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The current research and existing facts indicate that type 2 diabetes mellitus (T2DM) is
characterized by gut microbiota dysbiosis and disturbed microbial metabolites. Oral
glucose-lowering drugs are reported with pleiotropic beneficial effects, including not
only a decrease in glucose level but also weight loss, antihypertension, anti-
inflammation, and cardiovascular protection, but the underlying mechanisms are still not
clear. Evidence can be found showing that oral glucose-lowering drugs might modify the
gut microbiome and thereby alter gastrointestinal metabolites to improve host health.
Although the connections among gut microbial communities, microbial metabolites, and
T2DM are complex, figuring out how antidiabetic agents shape the gut microbiome is vital
for optimizing the treatment, meaningful for the instruction for probiotic therapy and gut
microbiota transplantation in T2DM. In this review, we focused on the literatures in gut
microbiota and its metabolite profile alterations beneficial from oral antidiabetic drugs,
trying to provide implications for future study in the developing field of these drugs, such as
combination therapies, pre- and probiotics intervention in T2DM, and subjects with
pregestational diabetes and gestational diabetes mellitus.
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INTRODUCTION

The International Diabetes Federation Diabetes Atlas 10th edition shows a continued global
increase in diabetes prevalence, estimating that 537 million adults are living with diabetes
worldwide, most of which is type 2 diabetes mellitus (T2DM) (1). T2DM is a metabolic disorder
with multiple pathogenic factors, including genetic elements, sedentary behaviors, and overeating
(2). Once without effective treatment, it might lead to a composite of microvascular or
macrovascular complications, for instance chronic kidney disease, diabetic eye disease, and
cardiovascular disease (CVD) (3). Differing from insulin-dependent type 1 diabetes mellitus,
T2DM is closely interrelated with insulin resistance (IR) and strongly intertwined with obesity,
non-alcoholic fatty liver disease, and metabolic syndrome (4). Nowadays, more than 10 types of
medicines are approved by the USA Food and Drug Administration for the glycemic treatment (5).
Thousands of clinical trials and basic research are proceeding worldwide for diabetes
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pharmacotherapy, including looking for potential intervention
targets (6). In addition to the reduction in HbA1c, results from a
vast number of clinical and experimental studies have shown the
potential effects of glucose-lowering drugs, such as weight
reduction, cardiovascular safety, and lipid-lowering and
antihypertensive effects; however, the mechanisms behind these
benefits need to be further revealed (5, 6).

Gut microbiota has become a hot topic in metabolic disorders in
the past decade, including T2DM (7–9). Accumulating evidence
confirms that gut microbiota has emerged as a large complex
ecological community and a vital regulator of host physical
condition, via microbial metabolites and host interactions (10,
11). Among 100 trillion of microorganisms, which is 10 times the
number of human body cells, including bacteria, fungi, viruses, and
protozoa, the bacterial component is characterized as the most well-
investigated group (11, 12) and will be the chief spotlight of this
review. There are nearly 500–1,000 species of bacteria within the
gastrointestinal tract and more than 90% of the total community are
Firmicutes and Bacteroidetes at the phylum level, followed by
Proteobacteria, Actinobacteria, Verrucomicrobiota, Fusobacteria,
Cyanobacteria, and Tenericutes (11, 12). The gut microbiota
homeostasis is preserved with control of pathogenic microbe
growth and protection of beneficial microbes (11, 13). The gut
microbiome is considered as a modifiable “new organ” that plays a
crucial role in shaping the metabolic and immunological functions
of T2DM (14). Although with wide interindividual variation, once
the gut microbiota composition was destroyed, an imbalanced gut
microbiome community leads to an abnormal production of
metabolites, lipid and carbohydrate metabolism disturbance, IR,
oxidative stress, and low-grade chronic inflammatory state in
T2DM (7, 8, 15–18).

Therefore, understanding how antidiabetes agents influence
the gut microbiome might be of importance for optimizing
T2DM treatment. Microbiota and host metabolism might
deliver promising and novel constructive aspects of commonly
used oral antidiabetic drugs (19). In addition, fecal microbiota
transplantation (FMT) has become a promising strategy for
patients with T2DM (20, 21). In this review, we focus on the
literatures in gut microbiota and metabolite profile alterations
beneficial from oral antidiabetic drugs in diabetes and metabolic
disorder state, in both basic research and clinical studies. We aim
to figure out the similarities and differences in the literatures of
gut microbiota and the metabolite-related effect of oral
antidiabetic drugs, in order to deliver some leads for future
studies in these developing fields of these drugs and
T2DM treatment.
GUT MICROBIOTA AND METABOLITES
ALTERED IN T2DM

Although the definite microbial signatures linked to T2DM have not
been discovered yet, a large number of studies have found that gut
microbiota dysbiosis in T2DM is highly associated with specific
intestinal microbial taxa or certain enrichment of gene functional
pathways (22–28). In a metagenome-wide association study from 345
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Chinese individuals, T2DM-related gut flora dysbiosis was
characterized by a decreased abundance in a cluster of butyrate-
producing bacteria, such as Roseburia intestinalis, Faecalibacterium
prausnitzii, Clostridiales sp. SS3/4, and Eubacterium rectale, and an
increased abundance of opportunistic pathogens, such as Bacteroides
caccae, Escherichia coli, and some Clostridium species (Clostridium
symbiosum, Clostridium bolteae, Clostridium hathewayi, and
Clostridium ramosum) (22). Another large-scale metagenome
analysis study which recruited a population of 145 70-year-old
European women with metagenomic profiles showed increases in
the abundance of four Lactobacillus species (including Lactobacillus
gasseri), Streptococcus mutans, and Clostridium hathewayi and
decreases in the abundance of five Clostridium species (including
Clostridium beijerinckii, Clostridium botulinum), Roseburia_272, and
Bacteroides intestinalis in the T2DM group (23). Due to the difference
in genetic inheritance, diet, and lifestyle factors, the connections
among gut microbial communities, microbial metabolites, and
T2DM are intricate. Despite the obvious discrepancy in
metagenomic clusters between these two populations, the similar
microbial functions enriched in T2DM included an increased level in
lipid or glucose metabolism-related membrane transport and
oxidative stress resistance and a decreased level in metabolism of
vitamins and cofactors, butyrate production, and cell motility (22, 23).
To recognize the core gut microbial features of T2DM, a machine
learning framework totally recruited more than 9,000 people revealed
that a microbiome risk score including 14 microbial features was
positively associated with risk of T2DM and the future glucose
increment after adjustment for traditional risk factors (such as age,
sex, parental history of diabetes, body mass index, systolic blood
pressure, and triglycerides) (28). In the meantime, a downward trend
of butyrate-producing genus (Roseburia spp.) and a rising trend of
chronic inflammation-associated genus (f:lactobacillaceae) were
confirmed in this interpretable machine learning framework (28).
Among a substantial body of experimental and clinical research, the
genera of Bifidobacterium, Akkermansia, Bacteroides, Roseburia, and
Faecalibacterium were inversely correlated with T2DM, while the
genera of Ruminococcus, Blautia, Lactobacillus, and Fusobacterium
were positively correlated with T2DM (8, 22, 23).

Although the underlying mechanism between complex gut
microbiota and T2DM is still unclear, evidence has shown that a
variety of metabolites derived from gut flora, including short-
chain fatty acids (SCFAs), glycolipid lipopolysaccharides (LPS),
bile acids (BAs), trimethylamine-N-oxide (TMAO), indole
derivatives, amino acids, vitamins, and one-carbon metabolites,
interacted with the host as signaling molecules and were further
involved in the pathophysiological process of metabolic diseases
(29–40) (Figure 1). SCFAs (including butyrate, acetate, and
propionate) are the major microbial metabolites produced by
dietary fiber fermentation within the intestinal lumen (41).
SCFAs were found reduced in T2DM in both clinical and
experimental research (42–45). By activation of specific G
protein-coupled receptor 41 and 43 (GPR41 and GPR43),
SCFAs could stimulate the secretion of peptide tyrosine-
tyrosine (PYY) and glucagon-like peptide-1 (GLP-1) from
intestinal enteroendocrine L cells (39, 46). PPY is an important
neuroendocrine hormone, regulating food intake and energy
July 2022 | Volume 13 | Article 905171
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balance; reduced secretion of GLP-1 in T2DM leads to a
reduction of insulin and thus impaired glucose and energy
metabolism (47). Besides, SCFAs have been identified as vital
mediators in maintaining intestinal immunity and systemic
inflammation through upregulating anti-inflammatory
regulatory T cells, inhibition of histone deacetylase, and
further inhibition of inflammatory signaling pathways and
proinflammatory cytokines, such as nuclear factor-kappaB
(NF-kb) and tumor necrosis factor alpha (TNF-a) (37, 48).

LPSs, the main compounds of gram-negative bacterial
membranes, are known as potent stimulators of inflammation
(49). Evidence shows that T2DM subjects possess a high
enrichment of gram-negative bacteria, particularly those
belonging to Proteobacteria at the phylum level (50). Notably,
the Bacteroidetes phylum also belongs to a large part of gram-
negative bacteria, but a decreased abundance of Bacteroidetes
was found in obesity and diabetes conditions (24, 51–54). This
Frontiers in Endocrinology | www.frontiersin.org 3
contradiction might be explained by the fact that the
LPS produced by the Bacteroidetes phylum has a lower
endotoxic activity than other gram-negative bacteria such as
the Proteobacteria phylum (55). Subsequently, a high
concentration of LPS produced within the gut (metabolic
endotoxemia) might lead to chronic low-grade inflammation
in diabetic subjects through upregulating inflammatory signaling
pathways and proinflammatory cytokine secretion (56, 57). LPSs
produced by gut bacteria might damage the intestinal barrier
leading to a “leaky gut” syndrome, for instance, a weakened tight
junction and reduced gut secretory immunoglobulin A (58).
Besides, LPSs have been confirmed to result in IR due to
increased IRS-1 and Akt phosphorylation (59) (Figure 1).

Originally synthesized from cholesterol in the liver, BAs were
revealed to have a reciprocal interaction with gut microbiota via
the gut-to-liver axis (40). Primary BAs are converted into
secondary BAs by gut microbiota (40). BAs are important
FIGURE 1 | Schematic view of gut microbiota, microbial metabolites, and T2DM-associated metabolic disorders. SCFAs, short-chain fatty acids; LPS,
lipopolysaccharides; TMA, trimethylamine; TMAO, trimethylamine-N-oxide; BAs, bile acids; GPCR43, G-protein-coupled receptor 43; GPCR41, G-protein-coupled
receptor 41; TLR4, toll-like receptor 4; TLR2, toll-like receptor 4; CD14, cluster of differentiation 14; FXR, farnesoid X receptor; TGR5, Takeda G protein-coupled
receptor 5; PXR, pregnane X receptor; GLP-1, glucagon-likepeptide-1; PYY, peptide tyrosine-tyrosine; HDAC, histone deacetylases; NF-kB, nuclear factor-kappaB;
IRS-1, insulin receptor substrate-1; ROS, reactive oxygen species; PERK, protein kinase-like ER kinase; FoxO1, forkhead box-O1; FGF19, fibroblast growth factor
19; TNF-a, tumor necrosis factor alpha; TJ proteins, tight-junction proteins; IR, insulin resistance.
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signaling mediators regulating energy metabolism and
systematic inflammation via the nuclear farnesoid X receptor
(FXR) and Takeda G protein-coupled receptor 5 (TGR5) (40). In
subjects with diabetes and metabolic diseases, BAs’ pool
composition altered (60). The altered proportion of FXR
antagonistic BAs leads to an altered expression of fibroblast
growth factor 19 (FGF19), which were both vital molecules for
BAs and glycolipid metabolism (60). Activation of TGR5 by
secondary BAs stimulates GLP-1 secretion from L cells to
increase insulin secretion and glucose tolerance (61). Evidence
shows that modifications of the BA pool presented a beneficial
effect in bariatric surgery and antidiabetic treatment (62–64).

TMAO is predominantly generated from dietary choline,
which is transformed to trimethylamine in the gut and then
oxidized in the liver (31). Elevated plasma concentrations of
TMAO were reported positively related with metabolic
dysfunction, such as insulin resistance, CVDs, and T2DM (31,
34, 65), and various bacteria (such as Clostridium hathewayi,
Escherichia fergusonii, Providencia alcalifaciens, and Providencia
rustigianii) have been recognized as contributing to the
production of TMAO (66). TMAO was found to play a
proinflammatory role by activating the nucleotide-binding
oligomerization domain-like receptor family pyrin domain-
containing 3 inflammasome, accelerating reactive oxygen
species generation and various proinflammatory cytokines
(67). In addition, evidence in experimental research shows that
TMAO promoted metabolic dysfunction by directly binding and
activating protein kinase-like ER kinase, a key sensor of
intracellular stress, and then enhanced transcription activity of
forkhead box-O1 in the liver (31).

Indole derivatives are produced from tryptophan by the gut
microflora (33). In the recent years, indole derivatives have
exhibited anti-inflammatory and antidiabetic effects (68).
Evidence shows that indole derivatives were able to stimulate
the secretion of GLP-1 from L cells (32). Various indole
derivatives have been synthesized to investigate their
bioactivities and biological functions (68). Microbe-specific
indoles, such as indole 3-propionic acid, were found to
regulate mucosal integrity through activating the xenobiotic
sensor, pregnane X receptor, to downregulate enterocyte TNF-
a expression and upregulate junctional protein expression (36).
In addition to the abovementioned metabolites, vitamins and
cofactors produced by probiotics, such as Bifidobacterium and
Lactobacillus, yield greater health benefits on patients with
T2DM and metabolic diseases (69). Amino acids synthesized
by the gastrointestinal microbiota were also vital factors to
energy metabolism and glucose homeostasis (70). For instance,
Prevotella copri and Bacteroides vulgatus were discovered as the
main species mediating the association between biosynthesis of
branched-chain amino acids (BCAAs) and IR, and Prevotella
copri could induce IR, aggravate glucose intolerance, and
increase circulating BCAAs levels (70).

Overall, a vast body of human studies and plentiful animal
studies have suggested that T2DM was characterized by gut
microbiota dysbiosis and alterations of gut microbiota-derived
metabolites, which are important contributors to the
pathological injury of T2DM.
Frontiers in Endocrinology | www.frontiersin.org 4
THE EFFECTS OF ORAL ANTIDIABETIC
DRUGS ON GUT MICROBIOTA AND
MICROBIAL METABOLITES

Metformin
Metformin can alleviate patients’ hyperglycemia mainly by
significant suppression of glucose production in the liver (71).
Activation of the master cellular energy sensor AMP-activated
protein kinase (AMPK) is well documented in the mechanism of
metformin but may not interpret for its complex beneficial effects
(72–75). In fact, metformin was found to modify the intestinal
flora community in T2DM in a vast body of clinical research and
experimental animal studies (76–80) (summarized in Table 1).

Metagenomics combined with targeted metabolomic data in a
randomized, placebo-controlled, double-blind study showed
that metformin strongly altered the gut microbiome and its
function in individuals with treatment-naive T2DM (79).
Subsequently, the authors transplanted fecal samples from
three donors (treatment-naive condition compared with 4-
month metformin-treated condition) into germ-free mice and
observed that glucose tolerance was improved in mice that
received 4-month metformin-treated fecal samples, indicating a
direct beneficial effect on glucose homeostasis (79). This effect
might be mediated by increased SCFA-producing bacteria and
the abundance of Akkermansia muciniphila, enriched pathways
of the metabolism of vitamins and cofactors, and metalloproteins
or metal transporters (79). In line with this research, a large study
aimed at disentangling metformin treatment signatures in
T2DM recruited 784 subjects from Denmark, Switzerland, and
China and illustrated that metformin treatment significantly
increased the abundance of Escherichia spp. and reduced that
of Intestinibacter spp. The functional enrichment analyses
demonstrated that SCFA-producing pathways and enrichment
of virulence factors and gas metabolism genes were significantly
enhanced, while intestinal lipid absorption and LPS-triggered
intestinal inflammation were reduced (77). A randomized
clinical trial which recruited 450 T2DM subjects uncovered
that metformin altered the gut microbiota composition,
increased the beneficial bacteria, such as Blautia and
Faecalibacterium, and inhibited potential pathogen-like
microbiota, for example, Oscillibacter, Alistipes, and Bacteroides
(78). As summarized in Table 1, most clinical studies revealed
that microbes mediated the therapeutic effects of metformin
chiefly through improvement in SCFA production, BA pool
composition alteration, or reduction in LPS production.

In addition to clinical studies on T2DM patients, a clinical
trial which recruited 20 healthy Korean participants found that
metformin treatment altered the abundances of Clostridium,
Escherichia, Intestinibacter, and Romboutsia, and the relative
abundances of metabolites changed including carbohydrate,
fatty acid, and amino acid metabolism (95). In experimental
animal models, treatment with metformin was revealed to
increase SCFA production, to reduce circulation LPS, to inhibit
intestinal proinflammatory signaling activities, which was in line
with clinical studies (80, 96, 97) (Figure 2). The activation of
SCFA receptors, GPR41 and GPR43, stimulated the secretion of
July 2022 | Volume 13 | Article 905171
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PYY and GLP-1, inhibiting appetite and improving insulin
secretion. At the same time, increased-circulation SCFAs are
responsible for improving energy metabolism, suppressing fat
accumulation and insulin signaling in adipose tissue, and
regulating the intestinal immunity and systemic inflammation
(38, 39, 98). Accompanied by decreased LPS produced in the gut,
metformin intervention increased goblet cell mass, mucin
production, and tight-junction (ZO1 and occludin) proteins in
obese gut, thereby relieving intestinal inflammation, decreasing
leaky gut, and repairing the intestinal barrier structure (80, 96).
In addition, the metabolic benefits of metformin might also be
mediated by gut microbiota and bile acid homeostasis (76).
Evidence shows that Bacteroides fragilis was decreased in
samples from newly diagnosed T2DM patients after metformin
treatment for 3 days, meanwhile the BA pool was altered (76).
Bile acid glycoursodeoxycholic acid was increased, accompanied
by inhibition of intestinal FXR signaling and decreased serum
FGF19 levels (76). Reduced circulating FGF19 was found in
subjects with metabolic disorders and hepatic steatosis, and
Frontiers in Endocrinology | www.frontiersin.org 5
FGF19 analogues have been identified as promising therapeutic
methods in metabolic improvement (60). However, research
associated with FGF19 was inconsistent, and the underlying
mechanism still needs further research. Among the numerous
gut flora altered during the metformin treatment in both clinical
and experimental studies, Akkermansia muciniphila, a mucin-
degrading bacterium, is related to healthy intestinal mucosa (79,
84, 96, 99). Furthermore, oral administration of Akkermansia
muciniphila to high-fat diet-induced mice without metformin
treatment significantly improved glucose homeostasis and
reduced visceral adipose tissue inflammation by inducing
Tregs, indicating the promising treatment value of
Akkermansia spp. for T2DM (99).

In brief, in addition to activation of the master cellular energy
sensor AMPK (74), metformin might act partly through gut
microbiota and its metabolites to improve metabolic health.
Notably, the metformin concentration in the gastrointestinal
lumen is 30–300 times higher than in the circulation (100).
High concentrations of metformin in the gastrointestinal lumen
TABLE 1 | Clinical research exploring the effects of oral anti-diabetic drugs on gut microbiota in T2DM.

Anti-diabetic drugs Subjects Key results

Metformin (77) 784 subjects from Denmark, Switzerland and China Escherichia spp.↑ Lactobacillus spp. ↓
Functional enrichment: SCFAs producing↑, virulence factors and gas metabolism genes↑
intestinal lipid absorption↓ LPS triggered local inflammation↓

Metformin (78) 450 subjects Simpson’s diversity index↑
Blautia spp. and Faecalibacterium spp.↑
Alistipes spp., Oscillibacter spp., and Bacteroides spp.↓

Metformin (79) 40 treatment-naive T2DM Firmicutes, Escherichia coli, Bifidobacterium adolescentis, Akkermansia muciniphila↑
SCFA-producing genus↑
Fecal SCFAs and plasma bile acid concentrations↑

Metformin (45) 121 subjects Escherichia coli and Ruminococcus torques↑; Intestinibacter bartlettii↓
Fecal SCFAs increased at 6 mouths

Metformin (81) 23 T2DM patients Enterobacteriaceae↑
Metformin (76) 22 newly diagnosed T2DM Bacteroides fragilis↓

bile acid glycoursodeoxycholic acid↑
Metformin (82) 60 adults with a BMI ≥ 25 kg/m2 Bacteroides caccae, Lachnospiraceae bacterium↑Bacteroides uniformis↓

butyrate↑zonulin↓microbial butyrate-producing pathways↑
Metformin (83) 14 males with T2DM Firmicutes↓

GLP-1, lithocholic and deoxycholic acids↑ primary bile acid↓
Metformin (84) 112 subjects Akkermansia muciniphila, Prevotella, Butyrivibrio, Bifidobacterium bifidum, Megasphaera↑

Clostridiaceae 02d06↓
Metformin (85) 130 T2DM subjects Spirochaete, Turicibacter, and Fusobacterium↑

Taurine and hypotaurine metabolism↑
Metformin (86) 30 T2DM subjects Bifidobacterium
Dapagliflozin (87) 24 subjects No significant effect on microbial composition
Empagliflozin (88) 67 T2DM with risk factors for CVD SCHA-producing bacteria↑

Several harmful bacteria including Escherichia-Shigella, Bilophila, and Hungatella↓
Sitagliptin (89) 51 subjects No significant effect on microbial composition
Sitagliptin (90) 57 T2DM subjects Fecal chenodeoxycholic acid, cholic acid and ursodeoxycholic acid ↑
Vildagliptin (91) 30 T2DM subjects Pseudomonas, Klebsiella, Blautia, Faecalibacterium and Roseburia levels altered
Saxagliptin (91) 30 T2DM subjects Megamonas spp.↑; Turicibacter spp. ↓
Acarbose (62) 51 treatment-naive subjects Lactobacillus and Bifidobacterium↑Bacteroides↓

Altered plasm BAs pool composition
Acarbose (92) 18 subjects Bifidobacterium, Eubacterium, and Lactobacillus↑Bacteroides↓
Acarbose (93) 95 subjects Bifidobacterium longum and Enterococcus faecalis↑

Plasm LPS↓
Acarbose (91) 30 T2DM subjects Butyricimonas level increased first and then decreased during treatment
Acarbose (94) 52 prediabetes patients Lactobacillus spp. and Dialister spp.↑

Butyricicoccus spp., Phascolarctobacterium spp. and Ruminococcus spp.↓
Glipizide (62) 43 treatment-naive subjects No effect on intestinal microbiota composition
Gliclazide (87) 17 subjects No significant effect on microbial composition
SCFAs, short-chain fatty acids; CVD, cardiovascular disease; LPS, lipopolysaccharides; GLP-1, glucagon-likepeptide-1.
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can increase glucose uptake and inhibit mitochondrial oxidative
phosphorylation in enterocytes then accelerate glucose
utilization through glycolysis and overproduction of lactate, the
reason why metformin might contribute to gastrointestinal
intolerance in a minority of people (71, 101, 102). Previous
studies also hint that overproduction of lactate might also be
microbially mediated (71, 103). Therefore, the potential
mechanisms and contradiction of gastrointestinal intolerance
and gut microbiota-related benefits need further investigation.

SGLT2 Inhibitors
Sodium-glucose cotransporter 2 (SGLT2) inhibitors improve
glycemic control by increasing renal glucose excretion,
accompanied by pleiotropic non-glycemic properties, such as
reductions in body weight and cardiovascular and renal
protection effects (104–107). However, the underlying
mechanism of the pleiotropic benefits was still not clear.
Evidence shows that the protective effect might be explained
for increased ketone body production in CVD, a clear fuel to
improve the cardiac function of the energy-starved myocardium
(108). As an orally ingested antidiabetic agent, experimental
animal studies have found that SGLT2 inhibitor intervention
slightly altered the microbiota composition in experimental
animal studies (109–111) (summarized in Table 2).
Frontiers in Endocrinology | www.frontiersin.org 6
Dapagliflozin treatment showed minor beneficial alterations
of gut microbiota in T2DM mice, a trend for decreased
Oscillospira spp. and Firmicutes/Bacteroidetes ratios and
increased Akkermansia muciniphila in the treatment group
(109). In the butyrate-supplemented diet-fed db/db mice, the
dapagliflozin-treated mice were also characterized by a decreased
trend in Firmicutes/Bacteroidetes ratios, as well as a decreased
trend in Adlercreutzia spp. and Alistipes spp. and an increased
trend in Streptococcus spp (111).. In addition to slight alterations
in gut microbiota, SGLT2 inhibitor intervention significantly
improved intestinal SCFA production in animal models (110,
113). However, the results were inconsistent, and dapagliflozin
treatment was found to have no beneficial effects on gut bacteria
in diabetic rats (112). Only two clinical studies explored the
alteration of fecal microbiome with SGLT2 inhibitor treatment
(87, 88). Seventy-six treatment-naive T2DM with risk factors for
CVD were included in a randomized, open-label, two-arm
clinical trial (88). After a 3-month intervention, empagliflozin
improved glucose metabolism and reduced CVD-related risks,
while it significantly altered the gut microbiota, including an
increase in SCFA-producing bacteria and a reduction in several
harmful bacteria such as Escherichia–Shigella, Bilophila, and
Hungatella (88). However, another clinical study found no
significant effect on microbial alpha diversity or composition
FIGURE 2 | Possible regulatory mechanisms of metformin on gut microbiota and microbial metabolites in T2DM. SCFAs, short-chain fatty acids; BAs, bile acids;
LPS, lipopolysaccharides; GUDCA, glycoursodeoxycholic acid; GPCR43, G-protein-coupled receptor 43; GPCR41, G-protein-coupled receptor 41; FXR, farnesoid X
receptor; TGR5, Takeda G protein-coupled receptor 5; GLP-1, glucagon-likepeptide-1; PYY, peptide; tyrosine-tyrosine; FGF19, fibroblast growth factor 19; TJ
proteins, tight-junction proteins.
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(87). It might be due to the fact that all of the subjects included
had already been treated with metformin, which might have
overshadowed the possible impact of dapagliflozin on the gut
microbiome (87). Experimental studies found that dapagliflozin
increased the abundance of Desulfovibrionaceae, which was
increased in the fecal microbiota of animal models with
metabolic disorders (114, 115), while metformin reduced
Desulfovibrionaceae, suggesting that the combination drug
therapy of dapagliflozin and metformin might have
complementary actions on the gut microbiota in diabetes
(112). Given all this, the pleiotropic beneficial effects of the
SGLT2 inhibitor might be slightly mediated by gut microbiota
or not be mediated by gut microbiota, and the potential
mechanism of the pleiotropic beneficial effects of SGLT2
inhibitors need to be further uncovered (116).

Thiazolidinedione Insulin Sensitizers
Thiazolidinedione (TZD) drugs are effective oral agents for
T2DM in improving insulin sensitivity (117). TZDs are ligands
of peroxisome proliferator-activated receptor gamma (PPAR-g),
leading to the activation of various pathways related to glycemic
homeostasis and lipid metabolism (117, 118). The expression of
PPAR-g is abundant in the intestinal tract; thus, it is possible that
PPAR-g agonists straightly impact on gut microbiome
homeostasis to improve energy metabolism (119, 120).
However, only a few experimental animal studies explored
whether TZD treatment can modify gut microbiota
homeostasis (119, 121, 122). In a high-fructose-fed mouse
model, pioglitazone partly altered gut microbiota and relieved
the intestinal inflammation and epithelial barrier impairment,
such as preventing the increment of the pathogenic bacteria
Deferribacteraceae (Mucispirillum) (121). In diabetic mice,
treatment with rosiglitazone promoted insulin sensitivity
without modifying the composition of gut flora but improved
the gene expression related to lipid and carbohydrate metabolism
as well as immune regulation in the ileum and colon (119).
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Another experimental study discovered that microbial
metabolites, for example, hippurate and indole-3-ethanol, were
decreased by pioglitazone intervention in iNOS knockout mice
(122). These experiment research suggested that TZDs might
have mild protective effects on gut microbiota, mainly focused on
lipid and carbohydrate metabolism and inflammation. However,
no clinical study focused on gut microbiota and microbial
metabolites alterations with TZDs treatment in T2DM
subjects; further research is still needed.

Dipeptidyl Peptidase-4 Inhibitors
Dipeptidyl peptidase-4 (DPP-4) inhibitors inhibit the
degradation of glucagon-like peptide-1 (GLP-1) and glucose-
dependent insulinotropic polypeptide to stimulate insulin
secretion, reserve b-cell function, and maintain glucose
homeostasis (123). A series of experimental studies have
shown that DPP-4 inhibitors might be able to improve energy
metabolism through shaping the gut microbial composition and
increasing fecal SCFAs (124–127) (summarized in Table 3). In
high-fat diet-induced obesity mice, DPP-4 inhibitors exerted an
important impact on gut microbial composition and fecal
metabolites, particularly the increased abundance of
Bacteroidetes (124). Researchers then transplanted the fecal
microbiota of DPP-4 inhibitor-treated patients to germ-free
mice and observed an improved glucose intolerance (124).
Compared with that in GLP-1 receptor agonist liraglutide-
treated mice, the gut microbiota differed substantially in mice
treated with DPP-4 inhibitors, indicating that the hypoglycemic
mechanism of DPP-4 inhibitors on gut microbiota is at least
not primarily by GLP-1 and the other potential benefit of
DPP-4 inhibitors needs further research (124, 128). In
addition to increment of SCFA-producing flora, DPP-4
inhibitors were found to reduce Toll-like receptor ligands and
improve the production of antimicrobial peptides, exerting
immunomodulatory and anti-inflammatory effects and
maintaining intestinal homeostasis in obese mice, as well as
TABLE 2 | Experimental animal studies analyzing the effects of SGLT2 inhibitors on gut microbiota.

Anti-diabetic
drugs

Animal model Dose Duration Key results Mechanism of action

Dapagliflozin
(109)

C57BLKS/J-leprdb/
leprdb

60 mg/
kg diet

8 weeks Actinobacteria, Bacteroidetes, Firmicutes,
Proteobacteria and Verrucomicrobia altered
Oscillospira, Firmicutes/Bacteroidetes
ratios↓

Vascular function improvements effects not conclusively
mediated by gut microbiota

Dapagliflozin
(111)

Butyrate-
supplemented db/db

mice

1mg/
kg/day

6 weeks Streptococcus spp.↑
Adlercreutzia spp. and Alistipes spp.,
Firmicutes/Bacteroidetes ratios↓

No big difference in the microbiota composition with
Dapagliflozin intervention

Dapagliflozin
(112)

STZ-induced HFD-fed
Sprague Dawley rats

1 mg/
kg/day

4 weeks no effects on beneficial bacteria
Proteobacteria (especially
Desulfovibrionaceae)↑

No effects on beneficial bacteria

Dapagliflozin
(110)

MafA-deficient mice 1 mg/
kg/day

6 weeks Blautia↑
Clostridium perfringens, enterococci,
Enterobacteriaceae, and intestinal
enterococci↓
Intestinal SCFAs↑

Regulated the intestinal microecological balance of the
body and promoted blood glucose and energy
homeostasis.

Canagliflozin
(113)

CE-2 diet-induced
mice

10 mg/
kg/day

2 weeks Actinobacteria, Oscillospira↓
Cecal SCFAs↑

Increased bacterial carbohydrate fermentation;
Reduced the accumulation of uremic toxins including p-
cresyl sulfate
STZ, streptozocin; HFD, high-fat diet; SCFA, short-chain fatty acids.
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cross talk with the liver and the whole-host health (126, 127).
Some studies exhibited a decreased trend in the Firmicutes/
Bacteroidetes ratio with treatment of DPP-4 inhibitors (124, 125,
127), while one experimental animal study found an enlarged
abundance of Firmicutes and increased ratios of Firmicutes/
Bacteroidetes (94). Although the relation between metabolic
disorders and the Firmicutes/Bacteroidetes ratio is currently
contradictory, more literatures considered it as a characteristic
of obesity and T2DM (55).

There existed a few clinical studies that explored the gut flora
modifying the effect of DPP-4 inhibitors (89–91). However, in a
clinical study which included 51 T2DM patients, the
advantageous effect of sitagliptin on glucose control, weight
loss, and BA metabolism was not related to alterations in the
gut microbiota (89, 90). No significant effect on microbial
composition was found, which is possibly due to the fact that
these subjects previously used metformin or sulphonylureas as
hypoglycemic therapies, and it might have covered the possible
effects of DPP-4 inhibitors (89, 124). Another clinical study
which included 90 T2DM subjects found that both vildagliptin
and saxagliptin altered the composition of gut microbiota,
respectively (91). Thus, the microbiota-shaping effects of DPP-
4 inhibitors in clinical studies and its additional hypoglycemic
mechanism need further investigation.

a-Glucosidase Inhibitors
a-Glucosidase inhibitors are antidiabetic drugs, including
acarbose, miglitol, and voglibose, which delay the absorption of
Frontiers in Endocrinology | www.frontiersin.org 8
carbohydrates in the intestinal tract to inhibit the rise in
postprandial plasma glucose concentration (131). a-Glucosidase
inhibitors are inhibitors of both human and bacterial a-
glucosidases, and because of its high intestinal drug
concentration, a-glucosidase usually has noticeable impacts on
the intestinal flora (132, 133). Large amounts of research revealed
that a-glucosidase inhibitors could shape the composition of the
gut microbiome in both animal studies and clinical studies (62,
92–94, 134). Evidence shows that acarbose modulated the gut
microbiota and corresponding shaped fecal and plasma BA
composition, which may improve host energy metabolism (62,
135). A clinical study which recruited 51 treatment-naive T2DM
patients showed that a three-mouth treatment with acarbose
increased Lactobacillus and Bifidobacterium abundances and
reduced Bacteroides abundances, along with altered plasm BA
pool composition (62). Another clinical study which included 95
T2DM patients found that acarbose treatment improved the
abundance of Enterococcus faecalis and Bifidobacterium longum,
along with the reduction of plasma inflammatory factors, such as
prothrombin activator inhibitor-1 and LPS levels (93). As
summarized in Table 4, intervention with a-glucosidase
inhibitors in experimental animal studies also confirmed
significant impacts on gut microbiota and relevant metabolites.
In addition to their glucose-lowering and energy metabolism-
improving effects, a-glucosidase inhibitors were found to reverse
joint inflammation on collagen-induced arthritis mice and the
underlying mechanism might be due to the alteration of host–
commensal interactions, which have been confirmed to be
TABLE 3 | Experimental animal studies analyzing the effects of DPP-4 inhibitors on gut microbiota.

Anti diabetic
drugs

Animal model Dose Duration Key results Mechanism of action

DPP-4
inhibitor (124)

HFD-fed C57BL/6 300mg/kg/day of
saxagliptin or 4 g/kg
of sitagliptin

4 weeks The changes of 68.6% genera induced by HFD
were rescued by the DPP-4 inhibitor.
Bacteroidetes↑ Firmicutes↓
Bacteroidales S24–7 group, Bacteroidaceae,
Ruminococcaceae, Desulfovibrionaceae and
Streptococcaceae↓
Fecal SCFAs (especially succinate) ↑

Increasing the production of succinate
contributed to the hypoglycemic effect of
DPP-4 inhibitor

DPP-4
inhibitors
(125)

HFD-fed C57BL/6 15 mg/kg/day 12
weeks

Firmicutes/Bacteroidetes ratios↓
Ruminococcus, Dorea, Verrucomicrobia↑
Plasma sphingomyelin, phosphatidylcholine and
lysophosphatidylcholine entities↓

Elevated levels of butyrate-producing flora
Reduced levels of certain plasma
sphingomyelin, phosphatidylcholine and
lysophosphatidylcholine entities

Vildagliptin
(127)

WD-fed C57BL/6 50 mg/kg/day 8 weeks Oscillibacter spp., Ruminococcaceae↓
Lactobacillus spp.↑
Cecal propionate↑
Cecal TLR ligands↓

Promoted antimicrobial peptide production
and increased crypt depth in the ileum
Indirectly reduced the expression of
proinflammatory cytokines in the liver

Sitagliptin (94) Zucker diabetic
fatty rats

10.76 mg/kg/day 4 weeks Lactobacillus spp.↑Firmicutes↑
Firmicutes to Bacteroidetes ratios↑

Selectively increased the beneficial flora

Saxagliptin
(128)

STZ-induced
ApoE-/- C57BL/6
mice

80 mg/kg/day 8 weeks No significant effect on microbial composition No significant effect on microbial composition

Linagliptin
(126)

HFRU-fed C57BL/
6 mice

15 mg/kg/day 5 weeks Bacteroidetes spp.↑ Proteobacteria spp.↓
Zo-1 mRNA, Mucin mRNA↑

Attenuated hepatic steatosis by gut-liver axis
modulation

Vildagliptin
(129)

STZ-induced
diabetic Sprague-
Dawley rats

20 mg/kg/day 12
weeks

Firmicutes/Bacteroidetes ratios↓
Baceroides and Erysipelotrichaeae↑

Increased SCFAs production

Sitagliptin
(130)

HF/HC-STZ
Sprague-Dawley
rat

10 mg/kg/day 12
weeks

Firmicutes↓ Bacteroidetes, Tenericutes↑ Increased SCFAs-producing bacteria and
probiotic
STZ, streptozocin; HFD, high-fat diet; WD, Western diet; HFRU, high-fructose diet; HF/HC, high fat or high carbohydrate; SCFA, short-chain fatty acids; TLR, Toll-like receptors.
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correlated with rheumatoid arthritis, such as several butyrate-
producing species, Lactobacillus spp. and Oscillospira spp (48, 138,
141).. These results suggested a promising prospective of a-
glucosidase inhibitors due to its potential antiarthritis effect
mediated by the gut microbiome (134, 138).

In fact, over 95% of the acarbose dose was not absorbed in the
gut, coupled with its feature to inhibit microbial a-glucosidases,
and subjects’ treatment response to acarbose is dependent on
several factors, such as dietary intake, genetic factor, and
microbiota composition before treatment (also named
enterotypes) (62, 91–93, 136, 142, 143). The acarbose-shaped
gut microbial composition might be related to the dietary intake
in a small Japanese population with T2DM (92). Moreover,
hierarchical clustering showed that the habitual dietary intake
of sucrose, fat, and carbohydrate was associated with three
distinct microbial clusters, and even the abundance alteration
of Faecalibacterium was positively related to dietary rice intake
but negatively related to bread intake (92). A previous study also
found that patients with a gut flora driven by Bacteroides
displayed more beneficial modifications in gut microbiota,
plasma BA composition, and more metabolic metabolism
enhancement after acarbose treatment than those with
Prevotella (62). In addition, researchers revealed that acarbose
resistance has spread in certain host gut microbiomes, which
contributed an emerging layer to the multifaceted network of
carbohydrate-mediated cross talk among various human
microbiomes (132, 144). Besides, in antibiotic pretreatment
Frontiers in Endocrinology | www.frontiersin.org 9
mice, whose gut microbial enzyme activities have been
weakened, the metabolism of voglibose was reduced and more
significantly glucose-lowering effects were presented (143). In
brief, from currently clinical and experimental studies, a-
glucosidase inhibitors have obvious effects on gut microbiota
and its effects significantly depend on host diet and the original
composition of the gut microbiome.

Other Oral Glucose-Lowering Agents
Other less researched oral antidiabetes medications, such as
sulfonylurea and glinide insulin secretagogues, have been
noticed to cross talk with probiotic bacteria or microbial
metabolic profiles (145–147). Nevertheless, two clinical studies
which were designed to assess the effects of sulfonylureas on gut
microbiota in T2DM subjects found no beneficial impacts on gut
microbiota composition even in treatment-naive subjects, but
with enhanced glycemic control (62, 87). At the same time,
acarbose showed beneficial effects on the composition of the gut
microbiome, suggesting that the detected metabolic
modifications of sulfonylureas might not be intermediated by
their impacts on the gut microbiota (62, 87). Recently, a few
newly invented oral anti-glucose agents were discovered and
used in clinical application, such as chiglitazar and imeglimin
(148, 149). Activating as a peroxisome proliferator-activated
receptor pan-agonist for glucose control, chiglitazar was found
to improve insulin sensitivity and lipid homeostasis and reduce
circulating levels of inflammatory parameters (150, 151).
TABLE 4 | Experimental animal studies analyzing the effects of a-glucosidase inhibitors on gut microbiota.

Anti-diabetic
drugs

Animal
model

Dose Duration Key results Mechanism of action

Acarbose (94) Zucker
diabetic
fatty rats

32.27
mg/kg/
day

4 weeks Actinobacteria↑
Bifidobacterium, Ruminococcus 2, Lactobacillus intestinalis↑
Metagenomic functional prediction: elevated carbohydrate transport and
metabolism.

Selectively increased the beneficial
flora

Acarbose
(134)

Old mice 1,000
ppm

8 months Muribaculaceae↑ SCFA↑ Modulated the fermentation
products of the gut flora

Acarbose
(136)

HS or PP-
fed mice

400 ppm 28 days Diet-dependent gut community structure alteration and SCFA increasing Increased SCFA production

Acarbose
(137)

STZ-
induced
HFHSD-fed
SD rats

30 mg/
kg/day

7 weeks Escherichia-Shigella↓
Muribaculaceae, Lachnospiraceae, Bifidobacterium,
Ruminococcaceae_UCG-014, Ruminococcus_1, Romboutsia,
Eggerthellaceae, Alistipes, Faecalibaculum, Ruminococcaceae_UCG-013
and Peptococcaceae↑

Beneficial composition of gut
microbiota restored

Acarbose
or miglitol
(138)

Collagen-
induced
arthritis
mice

500 mg/
kg/day

55 days Firmicutes↑Oscillospira spp., Desulfovibrio spp. and Ruminococcus spp.↑
Lactobacillus spp., Anaeroplasman spp., Adlercreutzia spp., and RF39 spp.↓

Regulated immunity via Th17/Treg
cells in the intestinal lamina propria

Voglibose
(135)

HFD-fed
C57BL/6
mice

1 mg/kg/
day

12
weeks

the ratio of Firmicutes to Bacteroidetes↓
Plasm taurocholic, cholic acid and deoxycholic acid↑

Downregulated gene expression of
CYP8B1 and HNF4a Upregulated
gene expression of PGC1a

Miglitol (139) HFHSD-fed
rats

0.04%
miglitol
plus in
diet

12
weeks

Erysipelotrichaceae and Coriobacteriaceae↓
Plasm LPS↓

Reduced LPS levels in portal
plasma

Miglitol (140) ChREBP-
knockout
mice

0.08%
miglitol
plus in
diet

8 weeks Lactobacillales and Bifidobacterium↑ clostridium cluster XIVa↓
Fecal lactate↑

Increased cecal lactate contents
and altered intestinal flora
July
STZ, streptozocin; HFD, high-fat diet; HS, high-starch; PP, plant polysaccharides; HFHSD, high-fat, high-sucrose diet; SCFAs, short-chain fatty acids; HNF4a, hepatocyte nuclear factor
4alpha; PGC1a, peroxisome proliferator-activated receptor-g co-activator-1a; LPS, lipopolysaccharide.
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Imeglimin was confirmed to have the effects of modulating
mitochondrial bioenergetics, enhancing mitochondrial
function, improving insulin sensitivity, and preserving b-cell
function (152–154). However, the associations of these anti-
glucose agents and gut microbiota composition were still lacking.

In addition, newly identified exciting targets, including
glucokinase activators and G-protein-coupled receptor 40
agonists, have also been researched, although not clinically usable
(155, 156). Therefore, with the development of novel glucose-
lowering agents, further research is still needed to uncover the
complex interaction among gut microbiota, glucose-lowering
agents, and the microbial-host metabolic cross talk.
CONCLUSIONS AND FUTURE PROSPECTS

Antidiabetic agents modify the gut flora and thereby alter
gastrointestinal and plasma metabolite profiles, further improving
metabolic health. Knowledge and studies so far indicate that oral
antidiabetes drugs, including metformin, DPP-4 inhibitors, and a-
glucosidase inhibitors, have obvious effects on gut microbiota and
microbial metabolites, while SGLT2 inhibitors and TZDs have
slighter effects (62, 77, 87, 89). Even if the definite microbial
signatures linked to certain antidiabetic agents have not been
discovered yet, understanding how antidiabetes drugs influence
the gut microbiome might be vital for identifying their potential
mechanisms and optimizing their treatment. Although different
hypoglycemic drugs shape gut microbiota differently, they have
been confirmed to have some similar effects in regulating
microbiota and metabolites. Among various microbiota and
metabolites derived from gut flora, metformin, SGLT2 inhibitors,
DPP-4 inhibitors, and a-glucosidase inhibitors have been
demonstrated to have similar effects on increased SCFA-
producing bacteria and SCFA production, which may partly
explain their beneficial effects in the regulation of insulin
sensitivity enhancement, energy metabolism, and systemic
inflammation (77, 78, 110, 124, 134). Notably, among various
SCFA-producing bacteria, Akkermansia muciniphila has been
proven increased particularly during the metformin treatment in
both clinical and experimental studies, which also related to healthy
intestinal mucosa and anti-inflammatory action (79, 84, 96, 99). In
addition, alteration of the BA pool was commonly displayed in both
metformin and a-glucosidase inhibitors, corresponding with
decreased Bacteroides fragilis in metformin-treated individuals and
increased Lactobacillus and Bifidobacterium abundances and
reduced Bacteroides abundances in a-glucosidase inhibitor-treated
individuals, respectively (62, 76). In addition, reduction of
opportunistic pathogen and attenuated intestinal inflammation
could be seen in intervention research on metformin, DPP-4
inhibitors, and a-glucosidase inhibitors (77, 126, 138). Therefore,
manipulation of gut microflora composition could be a potential
and promising target to improve metabolic outcomes in subjects
with T2DM. The microbiota–host cross talk might convey novel
and potential ideas of generally used oral glucose-lowering drugs.

Firstly, combination therapy might have additional benefits, due
to the fact that different antidiabetes drugs shape gut microbiota
Frontiers in Endocrinology | www.frontiersin.org 10
with distinct effects (62, 94, 112), For example, dapagliflozin
increased the abundance of Desulfovibrionaceae in a T2DM rat
model, which is an unfriendly sulfate-reducing bacteria in the gut,
while metformin reduced it on the contrary, revealing a rationality
and complementary action of combined pharmacotherapy between
dapagliflozin and metformin (112). However, the definite
combination effects of metformin and SGLT2 inhibitors need
further investigation. T2DM is a chronic disease with progressive
features and possible complex complications; a satisfactory
treatment effect is hard to achieve with monotherapy. Besides
metformin and SGLT2 inhibitor combined treatment,
combination therapies, such as metformin with pioglitazone or
metformin with DPP-4 inhibitors, might exhibit a synergetic role in
gut microbiome benefits (157, 158). Further investigations in both
experimental and clinical are needed to figure out the combined
pharmacotherapy effects on gut microbiota.

Secondly, pre- and probiotics could be a promising treatment for
T2DM in the modulation of gut microbiota (159). For example,
Actinoplanes spp. and Lactobacillus spp. have been definitively
demonstrated to effectively inhibit the alpha-glucosidase activity
to reduce glucose levels (160, 161). The combination of
hypoglycemic agents and certain probiotics or prebiotics may
further enhance the glucose-lowering effects (82, 162). Prebiotics,
such as inulin and galacto-oligosaccharide, could be fermented by
the gut flora, leading to modulation of intestinal microbiota and the
production of various microbial metabolites including SCFAs (163–
165). Besides, evidence shows that combination of metformin and
gastrointestinal microbiome modulator (consisting of inulin, beta-
glucan, and polyphenols) treatment significantly relievedmetformin
tolerance than the placebo combination (166). Notably, for patients
with pregestational diabetes and gestational diabetes mellitus
(GDM), the dominating pharmacotherapy is insulin, while only
metformin and glyburide are used in some countries (167, 168).
Other oral hypoglycemic agents are limited in these patients.
Hyperglycemia during pregnancy is associated with significantly
increased maternal and fetal metabolic disturbance and morbidity
(167). Therefore, dietary modification and physical activity are
particularly important for glycemia control (167). A systematic
review and meta-analysis revealed that probiotic supplementation
in GDM could significantly reduce homeostasis model assessment
of the insulin resistance index with no adverse effects reported (169).
Evidence shows that inulin-type fructan supplementary improved
glucose and lipid metabolism in HFD-induced GDMmouse models
associated with gut flora modification (170). Our research team
found that maternal inulin treatment improved glucose metabolism
in adult male offspring via regulation of the hepatic long non-coding
RNA profile (164). However, results are inconsistent showing that
probiotics, including Lactobacillus rhamnosus and Bifidobacterium
animalis subspecies lactis, did not prevent GDM in overweight and
obese pregnant women (171). Thus, more clinical studies are
needed to verify these results and explore the ideal bacterial
composition of pre- and probiotics that might positively alter
glucose metabolism in GDM or pregestational diabetes.

Thirdly, FMT from normal glucose tolerance or antidiabetes
treatment subjects to mice revealed a significant improvement in
gut microbiota composition, glucose homeostasis, and metabolic
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health (17, 124, 172). Despite that this promising treatment was
still in its infancy (173–175), FMT combined with antidiabetes
drugs might bring novel interventions and perspectives in T2DM
management. The effects and mechanisms underneath these
potential treatment schedules are still unclear, and it is vital to
further develop meaningful and applicable interventions
combined with intestinal microbiota in the future study.
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et al. PAMPA Model of Gliclazide Permeability: The Impact of Probiotic
Bacteria and Bile Acids. Eur J Pharm Sci (2021) 158:105668. doi: 10.1016/
j.ejps.2020.105668

147. Kondo Y, Hashimoto Y, Hamaguchi M, Ando S, Kaji A, Sakai R, et al.
Unique Habitual Food Intakes in the Gut Microbiota Cluster Associated
With Type 2 Diabetes Mellitus. Nutrients (2021) 13(11):3816. doi: 10.3390/
nu13113816

148. Deeks ED. Chiglitazar: First Approval. Drugs (2022) 82(1):87–92.
doi: 10.1007/s40265-021-01648-1

149. Hallakou-Bozec S, Vial G, Kergoat M, Fouqueray P, Bolze S, Borel AL, et al.
Mechanism of Action of Imeglimin: A Novel Therapeutic Agent for Type 2
Diabetes. Diabetes Obes Metab (2021) 23(3):664–73. doi: 10.1111/dom.14277

150. Wang Y, Li H, Gao H, Xu X, Cai T, Wang H, et al. Effect of Chiglitazar and
Sitagliptin on Glucose Variations, Insulin Resistance and Inflammatory-
Related Biomarkers in Untreated Patients With Type 2 Diabetes. Diabetes
Res Clin Pract (2022) 183:109171. doi: 10.1016/j.diabres.2021.109171

151. Li PP, Shan S, Chen YT, Ning ZQ, Sun SJ, Liu Q, et al. The PPARalpha/
gamma Dual Agonist Chiglitazar Improves Insulin Resistance and
Dyslipidemia in MSG Obese Rats. Br J Pharmacol (2006) 148(5):610–8.
doi: 10.1038/sj.bjp.0706745

152. Dubourg J, Fouqueray P, Thang C, Grouin JM, Ueki K. Efficacy and Safety of
Imeglimin Monotherapy Versus Placebo in Japanese Patients With Type 2
Diabetes (TIMES 1): A Double-Blind, Randomized, Placebo-Controlled,
Parallel-Group, Multicenter Phase 3 Trial. Diabetes Care (2021) 44(4):952–
9. doi: 10.2337/dc20-0763

153. Dubourg J, Fouqueray P, Quinslot D, Grouin JM, Kaku K. Long-Term Safety
and Efficacy of Imeglimin as Monotherapy or in Combination With Existing
Antidiabetic Agents in Japanese Patients With Type 2 Diabetes (TIMES 2): A
52-Week, Open-Label, Multicentre Phase 3 Trial. Diabetes Obes Metab
(2022) 24(4):609–19. doi: 10.1111/dom.14613

154. Li J, Inoue R, Togashi Y, Okuyama T, Satoh A, Kyohara M, et al. Imeglimin
Ameliorates b-Cell Apoptosis by Modulating the Endoplasmic Reticulum
Frontiers in Endocrinology | www.frontiersin.org 15
Homeostasis Pathway. Diabetes (2022) 71(3):424–39. doi: 10.2337/db21-
0123

155. Toulis KA, Nirantharakumar K, Pourzitaki C, Barnett AH, Tahrani AA.
Glucokinase Activators for Type 2 Diabetes: Challenges and Future
Developments. Drugs (2020) 80(5):467–75. doi: 10.1007/s40265-020-
01278-z

156. Chen X, Chen Z, Xu D, Lyu Y, Li Y, Li S, et al. De Novo Design of G Protein-
Coupled Receptor 40 Peptide Agonists for Type 2 Diabetes Mellitus Based on
Artificial Intelligence and Site-Directed Mutagenesis. Front Bioeng
Biotechnol (2021) 9:694100. doi: 10.3389/fbioe.2021.694100

157. Scheen AJ. Could Metformin Modulate Cardiovascular Outcomes
Differently With DPP-4 Inhibitors Compared With SGLT2 Inhibitors?
Diabetes Metab (2021) 47(4):101209. doi: 10.1016/j.diabet.2020.11.001

158. Deeks ED, Scott LJ. Pioglitazone/Metformin. Drugs (2006) 66(14):1863–77;
discussion 1878-80. doi: 10.2165/00003495-200666140-00007

159. Salgaço MK, Oliveira LGS, Costa GN, Bianchi F, Sivieri K. Relationship
Between Gut Microbiota, Probiotics, and Type 2 Diabetes Mellitus. Appl
Microbiol Biotechnol (2019) 103(23-24):9229–38. doi: 10.1007/s00253-019-
10156-y

160. Schwientek P, Szczepanowski R, Rückert C, Kalinowski J, Klein A, Selber K,
et al. The Complete Genome Sequence of the Acarbose Producer
Actinoplanes Sp. SE50/110. BMC Genomics (2012) 13:112. doi: 10.1186/
1471-2164-13-112

161. Panwar H, Calderwood D, Grant IR, Grover S, Green BD. Lactobacillus
Strains Isolated From Infant Faeces Possess Potent Inhibitory Activity
Against Intestinal Alpha- and Beta-Glucosidases Suggesting Anti-Diabetic
Potential. Eur J Nutr (2014) 53(7):1465–74. doi: 10.1007/s00394-013-0649-9

162. Kattar SA, Jurjus R, Pinon A, Leger DY, Jurjus A, Boukarim C, et al.
Metformin and Probiotics in the Crosstalk Between Colitis-Associated
Colorectal Cancer and Diabetes in Mice. Cancers (Basel) (2020) 12
(7):1857. doi: 10.3390/cancers12071857

163. SnelsonM, de Pasquale C, Ekinci EI, CoughlanMT. Gut Microbiome, Prebiotics,
Intestinal Permeability and Diabetes Complications. Best Pract Res Clin
Endocrinol Metab (2021) 35(3):101507. doi: 10.1016/j.beem.2021.101507

164. Guo Y, Yu Y, Li H, Ding X, Li X, Jing X, et al. Inulin Supplementation
Ameliorates Hyperuricemia and Modulates Gut Microbiota in Uox-
Knockout Mice. Eur J Nutr (2021) 60(4):2217–30. doi: 10.1007/s00394-
020-02414-x

165. Pedersen C, Gallagher E, Horton F, Ellis RJ, Ijaz UZ, Wu H, et al. Host-
Microbiome Interactions in Human Type 2 Diabetes Following Prebiotic
Fibre (Galacto-Oligosaccharide) Intake. Br J Nutr (2016) 116(11):1869–77.
doi: 10.1017/s0007114516004086

166. Burton JH, Johnson M, Johnson J, Hsia DS, Greenway FL, Heiman ML.
Addition of a Gastrointestinal Microbiome Modulator to Metformin
Improves Metformin Tolerance and Fasting Glucose Levels. J Diabetes Sci
Technol (2015) 9(4):808–14. doi: 10.1177/1932296815577425

167. McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P.
Gestational Diabetes Mellitus. Nat Rev Dis Primers (2019) 5(1):47.
doi: 10.1038/s41572-019-0098-8

168. Molina-Vega M, Picón-César MJ, Gutiérrez-Repiso C, Fernández-Valero A,
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