into the molecular pathogenesis of UM and yield a critical
opportunity for early therapeutic intervention. Here, we
demonstrate that UM progression is driven by loss of PRC1 in a
subpopulation of tumor cells, leading to transcriptional de-
repression of PRC1-target genes and mitotic chromosome seg-
regation errors. Hence, tumor stratification based on bulk tran-
scriptional profiling of an inherently heterogeneous tumor is
likely biased by detection of the most common tumor cell
subpopulation.

Results
Single cell transcriptional landscape of uveal melanoma
tumors. To resolve intra-tumoral heterogeneity and gain insights
into tumor evolution that cannot be resolved by bulk tumor
profiling20,21, we profiled the transcriptomes of 17,074 individual
cells obtained from six freshly enucleated UM specimens
from different prognostic categories (Fig. 1b). Immediately after
enucleation, tumor specimens were obtained and sent for
GEP clinical prognostication testing (DecisionDx) to assign
individual patients to GEP prognostic classes19. According to
DecisionDx, four of the six tumors were classified as high-risk
GEP2 whereas the remaining two tumors were classified as low-
risk GEP1 (Supplementary Table 1). Formalin-fixed, paraffin
embedded specimens were also sent for targeted exome sequen-
cing using the MSK-IMPACT platform22 (Fig. 1b, Supplementary
Table 1). Fresh tumor samples analyzed with single-cell RNA
sequencing (scRNA-seq) were derived from enucleation speci-
mens without enrichment for a specific cell type, such that a piece
of the viable tumor and its microenvironment were sampled in an
unbiased manner. The library size, complexity, and viability
metrics were of high quality (Supplementary Fig. 1a–c) and lar-
gely consistent across patients (Supplementary Fig. 1d, e). All
scRNA-seq data were merged and normalized to create a global
cell atlas, clustering23 of which revealed 27 cell types and states
spanning retinal, immune and cancer cells (Supplementary
Fig. 1f, g). Retinal and immune cell types were highly repro-
ducible across patients, whereas patient-specific cell states
were observed within tumor cell populations (Supplementary
Fig. 1h–j). The majority of cells analyzed were tumor cells,
expressing genes consistent with a melanocytic cell of origin

(Supplementary Fig. 1i) and showing significant chromosome
copy number alterations, including those canonically associated
with UM (Supplementary Fig. 2a, b). In addition, we obtained
single cell RNA sequencing data from an independent cohort of
eight primary UM to validate key findings24.

Intratumoral phenotypic heterogeneity in UM tumors. Individual
tumor cells were assigned to a prognostic class based on their
average imputed expression of GEP1 and GEP2 discriminate genes
using a two-component Bayesian Gaussian Mixture Model (Sup-
plementary Fig. 3a, b, Methods). Strikingly, five tumors contained a
heterogeneous admixture of cells that resembled both prognostic
classes to varying extent (Fig. 1c, MSKCC). Likewise, the same
classifier applied to the independent cohort of eight primary UM24,
also revealed that the majority of primary tumors (7 out of 8)
contain a heterogeneous admixture of tumor cells that resemble
both prognostic classes to varying degrees, even when controlling for
sampling differences across patients (Fig. 1c, Durante et al.24).
Rather than observing two distinct states, we detected a continuum
from a GEP1-like to a GEP2-like phenotype at the level of individual
cells (Fig. 1d). Consistent with the previously described relationship
between BAP1 loss and aggressive phenotype2,3,14,25–31, the GEP1-
to-GEP2 transition was highly correlated with reduced BAP1
expression (Supplementary Fig. 3c) and the monosomy 3-associated
gene expression signature17 (Supplementary Fig. 3d). Notably, GEP
classification based on bulk transcriptional profiling (DecisionDx)
was discordant with the majority GEP class detected by scRNA-seq
in one out of six cases in the MSK dataset (Fig. 1c and Supple-
mentary Table 1). A tumor (MSK-UM06) was classified as GEP1
based on bulk transcriptional sampling, yet harbored predominantly
GEP2 cells (96.1%) by single cell analysis. This patient experienced
metastatic progression and succumbed to disease within 6 months of
diagnosis, in line with an abundance of aggressive tumor cells and
highlighting the limitations of tumor stratification based on bulk
transcriptional profiling of an inherently heterogeneous tumor.

While GEP classification is widely used clinically for diagnostic
purposes, it has both technical and biological limitations. Detailed
analysis of the TCGA uveal melanoma cohort (integrative
analysis of UM transcriptomes, methylomes and genomic copy
number data, n= 80 patients) has revealed the existence of four
molecularly distinct biological and prognostic subsets of UM2. To
likewise assess intra-tumor heterogeneity in the context of these
molecularly distinct subsets, a four-component Bayesian Gaus-
sian Mixture Model was applied to probabilistically assign
individual tumor cells to each subtype based on their average
imputed expression of characteristic genes (Fig. 1e and Supple-
mentary Fig. 3e, f, Methods). Individual tumor cells promiscu-
ously expressed markers associated with multiple TCGA subtypes
(Supplementary Fig. 3g) and nearly all tumors across both
cohorts24 showed substantial intra-tumoral heterogeneity when
tumor cells were assigned to their maximally probable subtype
(Fig. 1e). Therefore, and regardless of how risk levels are defined,
individual UM tumors contained a heterogeneous admixture of
cells that resembled different molecular subtypes to varying
degrees. To capture this intra-patient cell state complexity—
independent of clinical gene expression signatures—we applied a
phenotypic volume metric32 across all variably expressed genes
expressed by tumor cells within each patient. Notably, the two
patients exhibiting the highest levels intra-tumoral phenotypic
complexity succumbed to metastatic disease during the course of
this study (Fig. 1f). Such intratumor heterogeneity - which cannot
be resolved by bulk sequencing—suggests a model of UM
progression; whereby cells within the primary tumor exist along
various stages of an evolutionary continuum from an indolent
towards a more aggressive phenotype.
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Fig. 1 Phenotypic continuum of disease progression in primary UM. a Distinguishing features of uveal melanoma (UM) with good (blue) and poor (red)
prognosis; highlighting two potential models of disease progression. GEP gene expression profile, TCGA the Cancer Genome Atlas. b Patient tissue
profiling (metadata summarized in Supplementary Table 1). Immediately following enucleation, six primary tumor specimens were obtained for clinical
prognostic and single cell transcriptional profiling. Targeted sequencing using the MSK-IMPACT platform was performed on the formalin-fixed, paraffin
embedded enucleation specimens. c Bulk GEP classification assigned to each patient according to the DecisionDx test (Castle Biosciences) (box).
Individual tumor cells were likewise assigned to GEP1 (blue) vs. GEP2 (red) clinical prognostic groups according to their average expression of the GEP
prognostic gene signatures using a two-component Bayesian Gaussian Mixture Model (BGMM, “Methods”). The fraction of individual tumor cells assigned
to GEP1 (blue) and GEP2 (red) per patient is visualized in the bar graphs, where bootstrapping was used to correct for number of cells per patient (bar,
mean; whiskers, 95% confidence intervals, 500 tumor cells sampled over n = 20 random subsets of the data). Asterisks, highlight a patient in which there
was a discrepancy between DecisionDx bulk classification and the majority GEP classification prescribed by our single cell analysis of resected tumors.
Notably, this patient (MSK-UM06) experienced metastatic progression and succumbed to their disease within six months of diagnosis (Supplementary
Table 1). Intra-tumoral prognostic heterogeneity was validated in a second, independent cohort recently published by Durante et al.24. d Force-directed
layout of all patient tumor cells colored by z-normalized imputed expression of the average GEP2 gene signature. e Individual tumor cells were likewise
assigned to one of the four TCGA molecular subtypes of UM according to their average expression of characteristic genes using a four-component BGMM
(Methods) in our cohort and a second, independent cohort recently published by Durante et al.24. The fraction of individual tumor cells assigned to TCGA
subtype 1 (dark blue), subtype 2 (light blue), subtype 3 (pink) and subtype 4 (red) per patient is visualized in the bar graphs, where bootstrapping was used
to correct for number of cells per patient (bar, mean; whiskers, 95% confidence intervals, 500 tumor cells sampled over n= 20 random subsets of the
data). f Violin plots showing the distribution of intra-patient phenotypic volume (defined as the pseudo-determinant of the gene expression covariance
matrix, detailed in “Methods”), controlled for number of cells and labeled by patient status (alive vs. deceased). Distributions represent 100 random
subsamples from the data (n= 150 cells per patient). Overlaid bar and whisker plots reflect the mean and interquartile range.
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The unexpected phenotypic progression underlying this cell
state diversity (Fig. 1d) motivated us to apply archetypal
analysis33 for unbiased, genome-wide transcriptomic character-
ization of tumor phenotypic states34. Analysis revealed 8 tumor
cell archetypes, which are labeled on the force directed layout in
Supplementary Fig. 4a. When individual tumor cells were
assigned to their nearest archetype (“Methods”), each patient
showed accumulation of multiple phenotypic states defining
disease progression (Supplementary Fig. 4b). A local neighbor-
hood of cells around each archetype was used to character-
ize genes differentially expressed in these bounding phenotypic
states (Supplementary Fig. 4c). Archetypes were distinguished by
differential expression of key pathways related to inflammatory
response programs, aneuploidy, chromatin modifications and
UM prognostic classifications. (Supplementary Fig. 4d). Collec-
tively, this suggests such processes may underlie the evolution of
UM tumors from an indolent to an aggressive phenotype.

Loss of PRC1 activity defines high-risk UM. To better under-
stand the molecular underpinnings of UM single cell hetero-
geneity and tumor progression, we sought experimental models
that recapitulate its distinct biological and prognostic classes.
Towards this, we performed RNA sequencing of five established
UM cell lines from diverse genetic backgrounds35–37. Cell lines
distinctly clustered based on expression of the 80 characteristic
genes that define the four major TCGA-UM subtypes or the 12-
gene module that defines the GEP prognostic groups19 (Supple-
mentary Fig. 5a–c). We designated cell lines falling at the opposite
end of the gene expression spectrum, 92.1 and MP38, as low-risk
and high-risk UM cells, respectively (Fig. 2a and Supplementary
Fig. 5a). Expectedly, high-risk UM cells, MP38, harbored BAP1
mutation35, and had no detectable BAP1 protein (Fig. 2b). This is
in line with reports showing that BAP1 genomic loss is a defining
feature of aggressive UM1–3,14.

BAP1 hydrolyzes monoubiquitin on H2AK119Ub, a tran-
scriptional repressive histone posttranslational modification
(PTM)15,16,38,39. To test whether BAP1 loss translated into
reduced H2AK119Ub, we performed H2AK119Ub immunofluor-
escence. To our surprise, high risk UM cells exhibited lower
H2AK119Ub compared to their low risk counterparts (Supple-
mentary Fig. 6a, b). Genome-wide localization analysis for
H2AK119Ub, using Cleavage Under Targets and Release Using
Nuclease (CUT&RUN)40, was consistent with the data from
immunostaining. High-risk UM cells, MP38, exhibited near-
complete loss of H2AK119Ub deposition at target loci compared
to their low-risk counterparts, 92.1 (Fig. 2d). We next validated
this finding in patient samples and found that the patient with
predominantly low-risk features (e.g., MSK-UM03) exhibited
significantly higher H2AK119Ub staining compared to those with
high-risk gene expression profiles (e.g., MSK-UM01) (Fig. 2c).

Ubiquitiylation of H2AK119 is mediated by PRC1 through its
ubiquitin ligase activity15,41. PRC1 contains a conserved core
which consists of a RING1 (Really Interesting New Gene 1) or
RNF2, both of which possess E3 ubiquitin ligase activity, in
addition to one of the six PcG ring-finger domain proteins
(PCGF1-6)15. PRC1 core ligase activity is necessary to achieve
transcriptional repression of target genes41,42. Consistent with a
reduction in H2AK119Ub in high risk UMs, transcript and
protein levels of the core PRC1 ligases, RING1 and RNF2, were
indeed lower in MP38 high-risk UM cells (Supplementary Fig. 6c
and Fig. 2b). Similarly, in the TCGA cohort, UM tumors with
BAP1 loss exhibited significantly lower RING1 and RNF2
expression levels compared to tumors with intact BAP1,
respectively (Supplementary Fig. 6d, e). Of all PRC1 accessory
components (PCGF1-6), four (PCGF2,3,6 and PCGF4, also

known as BMI1) exhibited reduced expression in MP38 cells
compared to 92.1 (Supplementary Fig. 6f). In addition, expression
of JARID2, a PRC2 accessory protein that is distinguished by its
binding affinity to H2AK119Ub43,44, was also reduced in both
MP38 cells compared to 92.1, as well as in human tumors with
BAP1 loss (Supplementary Fig. 6g, h). Similar to H2AK119Ub,
genome-wide localization analysis demonstrated near-loss of
PRC1 components, RING1, RNF2, and BMI1 deposition in
MP38, compared to 92.1 (Supplementary Fig. 7a). On the
contrary, genomic loci bound to trimethylated Histone 3 at
Lysine 27 (H3K27me3), another transcriptional repressive
histone PTM were similar between 92.1 and MP38 (Supplemen-
tary Fig. 7a). Collectively this suggests widespread reduction of
PRC1 components in high-risk UM.

In line with these findings, elevated expression of either
JARID2 or RING1 mRNA was significantly associated with
prolonged overall survival and decreased risk of metastasis
(Supplementary Fig. 7b, c). Both JARID2 and RING1 are located
on chromosome 6p, in line with prior observations that in UM,
6p gain is associated with a good prognosis2,45,46. We then asked
whether low JARID2 and RING1 levels confer poor prognosis
independent of 6p gain. The association between either JARID2
or RING1 and UM metastasis or death was assessed using logistic
regression where 6p gain was a co-variate. JARID2 levels were
inversely correlated with survival (Odds ratio (OR), 0.50; 95%
confidence interval (CI), 0.31–0.74), and metastasis (OR, 0.69; CI,
0.50–0.91). Similarly, RING1 levels were inversely correlated with
survival (OR, 0.61; CI, 0.37–0.89) and metastasis (OR, 0.65; CI,
0.43–0.89), indicating that higher expression levels of JARID2 or
RING1 confer good prognosis independent of 6p gain.

We then asked whether a loss of PRC1 and H2AK119Ub
translates into loss of transcriptional repression of target genes.
We curated a gene list from genomic peaks of H2AK119Ub in
UM cells (H2AK119Ub targets). These genes were highly
expressed in patient tumor cells with increasing GEP2-like
features (Fig. 2e and Supplementary Fig. 7d) (MSKCC and
Durante et al.24), exhibited progressive de-repression across the 4
molecular TCGA subtypes (Fig. 2f), and foretold poor prognosis
(Fig. 2g, TCGA). We interrogated the expression levels of genes
that are bound to H3K27me3, excluding H2AK119Ub targets,
and found that their levels were similar across the 4 molecular
TCGA subtypes and did not correlate with overall survival
(Supplementary Fig. 7e, f). Collectively, these results indicate that
loss of H2AK119Ub and PRC1-mediated transcriptional repres-
sion is a feature of high-risk UM—despite concurrent loss of
BAP1.

PRC1 inhibition phenocopies UM progression. To determine if
loss of PRC1-mediated transcriptional repression underlies the
transition from low-risk to high-risk UM, we used PRT4165
(thereafter referred to as PRT), a specific inhibitor of RING1 and
RNF2 ligase activity, which is necessary to maintain PRC1-
mediated target gene repression41,42. PRT has been shown to
abolish ubiquitylated H2AK119 within 1 h of treatment47. PRT-
treatment of low-risk 92.1 UM cells reduced H2AK119Ub levels
after 2 h of treatment to those seen in MP38 cells (Supplementary
Fig. 8a–d). On the other hand, treatment of high-risk MP38 UM
cells, which have already adapted low basal activity of PRC1, had
no impact on H2AK119Ub levels (Supplementary Fig. 8a, b).
Importantly, PRC1 inhibition led to a profound transcriptional
change in low-risk UM cells (92.1 and Mel202) while having
minimal impact on gene expression in high-risk UM cells (MP41,
MP46, and MP38) (Fig. 3a). Furthermore, treatment with PRT
resulted in transcriptional upregulation of GEP2 signature genes
and downregulation of GEP1 signature genes after just 24 h of
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treatment, in low-risk—but not high-risk—UM cells (Fig. 3b). On
the contrary, inhibition of the H3K27 methyltransferase, EZH2,
using the clinical grade inhibitor, EPZ, did not lead to transcrip-
tional alterations in GEP1/2 signatures (Supplementary Fig. 8e).
The majority (80.8%) of genes differentially expressed upon PRT
treatment in low-risk UM cells were also differentially expressed
between high-risk and low-risk UM cells at baseline (Fig. 3c).

Concordantly, genes upregulated upon pharmacologic inhibi-
tion of PRC1 in low-risk UM cells (fold change > 1 and
Bonferroni <0.05, “PRT-geneset” defined in Fig. 3d) were highly
expressed in patient tumor cells with increasing GEP2-like
features (Fig. 3e and Supplementary Fig. 8f). These genes
exhibited progressive de-repression across the 4 molecular TCGA
subtypes (Fig. 3f) and foretold poor prognosis (Fig. 3g, TCGA),
underscoring that loss of PRC1-mediated transcriptional repres-
sion is a feature of high-risk UM. Two of the 4 genes that define
the GEP2 profile, ECM1 and HTR2B, were among the most
differentially expressed genes in the PRT-geneset (n= 28)
(Supplementary Data File 1).

In addition to transcriptional changes, PRT treatment led to
profound morphologic alterations that have long been associated
with high-risk UM tumors10,11; mainly enlarged nuclei and an
epithelioid morphology (Fig. 4a, b). In line with the drug’s specificity
to low-risk UM cells, characterized by elevated PRC1 activity,
treatment of high-risk, PRC1-defecient MP38 cells with PRT had no
effects on nuclear size and morphology (Supplementary Fig. 8g).
Similarly, PRC1 inhibition also impaired growth of low-risk 92.1 cells,
but not high-risk MP38 cells (Supplementary Fig. 8h). Notably,
92.1 cells treated with PRT grew at a slower rate, similar to high-risk
UM cells, however reduced growth rates of PRT-treated 92.1 cells
quickly rebounded to baseline following PRT withdrawal (Supple-
mentary Fig. 8i). Collectively, these results suggest that loss of PRC1
activity recapitulates a transition from low-risk to high-risk UM—
linking critical genetic, epigenetic, and cytologic features.

Widespread CIN and inflammatory signaling in high-risk UM.
To further explore the molecular underpinning of this transition,

Fig. 2 Loss of PRC1-mediated transcriptional repression in high-risk UM. a Unbiased hierarchical clustering of UM cell lines, 92.1 and MP38, in biological
triplicates, based on normalized FPKM values of the GEP 12-discriminant geneset19. bWestern blot of BAP1 and PRC1 core ligases RING1 and RNF2 relative
to actin in 92.1 and MP38 cells. Data representative of biological triplicates. c Immunofluorescence of ubiquitinated H2A (green) and DAPI (blue) in MSK-
UM03 (greatest proportion of GEP1 tumor cells in the cohort) and MSK-UM01 (greatest proportion of GEP2 tumor cells in the cohort). Representative
images from six biological specimens. d Heatmaps representing CUT&RUN intensities of H2AK119Ub normalized to IgG in 92.1 and MP38. Data
representative of biological duplicates. e Expression of H2AK119Ub target genes for individual tumor cells ranked by average imputed expression of the
GEP2 gene signature (gene signatures annotated in Supplementary Data File 1) in ascending order from left to right. For each gene, imputed expression was
z-normalized across all cells and smoothed using a 20-cell moving average window. Top, filled area plot showing average expression of GEP2 signature
genes across ranked tumor cells. f Expression of H2AK119Ub target genes across the 4 molecular TCGA subtypes. Statistical significance tested using one-
way ANOVA; p= 7.3 × 10−6; n= 80. Bars, mean of average expression; error bars, standard error of the mean. g Overall survival of (n= 80) TCGA-UM
patients with primary tumors stratified by high (top 50th percentile, n= 40) and low (bottom 50th percentile, n= 40) expression of the ‘H2AK119Ub
targets’ geneset. Statistical significance tested using two-sided log-rank test.
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we performed gene set enrichment analysis (GSEA) comparing
DMSO and PRT-treated low-risk UM cells. In addition to PRC1
target genes, PRT treatment led to significant upregulation of
pathways related to inflammation, such as NF-κB (Normalized
enrichment score (NES), 2.8; FDRq <0.001), IL6/STAT3 (NES,
1.8; FDRq, 0.02) and epithelial-to-mesenchymal transition (EMT)
(NES, 2.0; FDRq, 0.04). Conversely, there was downregulation of
pathways involved in the cell cycle and mitotic spindle assembly
(Fig. 5a). Differentially expressed pathways upon PRT treatment
were reminiscent of those seen enriched in high-risk MP38 as
compared to low-risk 92.1 UM cells, with the latter exhibiting
upregulation of inflammation and EMT-related gene sets (Sup-
plementary Fig. 9a).

Given increased aneuploidy in high-risk primary UM2 and
increased inflammatory signaling (Fig. 5a) we observed in
aggressive UM, as well as in other studies2,25,26,48–52, we set out

to determine whether changes in PRC1 could potentially alter
genomic stability. We have recently shown that errors in
chromosome segregation—a defining feature of cancer cells with
chromosomal instability (CIN)—can generate micronuclei,
which, upon rupture, expose their enclosed genomic double-
stranded DNA (dsDNA) to the cytosol53–56. This leads to
aberrant activation of the cGAS-STING cytosolic dsDNA
signaling pathway and downstream inflammatory signaling
mediated by noncanonical NF-κB activation, as well as upregula-
tion of EMT and migratory pathways that promote metastatic
progression56. We hypothesized that loss of PRC1 function may
trigger CIN, leading to enhanced migration and inflammatory
signaling characteristic of high-risk UM. Indeed, PRT-treatment
of low-risk 92.1 cells led to increased frequency of mitotic
chromosome segregation errors, as evidenced by the preponder-
ance of lagging chromosomes and acentric chromatin fragments

Fig. 3 Evolution of aggressive UM phenotype triggered by PRC1 inhibition. a Volcano plots showing differentially expressed genes upon PRT-treatment
across five UM cell lines ranked according to their GEP1/GEP2 score (see Supplementary Fig. 5a–c). Fold change for individual genes is shown as a function of
significance, -log10(FDR). Genes with FDR value less than 0.05 and fold change greater or less than 1, were highlighted in green and red, respectively. Genes
not meeting significance (FDR > 0.05) are shown as gray. Number of genes meeting significance (FDR < 0.05) are annotated per each cell line. b Ratio of
GEP1/GEP2 average gene signature expression (gene signatures annotated in Supplementary Data File 1) in low-risk UM cells (92.1) and high-risk UM cells
(MP38) upon 24 h DMSO or PRT-treatment; FPKM values obtained from bulk RNA-seq are reported (bar, mean; circles, biological duplicates). c Venn
diagram of differentially expressed genes (DEG) upon PRT treatment (red) and between high-risk UM cells (MP38) and low-risk UM cells (92.1) (green). d A
schematic showing transcriptional de-repression upon pharmacologic inhibition of PRC1 using PRT (“PRT-geneset” annotated in Supplementary Data File 1). e
Expression of the PRT-geneset across individual tumor cells ranked by average imputed expression of the GEP2 gene signature (gene signatures annotated in
Supplementary Data File 1) in ascending order from left to right. For each gene, imputed expression was z-normalized across all cells and smoothed using a
20-cell moving average window. Top, filled area plot showing average expression of the GEP2 signature across ranked tumor cells. f Average expression of
genes upregulated upon PRT-treatment of 92.1 cells (‘PRT-geneset’) across the 4 molecular TCGA subtypes. Statistical significance tested using one-way
ANOVA; p= 9.6 × 10−9; n= 80. Bars, mean of average expression; error bars, standard error of the mean. g Overall survival of (n= 80) TCGA-UM patients
with primary tumors stratified by high (top 50th percentile, n= 40) and low (bottom 50th percentile, n= 40) average expression of the “PRT-geneset”.
Statistical significance tested using two-sided log-rank test.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25529-z

6 NATURE COMMUNICATIONS |         (2021) 12:5402 | https://doi.org/10.1038/s41467-021-25529-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Fig. 4 Morphological changes and nuclear enlargement induced by PRC1 inhibition. a Top panel, bright field light microscopy of low-risk UM cells (92.1)
upon long-term DMSO and PRT-treatment. Bottom panel, DAPI staining of low-risk UM cells (92.1) after 48 h of PRT, and DMSO treatment. Images
representative of experimental triplicates. b Violin plots showing the distribution of nuclei size in low-risk UM cells (92.1) upon PRT (n= 152) and DMSO
(n= 163) treatment for 48 h. Lines distinguish interquartile ranges; width reflects observed nuclei number. Statistical significance tested using two-sided
unpaired Student’s t test, p= 4.9 e−36. Source data are provided as a Source Data file.

Fig. 5 Increased chromosome segregation errors upon PRC1 inhibition. a Volcano plots showing the top differentially expressed pathways in low-risk UM
cells (92.1) treated with PRT vs DMSO for 24 h; evaluated across biological triplicates. Normalized enrichment score (NES) for selected genesets shown as a
function of significance, -log10(FDRq); FDRq, Bonferroni corrected p value. An unfiltered list of all significant gene signatures is provided in Supplementary Data
File 5. b Examples of UM cells in anaphase stained for DAPI (blue) and centromeres (red); demonstrating different patterns of chromosome segregation errors.
Additional patterns of missegregation are shown in Supplementary Fig. 9b. Representative images from biological triplicates. c Abundance of chromosome
segregation error patterns during anaphase in low-risk UM cells (92.1) upon PRT-treatment as a function of time. Statistical significance tested using two-sided
unpaired Student’s t test. Source data are provided as a Source Data file. d Abundance of chromosome segregation error patterns during anaphase across UM cell
lines, arranged from left to right based on their GEP2 score. Source data are provided as a Source Data file. eWestern blot of H2AK119Ub, STING, RING1, and RNF2
relative to Actin in Mel285 cells upon RING1 and RNF2 knockout. Data representative of biological triplicates. f Abundance of chromosome segregation error
patterns during anaphase in UM cells (Mel285.Cas9) upon RNF2 knockout. Statistical significance tested using two-sided unpaired Student’s t test. Source data are
provided as a Source Data file. Stacked bars, mean of each missegregation pattern; error bars, standard error of the mean across experimental triplicates (c–f).
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in PRT-treated cells (Fig. 5b, c and Supplementary Fig. 9b).
Importantly these defects emerged 24–48 h after drug treatment
(Fig. 5c) arguing against a direct, short-term effect on the mitotic
spindle and instead favoring a transcriptional response. Impor-
tantly, and in line with our earlier observations demonstrating
PRT’s specificity to UM cells with intact PRC1, PRT treatment of
high-risk MP38 cells showed no effect on chromosome segrega-
tion errors (Supplementary Fig. 9c). Correspondingly, intrinsic
rates of chromosome missegregation correlated with the ratio of
GEP2/GEP1 gene expression (Fig. 5d). Unlike PRC1, Inhibition
of EZH2—the core catalytic component of the PRC2 complex—
did not lead to an increase in chromosome segregation defects
(Supplementary Fig. 9d). We then complemented these pharma-
cologic modulations with genetic manipulation of core PRC1
ligases. First, we established a CRISPR-Cas9 knockout system in
Mel285, a low-risk uveal melanoma cell line which expresses
BAP157. Knockout of either RING1 or RNF2 resulted in a
significant reduction in H2AK119Ub levels (Fig. 5e), and loss of
core PRC1 components dramatically increased chromosome
segregation defects observed during anaphase (Fig. 5f).

To test whether increased chromosome missegregation during
mitosis leads to the formation of micronuclei, we assessed the
frequency of micronuclei in the various UM cell lines and found
rates of micronuclei mirrored those of chromosome missegrega-
tion. High-risk UM cells had significantly higher rates of
micronuclei compared to their low-risk counterparts (Fig. 6a).
Similarly, PRT treatment of 92.1 cells—but not of high-risk
MP38 cells—led to a significant increase in micronuclei (Fig. 6b, c
and Supplementary Fig. 9e), whereas treatment with an EZH2
inhibitors had no impact on their formation (Supplementary
Fig. 9f). Likewise, genetic knockout of RNF2 resulted in a
significant increase in micronuclei frequency (Fig. 6d). Impor-
tantly, these micronuclei frequently co-localized with cGAS
(Fig. 6e), indicative of cytosolic exposure of their enclosed
genomic dsDNA and activation of cytosolic dsDNA sensing,
cGAS-STING pathway.

In line with these findings, genetic knockout of either RING1
or RNF2 resulted in increased STING levels (Fig. 5e). We also
observed upregulation of CGAS, STING (TMEM173) mRNA and
downstream inflammatory response pathway effectors induced by
CIN, including noncanonical NF-κB targets in patient tumor cells
ranked according to the average GEP2 gene expression signature
(Fig. 7a). These target genes are upregulated in response to
chronic STING activation in cancer cells with CIN56. We
validated these findings in an independent cohort24, where we

likewise observed upregulation of CGAS, TMEM173 and down-
stream inflammation-related mRNAs, including non-canonical
NF-κB targets, in high-risk tumor cells (Supplementary Fig. 10a).
Concordantly, STING and cGAS mRNA expression levels were
elevated in TCGA-UM tumors with genomic copy number loss in
BAP1 compared to BAP1-intact tumors (Supplementary Fig. 10b).
To further validate these findings in human tumor samples, we
performed immunofluorescence imaging of STING and found
elevated expression of tumor cell-intrinsic STING in the
predominantly high-risk tumor (e.g., MSK-UM01) as compared
to the predominantly low-risk tumor (e.g., MSK-UM03), where
minimal STING expression was mainly restricted to the stromal
compartment (Fig. 7b). In the TCGA cohort, TMEM173
expression was highly prognostic, whereby high STING levels
predicted metastasis and reduced overall survival (Fig. 7c,
TCGA). All together, these results suggest that CIN-induced
cytosolic dsDNA signaling downstream of PRC1 loss, is a feature
of high-risk UM.

PRC1 inhibition promotes CIN and STING-dependent
migration. Chronic activation of noncanonical NF-κB and
inflammatory pathways downstream of cGAS-STING in cancer
cells with CIN has been shown to promote migration and
metastasis56. We thus asked whether PRC1 loss could promote a
migratory phenotype mediated by downstream CIN induction.
Indeed, PRT-treatment enhanced the migration of low-risk UM
cells, but not high-risk UM cells (Fig. 8a and Supplementary
Fig. 10c). To determine whether the migratory phenotype
induced by PRC1 inhibition is mediated through CIN and
STING, we employed pharmacologic modulators of CIN and
STING. CIN was suppressed by de-stabilizing kinetochore-
microtubule attachments using UMK57, a small molecule that
has been proposed to potentiate the activity of MCAK, a kinesin-
13 protein whose microtubule-destabilizing activity at the cen-
tromere is critical for faithful chromosome segregation58–60.
Treatment with UMK57 completely rescued the increase in
chromosome missegregation seen upon PRT treatment of 92.1
low-risk UM cells and significantly reduced their migration
(Supplementary Fig. 11a and Fig. 8a). We next used H151, a small
molecule covalent inhibitor of STING that blocks its activation-
induced palmitoylation61. Treatment with H151 also rescued the
migratory phenotype seen upon PRC1 inhibition in low-risk
92.1 cells (Fig. 8b), indicating that CIN- and STING-mediated
migratory effects are downstream of PRC1 loss. These drug

Fig. 6 Cytosolic DNA exposure in high-risk UM. a Baseline micronuclei frequency across UM cell lines, arranged from left to right based on their
GEP2 score. Bar represents median; points, measured frequency of micronuclei per high-power field evaluated across three experimental replicates.
Statistical significance tested using two-sided student t test; p= 2.8 × 10−8. Source data are provided as a Source Data file. bMicronuclei frequency in low-
risk UM cells (92.1) upon PRT treatment as a function of time. For (a, b), bar represents median; points, measured frequency of micronuclei per high-power
field evaluated across three experimental replicates. Statistical significance tested using two-sided student t test; p= 7.7 × 10−8. Source data are provided
as a Source Data file. c Low-risk UM cells (92.1) stained for DAPI (white); showing increased nuclear size and micronuclei formation upon PRT-treatment.
Images representative of experimental triplicates. dMicronuclei frequency in UM cells (Mel285.Cas9) upon RNF2 knockout. Bar represents median; points,
measured frequency of micronuclei per high-power field evaluated across three experimental replicates. Statistical significance tested using two-sided
student t test; p= 7.7 × 10−6. Source data are provided as a Source Data file. e An example of a cGAS (green) localization to micronuclei (blue).
Representative image from biological triplicates.
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treatments inhibited migration more than the DMSO control,
which we attribute to low levels of basal missegregation rates even
in low-risk DMSO-treated 92.1 cells.

Finally, we set out to determine the relative contributions of
CIN to the transcriptional profile that defines high-risk UM. We
performed RNA-sequencing on low-risk 92.1 cells with and
without CIN induction through reversine treatment, a potent
inhibitor of the mitotic kinase Mps162 in the absence of PRC1
inhibition. Pharmacologic CIN induction led to an expected
increase in chromosome missegregation and micronuclei forma-
tion (Supplementary Fig. 11a, b), as well as transcriptional
changes accounting for half of genes (50.4%) that were
differentially expressed upon PRC1 inhibition (Supplementary
Fig. 11c), including upregulation of inflammatory and migratory
pathways (Supplementary Fig. 11d). However, it had no effect on
the expression of GEP prognostic genes (Fig. 8c). Accordingly,
CIN suppression using UMK57 in high-risk MP38 cells, or in
92.1 cells treated with PRT, did not alter the GEP-specific gene
expression signature, despite leading to a decrease in

chromosome missegregation and micronuclei formation (Fig. 8c
and Supplementary Fig. 11a, b). Collectively, these findings
indicate that while the migratory phenotype induced by PRC1
loss is mediated through CIN, canonical GEP-related genes are
likely under direct control of PRC1, independent of CIN (Fig. 8d).

Discussion
Our results provide mechanistic insight into UM progression and
argue against a model of independent clonal origins, implying that
UM with good prognosis, left untreated, may evolve over time to
acquire a more aggressive phenotype. Tumor stratification based
on bulk transcriptional profiling of an inherently heterogeneous
tumor is likely biased by detection of the most common tumor cell
subpopulation or the region sampled during fine needle aspira-
tion. Surprisingly, we observed that UMs with BAP1 loss exhibited
de-repression—rather than enhanced repression—of PRC1 target
genes, and loss—rather than gain—of H2AK119Ub. While BAP1
hydrolyzes ubiquitin on H2AK119Ub, thereby counteracting
PRC1 action, its role in modulating the expression of genes under

Fig. 7 Cell-intrinsic inflammation in high-risk UM. a Expression of key cytosolic nucleic acids sensors, intermediate signaling adapters, executioners,
interferon stimulated genes (ISGs) and CIN-induced non-canonical NF-kB targets (shown in red)56 for all patient tumor cells ranked by average imputed
expression of the GEP2 gene signature (gene signatures annotated in Supplementary Data File 1) in ascending order from left to right; genes are clustered
using an Euclidean distance metric. For each gene, imputed expression was z-normalized across all cells and smoothed using a 20-cell moving average
window. Top, filled area plot showing average expression of the GEP2 signature across ranked tumor cells. b Immunofluorescence of STING (green) and
DAPI (blue) in MSK-UM03 (greatest proportion of GEP1 tumor cells in the cohort) and MSK-UM01 (greatest proportion of GEP2 tumor cells in the cohort).
Representative images from six biological specimens. c Overall survival (left) and UM-related metastasis (right) of (n= 80) TCGA-UM patients with
primary tumors stratified by expression of high (top 50th percentile, n= 40) and low (bottom 50th percentile, n= 40) STING. Statistical significance
tested using two-sided log-rank test; p (left)= 2.2 × 10−5.
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Polycomb regulation is less defined. For instance, in human cells,
BAP1 appears to safeguard against gene silencing mediated by
PRC116, whereas in Drosophila, loss of BAP1 homologue, Calypso,
or other components of PR-DUB, was also found to lead to de-
repression of Polycomb target genes38,63. It is possible that an
intricate balance between H2A ubiquitination and de-
ubiquitination may be necessary to achieve target gene
repression64 and that BAP1 loss might be necessary in order to
maintain very low basal levels of H2AK119Ub, which might be
required for cellular viability. BAP1 function may also depend on
cellular context. For instance, BAP1 loss mediates apoptosis in
fibroblasts, liver, and pancreatic cells but not in melanocytes and
mesothelial cells65. Our results show that, in addition to BAP1
loss, high-risk tumors exhibited loss of core PRC1 components
and decreased H2A ubiquitination, indicating that BAP1 loss in
UM reflects broader dysfunction in loss of PRC1-mediated tran-
scriptional repression. Our results are in line with other studies
that have demonstrated aberrant expression of epigenetic modi-
fiers in high risk UM66, significant intra-tumoral spatial hetero-
geneity in H2AK119Ub immunostaining of UM, and reduced
H2AK119Ub staining in UM compared to normal choroid67.

More generally, this work links two important hallmarks of
tumor progression by demonstrating a functional link between
epigenetic reprogramming and CIN, both of which have been
implicated in tumor progression and metastasis56,68. In addition
to its role in transcriptional regulation, Polycomb group proteins
interact to form higher order chromatin structure. Consequently,
their disruption changes the three-dimensional genome topology
and may contribute to CIN15,69–71. In mouse fibroblasts, loss of
canonical PRC1 component, CBX2, induces CIN72. Indeed, we
found that inhibition of PRC1—but not PRC2—promotes wide-
spread CIN in UM cells. We also found that PRC1 inhibition
promotes a transition toward an epithelioid morphology char-
acterized by nuclear enlargement, thereby linking epigenetic,
transcriptional and histological features of UM. In line with our
findings, nuclear enlargement has recently been shown to occur
secondary to RING1B (RNF2) knockdown in mouse embryonic
stem cells69.

It is crucial to identify pathways downstream of PRC1 loss that
contribute to metastasis and which can be targeted for therapeutic
benefit. We recently demonstrated that CIN can drive metastasis in
a tumor cell-autonomous manner, through aberrant activation of

Fig. 8 PRC1 inhibition promotes CIN and STING-dependent migration. a Wound scratch assay to assess migratory potential of low-risk UM cells (92.1)
upon treatment with DMSO, PRT, UMK57 (CIN inhibition) or PRT and UMK57. Data obtained from three experimental replicates. Data points, mean; error
bars, standard error of the mean. Source data are provided as a Source Data file. b Wound scratch assay to assess migratory potential of low-risk UM cells
(92.1) upon treatment with DMSO, PRT, H151 (STING inhibition) or PRT and H151. Data obtained from three experimental replicates. Data points, mean;
error bars, standard error of the mean. Source data are provided as a Source Data file. c Ratio of GEP1/GEP2 average gene signature expression in low-risk
UM cells (92.1, blue) and high-risk UM cells (MP38, red) upon 48-h treatment with PRT, reversine (CIN induction) or UMK57; FPKM values obtained from
bulk RNA-seq are reported (bar, mean; bars, standard deviation). Biological triplicates. d Schematic of proposed model: Loss of PRC1 ligase activity leads to
transcriptional de-repression of target genes contributing to GEP2 phenotype; this concomitantly promotes nuclear enlargement and morphological
changes toward an epithelioid phenotype, and enhances migration through CIN-induced STING signaling. Pharmacologic modulators shown in yellow;
(PRT, PRC1 inhibition; UMK57; CIN suppression; H151, STING inhibition). CIN, chromosomal instability.
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the cytosolic DNA-sensing cGAS-STING pathway56. Here, we
found that PRC1 inhibition triggers chromosome segregation errors
that promote pro-metastatic chronic inflammatory signaling. While
the migratory phenotype induced by PRC1 inhibition was sup-
pressed in the presence of small molecule inhibitors of either CIN
or STING, canonical GEP-related gene sets that define aggressive
UM in the clinic appear to be under direct PRC1 control Sup-
pression of CIN was insufficient to alter their expression levels. This
suggests that PRC1 deregulation has both CIN- dependent and
independent mechanisms of promoting UM progression. None-
theless, given its functional consequences on cell migration, mod-
ulation of pathways downstream of PRC1, like CIN and the cGAS-
STING pathway, may still represent a promising target that could
be exploited to suppress UM progression and metastasis. By
uncovering key steps involved in UM progression, our work
highlights an opportunity for earlier therapeutic intervention to
suppress tumor evolution toward a lethal metastatic phenotype.

Methods
Human specimens. Primary uveal melanomas were obtained from patients
undergoing enucleation surgery at Memorial Sloan Kettering Cancer Center
(MSKCC, New York, NY) after obtaining informed consent. All protocols adhered
to the tenets of the Declaration of Helsinki and were conducted in accordance with
the regulations of the Health Insurance Portability and Accountability Act. Internal
Review Board (IRB) approval was obtained from Memorial Sloan Kettering Cancer
Center, NY (IRB protocol #17-206). Samples were collected from 6 patients
spanning prognostic gene expression profiles (GEP1 and GEP2). Patient gender,
primary lesion size, diagnostic stage, and disease progression, as well as copy
number alterations, UM hotspot and BAP1 mutations identified by targeted exome
sequencing using MSK-IMPACT (performed on formalin-fixed, paraffin embedded
enucleation specimens)22 are annotated in Supplementary Table 1. Immediately
after enucleation, a sclera window was made and tumor was removed (with a freer
elevator) and sent for DecisionDx for bulk GEP classification and for scRNAseq
processing. Tissue samples were immediately placed in RPMI media (Corning) or
Hypothermosol on ice and dissociated using both mechanical and enzymatic
digestion (Human Tumor Dissociation Kit #130-095-929, Miltenyi Biotec), gen-
erally within 1 h of surgical resection. Tissues were minced with a razor blade in the
Miltenyi enzyme mix according to the manufacturer’s specifications and trans-
ferred to a Gentle MACS Octo Dissociator with heaters (# 30-096-427, 37 °C) for
further mechanical dissociation. Upon completion, cell suspensions were passed
through a 70 µm filter and washed twice with FACS buffer (2% heat-inactivated
FBS, 1 mM EDTA and Pen/Strep in PBS without Ca or Mg). Red blood cells were
lysed in Red Blood Cell Lysis Solution (ACK lysis buffer) once or twice depending
on red blood cell content, and final single-cell suspensions were made in Hanks’
Balanced Salt Solution (HBSS). For scRNA-seq, the remaining cell suspensions
were subsequently flow sorted with a BD FACSAria II cell sorter fitted with a
100 µM nozzle to enrich for viable, single cells according to forward and side
scattering, and DAPI exclusion. Cells were sorted directly into RPMI media with
10% FBS, washed thrice and re-suspend in PBS with 0.04% BSA for single cell
encapsulation. Final cell concentrations were determined with a hemocytometer.

scRNA-seq library generation (inDrops protocol). Barcoded hydrogel bead
synthesis, single cell encapsulation and library construction were done following a
modified inDrops protocol73,74. Barcoded hydrogel beads were synthesized in
house and contained a poly(T) sequence, T7 promoter, PE1 sequencing primer,
unique cell barcode, unique molecular identifier (UMI) and a photo-cleavable
linker. Cells were re-suspended in PBS with 0.04% BSA at ~400 cells/µL; average
viability of loaded cells was 87%. Before encapsulation, cells were mixed at a 1:1
ratio with OptiPrep mix (32% OptiPrep Density Gradient Medium (Sigma-
Aldrich), 0.08% BSA in PBS). Single cells were encapsulated in droplets together
with barcoded hydrogel beads and reverse transcription mix (SuperScript™ III
Reverse Transcriptase, SUPERase-In, FS buffer (Thermo Fisher Scientific) NP-40,
DTT, MgCl2, Tris and dNTPs) using a microfluidic device with three inlet channels
for aqueous solutions (barcoded hydrogel beads, RT mix and cells), an oil inlet, and
an outlet channel for emulsion. Emulsion was collected for 30 min in a 1.5 mL tube
in ice block. Immediately after encapsulation, primers were released from hydrogel
beads by incubating the emulsion on ice under UV light for 7 min. The emulsion
was then transferred to heat block at 60 °C for 1 min, 50 °C for 2 h (RT), followed
by heat inactivation at 70 °C for 15 min. The emulsion was then divided into
smaller aliquots that contained an estimated 5000 cells. A few drops of 20%
1H,1H,2H,2H-perfluorooctanol (PFO, Sigma-Aldritch) was added on top of each
tube to break emulsions, which were then transferred and stored at −80 °C.
Hydrogel beads were removed by filtration through a spin column (Zymo
Research) and excess primers were digested using Exo1, HinF1, and FastAP
enzyme mix (Themo Fisher Scientific). After the DNA/RNA duplex was purified
using 1.2X SPRIselect beads (Beckman Coulter), second strand synthesis (SSS) was

done using NEBNext® Ultra™ II Non-Directional RNA Second Strand Synthesis
Module (New England BioLabs) at 16 °C for 2.5 h followed by inactivation at 65 °C
for 20 min. SSS reaction material was then amplified using HiScribe™ T7 High Yield
RNA Synthesis Kit (New England BioLabs) for 15 h at 37 °C. Reaction products
were purified using 1.2X SPRIselect beads (Beckman Coulter) and their quality was
evaluated on Agilent Bioanalyzer 2100. Amplified material was fragmented using
RNA fragmentation reagents (Ambion Life Technologies) at 70 °C for 2.5 min.
Fragmentation was stopped by addition of ice cold 1.2X SPRIselect beads mixed
with STOP solution. After purification, fragmented aRNA was mixed with PE2-
STUB (IDT) which contains random hexamers, incubated for 3 min at 70 °C,
cooled on ice, and reverse transcribed using PrimeScript RTase (Takara Bio USA)
for 60 min at 42 °C. Libraries were purified with 1.2X SPRIselect beads (Beckman
Coulter) and amplified via PCR (Kapa 2× HiFi HotStart PCR mix, Kapa Biosys-
tems) using P1-P2 Illumina index primers; optimal cycle number was determined
using qPCR. Amplified and indexed libraries were cleaned two times using
SPRIselect double-sided size selection (0.6X and 0.8X). Library size was analyzed
using Agilent Bioanalyzer 2100 and quantified by Qubit dsDNA HS Assay kit
(Thermo Fisher Scientific). Libraries were sequenced one per lane of HiSeq2500
(Illumina) paired-end read flow cell, loaded at a 10.5pM concentration with 15%
PhiX spike-in. 54 bp were sequenced in the forward read (inDrop Barcode+UMI)
and 46 bp on the reverse read.

scRNA-seq computational analysis. Pre-processing, cell selection and filtering. The
Sequence Quality Control (SEQC) package32 was utilized to process the data,
constructing a count matrix from raw reads, including de-multiplexing, alignment,
error-correction, and the generation of a raw digital expression matrix by collap-
sing groups of reads with the same unique molecular identifier (UMI), cell barcode
and gene annotation as previously described75. Alignment to the hg38 annotation
was restricted to transcribed, polyadenylated RNA of length >200 nucleotides (gene
biotypes accessible by 3ʹ mRNA sequencing technologies) to increase mapping
specificity. SEQC then follows with a number of filtering steps to ensure data
quality. Viable cells were distinguished from droplets consisting of ambient mRNA
transcripts arising in solution due to premature lysis or cell death based on library
size; whereby cells were filtered beyond the knee point of the second derivative of
the empirical cumulative density function of total cell transcript counts (Supple-
mentary Fig. 1a). In addition, cells with low complexity libraries (in which detected
transcripts are aligned to a small subset of genes) were filtered (Supplementary
Fig. 1b). Cells with >25% of transcripts derived from mitochondria were considered
apoptotic and also excluded (Supplementary Fig. 1c). This yielded a total of 17,074
patient-derived cells with a median library size of 1619 transcripts per cell, for
downstream analysis. The number of transcripts and unique genes detected per
library were highly reproducible across patients (Supplementary Fig. 1d, e). Initi-
ally, library batch effects were ruled out by analyzing two independent single cell
libraries prepared from the same patient, UM01 (Bio Rep A and B). Finally, genes
detected in fewer than 10 cells or genes with low expression levels, identified as
those with count values <5 standard deviations from the second mode of the log-
log distribution of total transcript counts/gene, were excluded, yielding a filtered
count matrix with 17,074 cells and 14,642 genes for downstream analysis.

Normalization and imputation. The filtered count matrix was normalized for
library size per cell, whereby the expression level of each gene was divided by the
cell’s total molecule counts and then scaled by the median molecule counts of all
cells (i.e., normalized count matrix). Principle Component Analysis (PCA) was
then computed using randomized principal component analysis76 applied to the
normalized count matrix. Subsequently, ordinary least squares was applied to
linearly regress library size out of each principle component because a partial
correlation was observed between some principle components and cell size. Finally,
MAGIC imputation34 was applied to the median-normalized count matrix to
further denoise and recover missing gene values using conservative parameters
(t= 3, k= 27). Imputation was performed using the first 20 principle components
of the normalized count matrix (accounted for >60% of variance in the data) and
yielded the imputed count matrix.

Data visualization. The global atlas of all patient cells, including tumor,
immune and photoreceptor cell subpopulations (Supplementary Fig. 1) were
visualized using the Barnes-hut approximate version of t-SNE77 (https://
github.com/lvdmaaten/bhtsne) computed on the principle components of the
imputed count matrix. This visualization was appropriate given the diversity of cell
types represented in these data subsets. Force-directed graphs78 were alternatively
used to visualize tumor cell states, which better represent cell state transitions while
maintaining a coherent global structure (Fig. 1d, Supplementary Fig. 4a). Force-
directed layouts were computed on the principle components of the imputed count
matrix using a k-NN graph23; whereby the adjacency matrix representing this
k-NN graph was converted to an affinity matrix using an anisotropic Gaussian
kernel34 to better account for large differences in data density. This adaptive kernel
used distance to the k= 12 neighbor as the scaling factor for each cell to determine
the affinities34. The affinity matrix was then used as input to compute the force-
directed layout using the ForceAtlas2 python module78. For both visualization
methods, the number of principle components was selected per dataset (global atlas
of all patient cells and tumor cells subset) based on the knee point of cumulative
explained variance. Principle component analysis re-applied to the post-imputation
count matrix yielded 33 and 41 principle components explaining ~90% of variance
in the global atlas of all patient cells and in the tumor cell subset alone respectively.
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Selection of variably expressed genes. Variably expressed genes were selected
from single cell data based on the standard deviation of their expression across all
cells. The distribution of the standard deviation per gene across all cells, for all
genes, was fit to a bi-modal distribution using least squares minimization. Highly
variable genes were identified as those whose standard deviation was greater than
the second mean of this distribution less 1.5X its standard deviation.

Phenograph clustering and cell type annotation. Phenograph clustering23 was
computed directly on the top 33 principle components of the imputed computed
count matrix for all merged patient cells. The number of nearest neighbors, k, used
to construct the k-NN graph was selected such that the Jaccard graph per data
subset was fully connected (k= 8) and it was within a range of k for which cluster
assignments were robust. Robustness of Phenograph clusters was evaluated by
computing the adjusted rand index (ARI) between categorical cluster assignments
made using all pairwise values of k. For each pairwise comparison, we compute the
ARI across all cells. The resulting k-by-k matrix of ARI values was visualized as a
two-dimensional heatmap (Supplementary Fig. 1f). Clustering was performed with
k= 35 because this was the minimum value of k for which categorical assignments
were stable (ARI > 0.75). This yielded 27 Phenograph clusters (Supplementary
Fig. 1g) in the merged atlas of all single cells acquired from six patients
(Supplementary Fig. 1h). Phenograph clusters were then hierarchically clustered by
their imputed expression of canonical markers, z-normalized across cells, to inform
gross cell type assignments (i.e., tumor, immune subsets, and photoreceptors).
Tumor cells expressed genes consistent with a melanocytic cell of origin; whereas
photoreceptors and immune subpopulations were distinguished by expression of
RHO and CD45 respectively (Supplementary Fig. 1i).

Cell type assignments were further validated by examining the genome-wide
correlation between Phenograph cluster expression medians and the expression
profiles of sorted immune populations, for which bulk microarray and RNA-seq
datasets were available79,80. First, bulk microarray datasets were log2 transformed
and library-size normalized. Then, the mean expression per cell type was computed
across biological replicates and centered by mean subtraction per gene across all
cell types. Correspondingly, the median imputed expression of each gene per
Phenograph cluster was computed and likewise centered by subtracting the mean
expression per gene across all clusters. Finally, the correlation between the centered
transcriptional profile of each Phenograph cluster and bulk immune cell type was
computed in a pairwise manner using all genes variably expressed in single cell data
and detected in bulk immune data (n= 5480 genes). For each pairwise correlation,
the Python package scipy was utilized to compute a p value testing for non-
correlation. Hierarchical clustering of the Pearson correlation between each
Phenograph cluster and bulk immune cell type is shown in Supplementary Fig. 1j.
Only correlation coefficients with absolute magnitude >20% and characterized by
p < 0.01 are visualized; all others are whited out. Phenograph clusters (columns)
not meeting these criteria are not displayed. Expectedly, tumor cell clusters do not
show a significant correlation with immune subsets.

Copy number variation analysis. The inferCNV package81 was used to predict
large-scale copy number variants (CNV) based on average gene expression across
chromosomes for each patient. Control normalization was performed relative to a
diploid reference (all CD45+ immune cells) from the tumor expression values.
Standard use of the algorithm was applied with the following parameter selections:
(1) mean gene cutoff across all cells was set to 0.05, (2) the three state Hidden
Markov Model (HMM) was used for predicting large-scale CNV events and (3) the
subcluster analysis method was used to account for intra-tumor heterogeneity,
whereby subclusters were partitioned using the random trees method. Low-
probability CNV predictions were filtered out using the Bayesian network latent
mixture model with a normal probability threshold of 0.6 for assigning putative
CNV events. Modified gene expression along chromosomes for all tumor cells
clustered by the Ward distance metric are visualized as heatmaps (Supplementary
Fig. 2a). The fraction of tumor cells in which canonical UM alterations were
detected by the HMM are summarized per patient in Supplementary Fig. 2b.
Phylogeny of intra-patient subclones detected by inferCNV were reconstructed for
tumor subclones detected in >5% of the patient tumor based on the hamming
distance metric (Supplementary Fig. 2c). The length of each branch represents the
Hamming distance between each child and parent leaf, where the root of the tree is
a diploid cell. Branch width and node size are scaled by the fraction of cells in each
subclone (plus a minimal constant), where intermediate branch widths are
dependent on the sum of downstream subclones. Tumor cells showed distinct
subclonal patterns of copy number aberrations, including characteristic loss of
chromosome 3 and gain in chromosome 8.

Clinical prognostication of individual tumor cells. Tumor cells were directly
subset from the global atlas of all patient cells based on the cell type annotations
described above (n= 16,077 tumor cells with median library size of 1680
transcripts). Normalization, imputation and visualization were computed for the
tumor subset separately, as described above, from the level of raw counts.
Individual tumor cells were then assigned to low-risk UM (Gene expression profile
1, GEP1) and high-risk UM (Gene expression profile 2, GEP2) according to their
mean imputed expression of characteristic genes used clinically to stratify patients
(Supplementary Data File 1). A two-component Bayesian Gaussian Mixture Model
(BGMM) was fit to this two-dimensional distribution (Supplementary Fig. 3a, b),
computed using the diagonal covariance matrix of each mixture component using
the python package sklearn. The BGMM model was then used to predict the most

probable clinical prognostication for input cells, where the k-means search was
initialized with a fixed seed for reproducibility. To control for difference in patient
cell numbers, estimations of GEP fractions per patient were generated in subsets of
tumor cells (n= 500) randomly sampled over 20 rounds (Fig. 1c). In a similar
manner, individual tumor cells were alternatively assigned to one of the four TCGA
molecular subtypes according to mean imputed expression of their characteristic
genes (Supplementary Data File 1) using a four-component BGMM. The only
exception being that the four-component model used spherical covariance instead
of diagonal covariance, so that each component has its own single variance. The
most probable TCGA molecular subtypes were assigned to each tumor cell and
visualized on a t-SNE plot, generated using the same mean imputed expression of
characteristic genes (Supplementary Fig. 3e) and on a two-dimensional scatter plot
reflect the average expression of the GEP1 and GEP2 gene signatures per cell
(Supplementary Fig. 3f). Expectedly, TCGA subtypes 1 and 2 correlate with high
GEP1 expression and conversely, TCGA subtypes 3 and 4 correlate with high GEP2
expression.

Defining phenotypic volume. To quantify the extent of transcriptional
complexity within each patient tumor (Fig. 1f), we used a metric of Phenotypic
Volume defined in Azizi et al.32 as the pseudo-determinant of the gene-gene
covariance matrix within each subgroup. This metric for Phenotypic Volume
considers covariance between all gene pairs, in addition to their variance, to
quantify the volume spanned by independent cell states. Practically, it is the pseudo
determinant of the covariance matrix, which can be computed as the product of its
nonzero eigenvalues; here, the gene-gene covariance matrix was computed across
all variably expressed genes (n= 12,755). Number of cell states, and therefore
Phenotypic Volume, naturally correlates with population size. Therefore, to correct
for the effect of cell number differences across GEP1 and GEP2 groups when
comparing their Phenotypic Volume, the same number of cells (n= 150) was
randomly subsampled from each prognostic group in the comparison. The gene-
gene covariance matrix was then empirically computed per random subset of cells
on the normalized, but un-imputed data. Imputation was not utilized here because
it alters the gene-gene covariate structure. The log Phenotypic volume was then
computed as the sum of the log of the non-zero eigenvalues, λe, of each empirical
gene-gene covariance matrix:

log Phenotypic Volume
� � ¼ ∑

e
0:5*log10 λ2e

� �
; 8 λe>0:

Finally, given the high number of dimensions (genes), the log of the Phenotypic
Volume was normalized by the total number of genes. Subsampling was repeated
100 times to achieve the range of Phenotypic Volume across patients reported in
Fig. 1f.

Multi-scale diffusion distance. Diffusion maps were used to characterize major
components of variation across cells82. As described in Van Dijk et al.34, a cell-cell
Euclidean distance matrix was computed based on the principle components of the
normalized (unimputed) count matrix, where the number of principle components
was selected based on the knee point of the cumulative explained variance. An
adaptive Gaussian kernel was then applied to convert distances into affinities, so
that similarities between two cells decreases exponentially with distance. The
affinity matrix was then row-normalized to construct a Markov transition matrix,
whose eigenvectors are termed diffusion components. The eigenvalues of this
matrix provide information on the importance of each diffusion component. The
pairwise distance between cell i and cell j can be computed as the sum of the
Euclidean distances between diffusion components (ei, ej), scaled by their
eigenvalues (λ) and powered by the number of diffusion steps, t.

D ei; ej
� �2

¼ ∑L
l¼1λ

2t
l ðel;i � el;jÞ2

where t represents the number of steps through the graph and el;i represents the
embedding of cell i along diffusion component l. To avoid setting a particular t and
to render the distance robust to outlier cells and density differences, we used the
multi-scale approximation to this distance described in Setty et al.83. The
dimension L of the embedding was chosen to be 5 based on the Eigen gap among
the top Eigenvectors.

Tumor cell archetypal analysis. To define tumor cell archetypes we applied the
Principle Convex Hull Analysis (PCHA) method84 to the top principle components
of the imputed count matrix; where 22 principle components were selected based
on the knee point of their cumulative explained variance. Dimensionality reduction
was applied to improve robustness of the archetypal analysis, since volume and
therefore number of data points needed to approximate the bounding convex-hull
grows exponentially with dimensions. Using the first 22 principle components for
the PCHA method, we searched for 8 archetypes whose convex-hull closely
approximates the data. The optimal number of archetypes used to define the
bounding convex-hull was identified by identifying the knee point of variance
explained by the model as a function of archetype number. The goal of archetypal
analysis is to identify an optimal set of archetypes so that their convex combination
best re-approximates the data points. Because the archetypes must lie near the
convex hull of the data, they represent its extreme phenotypic states. To
characterize these extreme phenotypic states, we identified the cell nearest to each
archetype based on the Euclidean distance metric and then defined a soft
neighborhood around each archetype based on the multi-scale diffusion distance
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(computed on the principle components of the un-imputed normalized count
matrix, as described above); whereby cells within a specific radius of each archetype
are assigned to each bounding phenotypic state. This radius was defined per
archetype as ½ the multi-scale diffusion distance to its nearest archetype. This
radius ensures the neighborhood surrounding each archetype spans a similar range
on the manifold for each archetype. Finally, all individual tumor cells were likewise
assigned to their nearest archetype according to this multi-scale diffusion distance
(Supplementary Fig. 4a) to evaluate the fraction of cells closest to each archetype
per patient (Supplementary Fig. 4b).

Archetype-based differential gene expression analysis. The soft neighborhood of
cells surrounding each archetype now allows us to characterize the gene expression
profiles of these bounding phenotypic states. As previously described34, we identify
genes whose expression maximally distinguishes each archetype against
background gene expression according to the earth mover’s distance (EMD)85;
which is a non-parametric measure of distance between two distributions that
quantifies the flow required to morph one distribution into another. For each
archetype, a background consisting of the same number of cells is randomly
sampled from all cells that are not a member of its archetypal neighborhood. For
each archetype, we compute the EMD to background for each variably expressed
gene. To ensure robustness we perform background subsampling and the EMD
computation 100 times and report the average score per gene; allowing us to
identify genes whose expression maximally distinguishes each archetype from
background (Supplementary Fig. 4c and Supplementary Data File 2).

Gene signatures for archetype annotation. A custom annotation file was
generated to probe molecular signatures defining tumor archetypes. This was
assembled by integrating all gene ontology (GO) signatures related to UM (GEP1/
2, monosomy 3, UM with aneuploidy), several PRC1 and 2 target genes, chromatin
binding and modification, histone modification (ubiquitination, deubiquitination,
and trimethylation), chromosome organization, metastasis, neural crest
differentiation, retina and optic nerve development and homeostasis and protein
ubiquitination, as well as complete KEGG and Hallmark Gene sets (see
Supplementary Data File 3).

Archetype-based gene set enrichment analysis. To visualize GSEA results in an
intuitive manner for archetype characterization, gene signatures distinguished by a
Bonferroni corrected padj < 0.25, a nominal p < 0.05 and an absolute Normalized
Enrichment Score absðNESÞ > 1.5 were considered significant and hierarchically
clustered (clusters and gene signatures) by NES according to the correlation
distance metric (Supplementary Fig. 4d). Areas not meeting these criteria were
whited out on the heatmap. An unfiltered list of all gene signatures distinguished
by padj < 0.25 is provided in Supplementary Data File 4.

Analysis of additional validation datasets. The filtered and annotated count
matrix from the independent patient cohort24 was received directly from its
authors. This scRNA-seq dataset includes 11 patient samples – 3 metastatic and 8
primary tumor samples. Analysis was limited to cells annotated by the authors as
tumor cells and genes not expressed in any tumor cells were removed, yielding a
filtered count matrix with 25,141 tumor cells and 26,537 genes. Of all tumor cells,
23,100 were derived from primary tumors. Primary tumor cells were processed
independently and were the focus of downstream analyses. The metastatic samples
were only included when training the BGMM (as described above under clinical
prognostication of individual tumor cells) because the most extreme GEP1 case in
this cohort, was surprisingly a latent metastasis. As described above, filtered count
matrices were normalized for library size per cell, whereby the expression level of
each gene was divided by the cell’s total molecule counts and then scaled by the
median molecule counts of all cells (yielding normalized count matrices). Principle
Component Analysis (PCA) was then computed using randomized principal
component analysis76 applied to the normalized count matrix. Subsequently,
ordinary least squares was applied to linearly regress library size out of each
principle component because a partial correlation was observed between some
principle components and cell size. Finally, MAGIC imputation34 was applied to
the median-normalized count matrix to further denoise and recover missing gene
values using conservative parameters (t= 3, k= 27). Imputation was performed
using the first 32 principle components of the normalized count matrix. These
principle components accounted for >80% of the variance and yielded the imputed
count matrix. De-repression of PRC1 target genes and upregulation of cGAS,
STING, and downstream inflammatory response pathway effects were validated in
primary tumor cells ranked by the average GEP2 gene expression signature
(Supplementary Figs. 7a, 9e) using this imputed count matrix. Tumor cells were
likewise assigned to a GEP or TCGA prognostic class as described above; with the
exception that a tied-covariance matrix was used when fitting the four-
component BGMM.

Cell culture. HEK293T and human UM cell lines MP41, MP38, MP46 and
Mel28535 were purchased from the American Type Culture Collection (ATCC),
and 92.1 and Mel20236,37 from the European Collection of Cell Cultures (ECACC).
Melanoma cells were grown in RPMI-1640 media (Gibco) supplemented with 10%
fetal bovine serum (FBS, Sigma), and HEK293T cells were grown in Dulbecco’s
modified Eagle’s medium (DMEM, Gibco) supplemented with 10% FBS. Cell
culture media were supplemented with 1% penicillin/streptomycin and cells were
maintained at 37 °C and 5% CO2.

Pharmacologic treatment. Cells were grown under regular conditions until they
reached ~80% confluence. Culture media (RPMI) containing the following com-
pounds dissolved in DMSO (Fisher BioReagents), or an equal volume of DMSO,
were added to the cells; 50 μM PRT (PRT4165, Sigma-Aldrich), 1 μM EPZ
(EPZ011989, Cayman Chemical), 5 μM GSK126 (Xcess Biosciences), 1 μM UMK57
(Aobious), 0.5 μM reversine (Cayman Chemical) and H-151 (Invivogen). For
experiments with treatment extending beyond 2 h, culture media were supple-
mented with 10% FBS and replenished after the first 24 h, with the applicable
compound. For the long-term PRT treatment, cells were passaged under regular
conditions and fresh media (RPMI+ 10% FBS) with 50 μM PRT or 0.1% DMSO,
were added for 48 h prior to passaging the cells, and cells were passaged 4–6 times.
Images of cells were obtained using bright field microscopy (Evos, Life
Technologies).

Lentiviral transfection. HEK293T cells were transfected with the pLentiCas9-T2A-
BFP vector86 (Addgene plasmid # 78547; http://n2t.net/addgene:78547; RRI-
D:Addgene_78547, deposited by Roderic Guigo & Rory Johnson), or gRNA cloned
into pLenti-U6-sgRNA-PGK-Neo vector (Applied Biological Materials Inc.). gRNA
were designed to target either RING1 or RNF2 and were purchased from Applied
Biological Materials Inc. (Cat. 396021110195 and 402851110195). The transfection
mixture consisted of the TurboFectin transfection reagent (Origene) and lyophi-
lized packaging plasmids (Origene) dissolved in Opti-MEM. Approximately 18 h
after transfection, the culture medium was changed, and the supernatant was
collected 24 and 48 h post-transfection and filtered with a 0.45-μm PVDF filter
(Millipore). The virus was aliquoted and stored at −80 °C.

Mel285 cells were first transfected with lentiviruses encoding the Cas9 plasmids
in a 6 well plate with polybrene (Sigma-Aldrich) added to a final concentration of
8 μg/mL. At 72 h post transduction, blasticidin (InvivoGen) was added to each well
to a final concentration of 6 μg/mL. Culture media was exchanged every 48 h and
blasticidin selection was maintained for a total of 7 days. Next, single cell clones,
Mel285.Cas9, were derived in 96 well plates using blasticidin (6 μg/mL) as the
selection agent.

Mel285.Cas9 cells, derived from a single clone, were then transfected with
lentiviruses encoding different gRNA, in 6 well plates with polybrene (Sigma-
Aldrich) added to a final concentration of 8 μg/mL. At 72 h post transduction,
G418 sulfate (Geneticin, ThermoFisher) was added at a final concentration of
1000 μg/mL. Culture media was exchanged every 48 h and G418 selection was
maintained for a total of 7 days. Successful knockout of either RING1 or RNF2 was
confirmed using western blot analysis (Fig. 5e).

Bulk RNA-seq. Total RNA was the extracted using the QIAShredder and the
RNeasy extraction kit (Qiagen) and sequenced on NovaSeq (Illumina) to generate
150 bp pair-end reads. Raw reads (FASTQ) were aligned to the human reference
genome (GRCh38) using STAR on Partek Flow software, version 8.0. Aligned reads
were mapped to transcripts (Ensembl Transcripts release 102) using Partek’s
modified expectation-maximization (EM) algorithm for transcript quantification87,
with strict paired-end compatibility. Gene counts were normalized per sample to
generate fragments Per Kilobase of transcript per Million mapped reads (FPKM)
values. Differential gene expression analysis was performed using the gene specific
analysis (GSA) tool on Partek, which is based on the Limma+ voom package88.
Gene levels distinguished by FDR value <0.05 were considered significant. Genes
not meeting these criteria were displayed in gray in the volcano plots in Fig. 3a. A
full list of the genesets used in Fig. 2e–g and Fig. 3e–g and Supplementary Fig. 7d–f
and Fig. 8f is annotated in Supplementary Data File 1. PCA was computed using
Partek Flow software using the normalized gene counts for GEP1 and GEP2 genes
or TCGA subtypes24 (gene lists in Supplementary Data File 1) and applied to UM
cells. To visualize how different UM cells fall on the GEP or TCGA-subtypes
spectrum, cells were plotted as a function of the first and second principal com-
ponents of the GEP 1 and GEP2 genes or the genes defining the 4 TCGA subtypes
(Supplementary Fig. 5a, b). GSEA was performed using the GSEA software (The
Broad Institute) using the gene sets in Supplementary Data File 3. To visualize
GSEA results in an intuitive manner, relevant gene signatures were plotted as a
function of their NES and -Log10(FDR) values (Fig. 5a, Supplementary 9a and 11d).
Complete GSEA results for UM cells and upon PRT or reversine treatment,
including nominal p-values, are listed in Supplementary Data Files 5–7.

Gene expression analysis using NanoString. Biological triplicates from low-risk UM
cells (92.1) upon 24 h DMSO or EPZ-treatment, or high-risk UM cells (MP38) upon
24 h DMSO-treatment were collected, and RNA was extracted using the QIAShredder
and the RNeasy extraction kit (Qiagen). 100 ng of RNA per sample was prepared for
analysis with a NanoString Human Custom Panel (gene lists in Supplementary Data
File 8) chip. The assay was performed on an nCounter MAX Analysis System (Stem
Cell Genomics and Microscopy Core, Sanford Consortium for Regenerative Medicine,
La Jolla) according to the manufacturer’s instructions. Data was then normalized and
analyzed by ROSALIND® (https://rosalind.onramp.bio/), with a HyperScale archi-
tecture developed by OnRamp BioInformatics, Inc. (San Diego, CA) to interpret tar-
geted gene expression data. Read Distribution percentages, violin plots, identity
heatmaps, and sample MDS plots were generated as part of the QC step. The limma R
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library89 was used to calculate fold changes and p-values and perform optional cov-
ariate correction. Results are shown in Supplementary Fig. 8e.

Chromatin profiling using CUT&RUN. In situ chromatin profiling of 92.1 and
MP38 cells was performed using Cleavage Under Targets and Release Using
Nuclease, CUT&RUN, according to Skene et al.90 using the CUTANA kit (Epi-
Cypher, 14-1048). Briefly, adhered cells were scrapped off the culture plates and
centrifuged at 600 × g for 3 min. Pellets were re-suspended twice in wash buffer,
and then mixed with Concanavalin A (ConA) conjugated paramagnetic beads
(EpiCypher, 21-1401). Following a 10 min incubation on a magnet rack at RT, the
supernatant was discarded. Antibodies diluted in antibody buffer were added to the
beads along with the bound cells as follows, H2AK119Ub (Cell Signaling, 8240),
1:100; RING1 (Cell Signaling, 13069), 1:100; RNF2 (Cell Signaling, 5694), 1:100;
BMI1 (Cell Signaling, 5856), 1:100; H3K27me3 (Thermo Fisher, MA5-11198),
1:100; IgG (Thermo Fisher, MA5-11198), 1:100. Following an overnight incubation
at 4 °C, the supernatant was removed, and beads were washed in digitonin buffer
for a total of two washes. CUTANA pAG-MNase (EpiCypher, 15-1016) was added
to the samples for 10 min at room temperature, followed by two washes in digi-
tonin buffer. CaCl2 was added to a final concentration of 2 mM in order to activate
MNase and initiate chromatin cleavage. Targeted digestion was performed for 2 h
on ice until STOP buffer was added. Cells were then incubated at 37 °C for 10 min
to release cleaved chromatin fragments. DNA was purified using the CUTANA
DNA Purification Kit (EpiCypher) and eluted in 12 µL Elution Buffer. The purified
DNA was quantified using Qubit 4 fluorometer (Invitrogen) as per manufacturer’s
instructions. Library preparation was performed using the NEBNext Ultra II
Library Prep Kit for Illumina (New England BioLabs, E7103S) per manufacturer’s
instructions with minor modifications. The NEBNext Adaptors were diluted 1:10
in NEBNext adaptor dilution buffer (New England BioLabs, B1430S). Following
adapter ligation, DNA cleanup was performed using 1.7x AMPure XP beads
(Beckman Coulter Inc. #A63881). PCR was performed using unique dual index
primer pairs (NEBNext Multiplex Oligos for Illumina, New England BioLabs,
E6440S) according the following parameters: 45 s at 98 °C to activate hot-start Q5
polymerase, followed by 15 s at 98 °C, 10 s at 65 °C for a total of 13 cycles, and
finally 5 min at 65 °C for final extension. DNA cleanup was performed using 1.2x
AMPure beads (Beckman Coulter Inc. #A63881) and the DNA was eluted in TE
buffer. DNA quantification was performed using Qubit (Invitrogen), and fragment
sizes of individual libraries were analyzed on the 4200 TapeStation system (Agilent)
using a DNA 1000 High Sensitivity Screentape. Libraries were pooled to a final
concentration of 23 nM and sequenced on NovaSeq 6000 (Illumina), 100 bp
paired-end reads.

Raw reads (FASTQ) were aligned to the human reference genome (Ch38), using
STAR on Partek Flow software, version 10.0 (Partek). Genomic peaks were called
using MACS2 with the following parameters (BAM, cutoff q-value 0.05, no down-
sampling). A list containing H2AK119Ub and H3K27me3 peaks normalized to IgG
in 92.1 cells can be found in Supplementary Data File 1. For heatmap and intensity
plot representation of CUT&RUN signal, TSS plots were generated using Partek
Flow software, version 10.0 (Partek) considering the region ± 5 kb around the
center of the peak.

Immunofluorescence microscopy. Cells cultured on coverslips (Fisher Scientific)
were fixed with ice-chilled (−20 °C) methanol for 15 min at −20C and subse-
quently permeabilized with TBS-BSA- 0.5% Triton for 5 min, and then washed
with TBS-BSA. Primary antibodies for centromere (Antibodies Incorporated, 15-
234-0001), cGAS (Millipore, HPA031700) or Ubiquityl-H2AK119 (Cell Signaling,
8240) diluted in TBS-BSA 1:1600 were added to the coverslips. DAPI was added
along with secondary antibodies. Cells were mounted with Fluoro-Gel (Electron
Microscopy Sciences) and visualized using Nikon Eclipse Ti2 microscope (60x
magnification) except for cGAS and H2AK119Ub visualization which was done
using Zeiss LSM 880 microscope (100x magnification for cGAS and 60x magni-
fication for H2AK119Ub). Number of micronuclei per 60X HPF were counted in at
least 10 different sections per slide. For chromosome missegregation scoring, at
least 50 cells undergoing anaphase were identified and scored for missegregation.
Lagging chromosomes were defined as one or more area of DAPI staining isolated
between the segregating chromosomes. Acentric fragments were defined as similar
to that of lagging chromosomes, but without centromere-positive staining on the
lagging chromosome. Multipolar anaphases were defined as more than two sites of
chromosome segregation. Chromatin bridges were defined as continuous band of
DAPI staining between the segregating chromosomes. Mixed patterns were defined
as a mixture of two or more of the above categories. Images of DAPI or
H2AK119Ub were binarized and intensity of H2AK119Ub normalized to DAPI
was measured using ImageJ (NIH) (Supplementary Data File 9).

The immunofluorescence detection of H2AK119Ub and STING in patient
tissue samples were performed at Molecular Cytology Core Facility of Memorial
Sloan Kettering Cancer Center using Discovery XT processor (Ventana Medical
Systems). The tissue sections were blocked for 30 min in 10% normal goat serum
0.2% BSA in PBS. The primary antibody incubation was done with these
antibodies: H2AK119Ub: Cell Signaling, 8240 (1:1600 dilution); and STING: Cell
Signaling, 13647 S (1:100 dilution). The incubation with the primary antibody was
done for 5 h, followed by 60 min incubation with either anti biotinylated anti rabbit
IgG (Vector Labs, catalog#: PK6101) in 1:200 dilution. The detection was

performed with Blocker D, Streptavidin-HRP D (Ventana Medical Systems),
followed by incubation with Alexa Fluor™ 488 Tyramide SuperBoost™ Kit,
streptavidin (Life Technologies, catalog#: B40932).

Nuclear size. Cell cultures were trypsinized, resuspended in pre-warmed 0.075 M
KCl, incubated for 15 min at 37 °C and fixed in methanol-acetic acid (3:1). The
fixed cell suspension was then dropped onto slides, stained and mounted in Pro-
Long Gold antifade reagents with DAPI (Invitrogen). Nuclei stained with DAPI
were captured using the Nikon Eclipse E800 epifluorescence microscope. Images of
nuclei were binarized and nuclear size was measured using ImageJ (NIH).

Cell migration assay. Cells were split into 10 cm2 plates with RPMI+ 10% FBS.
Two days before cells reached 90-100% confluency, cell media were changed to
media containing 50 μM of PRT, 0.5 μM reversine, 1 μM UMK57, 1 μM H-151, a
combination of 50 μM of PRT and 1 μM UMK57, a combination of 50 μM of PRT
and 1 μMH-151, or an equal volume of DMSO. For the combined treatments (PRT
and UMK57 or PRT and H-151) UMK57, or H-151, were added 2 h prior to the
PRT treatment, and supplemented with 50 μM PRT during the treatment. The
following day the media was exchanged with fresh media supplemented with the
same corresponding compounds. A day later, cells at 90–100% confluency were
treated with mitomycin C (10 μg ml−1) for 1 h and then placed in media with 1%
FBS. A p200 pipette tip was used to create a linear wound. Images were taken
immediately (day 0), and at 24 h interval. The wound healing tool macro in ImageJ
(NIH) was used for quantification of wound surface area in pixels.

Western blotting. Cell were lysed using RIPA buffer supplemented with Halt
Protease and Phosphatase Inhibitor Cocktail (ThermoFisher Scientific). Total
protein concentration was determined using BCA protein assay kit (ThermoFisher
Scientific) and 10–20 μg of total protein were loaded per lane. Proteins were
separated by electrophoresis on 4%–12% NuPAGE Bis-Tris Mini Gel (Invitrogen),
and transferred to nitrocellulose membranes using the Trans-Blot Turbo Transfer
System (Bio-Rad). Membranes were incubated in primary antibodies at 4 °C
overnight diluted as follows, BAP1 (Santa Cruz Biotechnology, sc-28383), 1:100;
H2AK119Ub (Cell Signaling, 8240), 1:2000; RING1/RING1A (Cell Signaling,
2820), 1:250, (Origene, CF809319); RNF2/RING1B (Cell Signaling, 5694), 1:250,
(Abcam, ab101273), 1:500; STING (Cell Signaling, 13647), 1:1000; 1:500; Actin
(Cell Signaling, 4970), 1:2000. Corresponding HRP-conjugated secondary anti-
bodies (mouse, Cell Signaling, 7076 and rabbit, Cell Signaling, 7074) were added
and band intensities were visualized using the ChemiDoc MP Imaging system and
Image Lab software (Bio-Rad).

TCGA-UM expression and patients survival data. Expression datasets from the
TCGA-UM cohort were accessed through cbioportal (https://www.cbioportal.org/
study/summary?id=uvm_tcga)91,92 and survival and metastasis datasets were
obtained from Robertson et al.2 Overall survival of patients in the dataset with high
and low STING (TMEM173), JARID2, RING1, ‘H2AK119Ub targets’ or ‘PRT-gen-
eset’; full list shown in (Supplementary Data File 1) expression were compared
using the log-rank test. For transcript levels of individual genes, the z-normalized
expression data from the dataset was used, and for genesets, the average expression
of all genes was used. Tumors were labeled as BAP1-diploid and BAP1-deleted
based on BAP1 inferred copy number (cutoff value 0.2). Copy number and gene
expression levels of BAP1, RING1, RNF2 and JARID2 were queried and plotted
using cbioportal (Supplementary Fig. 6e).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The single cell RNA sequencing data generated in this study have been deposited in the
NCBI’s Gene Expression Omnibus database under accession code GSE160883. The processed
single cell data and example notebooks are available at https://github.com/LaughneyLab/
uveal-melanoma. The RNA and CUT&RUN sequencing data generated in this study have
been deposited in the NCBI’s Gene Expression Omnibus database under accession code
GSE181600. The experimental data generated in this study (in Figs. 4b, 5c, d, f, 6a, b, d, 8a, b,
and supplementary figures 6b, 8b, d, g–i, 9c–f, 10c, 11a, b) are provided in the Source Data file.
Source data is provided with this paper. The following databases/datasets have been used in
this study, KEGG database: https://www.genome.jp/kegg/; The validation single cell data
cohort from Durante et. al24 was accessed from NCBI’s Gene Expression Omnibus database
under accession code GSE139829. A ranked list of DEG and complete GSEA results per
tumor archetype and cells analyzed in this manuscript are provided in Supplementary Data
Files 2, 4-6. A custom GSEA annotation file, assembled to query cell types and pathways
related to UM, PRC1/2 transcriptional signature and aneuploidy, as well as hallmark genesets
is provided in Supplementary Data File 3. Source data are provided with this paper.
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