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ABSTRACT

Heat shock proteins (hsps) and cyclophilins (CypA) are intracellular chaperone molecules that
facilitate protein folding and assembly. These proteins are selectively expressed in cells following
exposure to a range of stress stimuli, including viral infection. Hsp species are highly immunogenic,
eliciting humoral, cytotoxic T lymphocyte (CTL), and natural killer (NK) cell responses against
viruses, tumours, and infectious diseases. This review discusses the roles of stress proteins in
immunity and viral life cycles, vis-t-vis the development of Hsp-based therapeutic strategies against
human immunodeficiency virus type-1 (HIV-1) infection. Cumulative findings are cited implicating
the requirement of CypA in HIV-1 replication and formation of infectious virions. Studies by our
group show the upregulated expression of hsp27 and hsp70 during single-cycle HIV infections.
These species redistribute to the cell surface following HIV-infection and heat stress, serving as
targets for NK and antibody-dependent cellular cytotoxicity. Co-immunoprecipitation and Western
blot studies show that hsp27, hsp70, and hsp78 complex with HIV-1 viral proteins intracellularly.
Hsp70, hsp56, and CypA are assembled into HIV-1 virions. The ability of hsps to interact with
HIV-1 viral proteins, combined with their inherent adjuvant and immunogenic properties, indicates
that hsps may serve as vehicles for antigen delivery and the design of vaccines against acquired
immunodeficiency syndrome. Infect. Dis. Obstet. Gynecol. 7:80-90, 1999. (C) 1999 Wiley-Liss, Inc.
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hile combination antiviral drug therapies
have led to major advances in the manage-

ment of acquired immunodeficiency syndrome
(AIDS), 90% of people infected with human im-

munodeficiency virus (HIV) worldwide have no ac-

cess to such treatments. Development of vaccines

against HIV type-1 (HIV-1) remains the outstand-
ing challenge in AIDS research. 1,2 Generation of
AIDS vaccines has been hampered by HIV anti-

genic diversity, the multiple routes and modes of
HIV transmission, and ethical constraints restrict-

ing use of whole-killed or live-attenuated viruses.

To date, inactivated virus and subunit vaccines

have failed to elicit impressive protective cytotoxic
T lymphocyte (CTL) or humoral immunity ca-

pable of neutralizing a wide spectrum of HIV-1
isolates. This has been attributed to the limited

immunogenicity of viral proteins and their failure

to encounter major histocompatibility complex
(MHC) restriction elements required for T cell rec-

ognition. 1,z The immunogenic, carrier, and adju-
vant properties of heat shock proteins (hsps) have
been exploited as vaccine vectors to elicit protec-
tive immunity against cancers and microbial infec-
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tions. This review describes the involvement of
hsps in immunity and viral life cycles, vis-a-vis
their potential application toward the development
of Hsp-based antiviral and vaccine strategies
against AIDS.

HEAT SHOCK PROTEINS FUNCTION
AS INTRACELLULAR

MOLECULAR CHAPERONES
The Hsp family of proteins, representing 2-15 % of
total cellular protein, are among the most highly
conserved proteins present in procaryotic and eu-

caryotic organisms."-s Classified by apparent mo-

lecular weight (hspT0, hsp60, hsp90, hsp27), hsps
were first defined as those proteins selectively syn-
thesized following cellular exposure to tempera-
tures 5 to 10C above normal,s Hsps are now re-

ferred to as stress proteins since they are induced in
response to a vast spectrum of physiological and
environmental insults, including viral infection, in-
flammation, fever, malignant transformation, and
cellular exposure to oxidizing agents, cytotoxins
and anoxia,s,6

Stress proteins function as chaperone molecules
having innate abilities to bind to a broad range of
cellular peptides, proteins, and multimeric com-

plexes.-s Constitutive Hsp subspecies, referred to

as "housekeeping" proteins, direct protein folding,
biogenesis, assembly, trafficking, and degradation.
Inducible Hsp subspecies rapidly reprogram cellu-
lar metabolic, proliferative, and functional events

in response to distinct stress stimuli.
Recent advances have revealed the mechanisms

of actions of the various Hsp species. 7 HspT0 ho-
mologues consist of peptide-binding and ATPase
domains that stabilize protein structures in un-

folded and assembly-competent states for ex-

tended periods of time.4,s In contrast, mitochon-
drial hsp60 isoforms form ring-shaped oligomers
wherein protein assembly to native states is facili-
tated.4 Hsp90 species associate with cellular tyro-
sine kinases, transcription factors, and glucocorti-
coid receptors, playing suppressor regulatory
roles,s’7,9 Hsp27 proteins suppress protein aggrega-
tion, protect against actin polymerization, and
represent end components of stress and cytokine
kinase (MAPK) cascades. 1-13 Binding of the ubiq-
uitin species targets protein complexes for degra-
dation. 3,s Immunophilins, including cyclophilins
and FK binding proteins (FKBPs), catalyze cis/

trans isomerization of peptidyl-prolyl bonds, key
rate-limiting steps in protein folding.

HSPS PLAY CENTRAL ROLES IN
IMMUNE RESPONSE

Besides their biological roles as chaperonins and
stress proteins, hsps are extraordinarily immuno-

genic. Stress proteins have been implicated in host
immunity to tumours and viral and microbial infec-
tions. 14-7 Select Hsp species represent major tar-

gets for humoral (B cell) and cell-mediated (ot[3 and
y8 T, natural killer [NK], and lymphokine-
activated [LAK] cell) immunity. 4-e7 The immu-

nogenic properties of hsps have led to considerable
interest in their application in vaccine strate-

gies. 6,7 Vaccinations with Hsp-peptide complexes
have been shown to augment CTL, y8 T, NK, and
LAK cell responses against tumour and viral anti-

gens. 16-z7 Reasons why highly conserved stress

proteins play such a prominent role in immunity
are still not well understood. Based on in vitro and
in vivo studies, several distinct mechanisms where-
in hsps induce viral and tumour immunity have
been identified.

Stress Proteins Can Act as Classic Antigens

Major portions of the immune repertoire can rec-

ognize microbial Hsp and autologous Hsp determi-
nants generated following stress, viral infection, or

malignant transformation. 4-7 HspT0 and hsp60
are the predominant antigenic species recognized
in many microbial infections, including malaria,
leprosy, and tuberculosis. Analysis of immune re-

sponses to mycobacterial infections indicates that
20-30 % of the overall CTL and T cell repertoire
are directed against Hsp moieties. 6,e Indeed, pro-
phylactic vaccinations with microbial hsps have
been shown to generate significant protective im-
munity against bacterial, fungal, and mycobacterial
infections, a4-7

Stress proteins are impressively upregulatcd by
both host and pathogen at sites of infection, en-

hancing Hsp-directcd responses. That highly con-

served hsps serve as classic foreign antigens is sub-
stantiated by correlative links between immunity
to foreign microbial hsps and the emergence of
Hsp autoimmune reactions in rheumatoid arthritis,
systemic lupus, Graves disease, diabetes mcllitus,
inflammatory diseases, and neurological aging,z8

Autoimmune pathology has even been postulated
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Fig. I. Several possible mechanisms wherein hsps may elicit antiviral immunity. I) Hsps may redistribute to the cell surface
in virally-infected cells; 2) Hsp-viral complexes (HIV-VP) may be present on the cell surface; and 3) antigen (Ag)-presenting
cells, including macrophages and dendritic cells may incorporate viral peptide-Hsp complexes allowing viral peptides to be
expressed in the context of MHC class-I determinants to T-cell receptors (TCR) on CTLs.

to contribute to the ongoing clearance of stressed or

infected CD4 cells in AIDS (Fig. 1).z3,z4

Stress Proteins Can Redistribute to Cell
Surface Membranes Following Infection

or Transformation

Cytosolic stress proteins, including hsp27 and
hspT0, have been shown to relocate to the plasma
membrane in transformed, virally-infected or heat-
stressed cells, zz-z6 The de novo distribution of hsps

on the plasma membrane specifically targets tu-

mour and HIV-infected cells for elimination by an-

tibody-dependent cellular cytotoxicity (ADCC),
NK, LAK and ot13 T cell-mediated immunity
(Fig. 1).zz-z6

Hsps Can Serve as Adjuvants and
Vaccine Vectors

Hsps can indirectly enhance immune responses to

tumours and viral antigens because of their adju-
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vant properties. The immunostimulatory proper-
ties of the mycobacterial-derived constituents in
Freund’s adjuvant and Bacillus Calmette-Gu6rin
(BCG) have been attributed to and/or mimicked by
adjuvant-free hsp60 and hsp70 carrier proteins. 16,17

The strong adjuvant effects of hsps when conju-
gated to peptides and oligosaccharides have been
exploited to stimulate immune responses in a va-

riety of infections. 16,17,29-32 Similarly, BCG may be
useful as live vaccine vector for HIV-1 constitu-
ents.29,3 Mice that have been vaccinated with
fused hsp70-HIVp24 complex elicit humoral and
CTL immune responses to the HIV-1 capsid pro-
teins for over year, with no corresponding immu-
nity evoked in mice injected with soluble p24 pro-
tein.31

Stress Proteins Can Be Integrally Involved in
Antigen Presentation

Soluble proteins are weakly immunogenic due to

their failure to effectively elicit MHC-restricted
CTL responses. This has been attributed to the
failure of soluble proteins to be incorporated by
professional antigen-presenting cells, such as mac-

rophages. In contrast, associations of tumour or vi-
ral proteins with hsp70, gp96 or hsp90 moieties
stimulate antitumour and antiviral CTL immunity
(Fig. 1). 19’31-36 It appears that the interactions of
hsps with tumour or viral antigens allow for their
effective uptake into professional antigen process-
ing cells, such as macrophages, allowing for the
processing of antigenic complexes along the MHC
class-1 pathway for CTL presentation.
The precise role of hsps is unclear but has been

referred to as Hsp-mediated "cross-priming," inso-

far as the CTL responses are directed against the
peptides bound to the hsps and not the hsps them-
selves.3,4 Hsps appear to serve as antigenic carri-

ers that route exogenous proteins into macro-

phages, wherein proteins are cleaved and translo-
cated for class 1 MHC presentation. Hsp70, gp96,
and hsp90 subspecies, like MHC determinants, can

chaperone turnout and viral peptides of 400-2000
Da intracellularly.7 Hsp70 and hsp96 moieties are

also implicated in the folding of MHC mol-
ecules.3-7 Indeed, hsp70 species show consider-
able homology with MHC class molecules, and
hsp70 genes have been localized to the MHC gene
complex.4-8 This has led to a postulated role of
Hsp moieties in peptide charging of MHC mol-

ecules.33-37,39 Immunizations of animals with

hsp70 and hsp90 complexes from vitally-infected
or tumour cells elicit protective antiviral and tu-

mour-specific CTLs and memory cells.3s-37’9-46

STRESS PROTEINS IN THE
IMMUNOTHERAPY OF CANCERS,
INFECTIOUS DISEASES AND AIDS

The antigenic, adjuvant, and carrier properties of

hsps have heralded their potential application as

"magic bullets" in cancer and viral immuno-

therapy.44-47 Hsp-tumour conjugates and Hsp
complexes isolated from cancer cells have been
demonstrated to produce tumour-specific CTL re-

sponses and protective antitumour immunity in

animals.35-37,39-4,4z-47 It has been postulated that
vaccination with Hsp-peptide complexes purified
from tumour cells will 1) maximize the tumour an-

tigenic repertoire in immunized cancer patients; 2)
circumvent the requirement to identify and purify
unique tumour antigens; 3) eliminate inherent

problems ofMHC disparity among individuals; and
4) obviate the necessity for adjuvants to stimulate

immunity. Although still at the formative stage,

Hsp-peptide complexes have been heralded as

novel approaches to customize cancer therapeutic
vaccines from patients’ own cancer cells. Phase
clinical trials are currently in progress.44-47

Cell culture and animal model systems have
shown that Hsp complexes purifiedfrom virally-
infected cells can generate viral-specific CTLs
and/or protective immunity against simian virus 40,
influenza, vesicular stomatitis, and lymphocytic
choriomeningitis viral infections.35,4’44 Young et

al. are currently exploring the applicability of

HIVp24-hspT0 conjugates as vaccines in mon-

keys. 16,3-3z,36 Given the vital necessity for an

AIDS vaccine, establishing the roles of hsps in HIV
replication, assembly, and immunity are warranted.

THE SPECIFIC ROLE OF STRESS PROTEIN
SUBSPECIES IN HIV-I VIRAL REPLICATION

Several lines of investigationhave implicated stress

proteins in viral-host interactions in many DNA
and RNA virus infections,s’z’z4,48,49 These include

demonstrations that:

1) Stress protein expression correlates with levels
of viral expression and replication.
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Fig. 2. Potential interactions between stress protein and HIV-I viral pathways in HIV-I infected CD4 cell lymphocytes. TCR
T-cell receptor; HSF 70 heat shock factor 70.

2) Stress proteins facilitate rate-limiting steps in

viral replication.
3) Hsps affect the folding and assembly of viral

intermediates and virions.

4) Incorporation of stress proteins into viruses de-

termines virion infectivity.
S) The presence of stress proteins on the cell sur-

face elicits antiviral immunity.

It is to be expected that the HIV-1 virus may have
an obligatory requirement for host stress proteins to

facilitate their replication and assembly in CD4
cells. Studies showing involvement of stress pro-
teins in the HIV-1 life cycle will be described, vis-

t-vis the potential application of hsps in AIDS an-

tiviral strategies.

MODULATION OF HSP27 AND HSP70
EXPRESSION IN CD4+ CELLS

CONSEQUENT TO HIV-I INFECTION

Viral-induced activations of specific stress genes
have been described during latent, productive, and

lytic phases of infection with DNA and RNA vi-

ruses.5,2,24,48,49 It has been shown in many systems

that induction of hsp70 and hsp90 genes are among
the earliest changes in cellular gene expression fol-

lowing viral infection.2’48,s Induced expressions
of select hsp70 moieties with different viruses sug-
gest viral-dependent hsp70 gent activation.2’s

The HIV-1 virus differentially infects CD4 cells
of lymphocytic and monocytic origin through the
CD4 and chemokine surface receptors (Fig. 2).
Studies in our laboratory have used Northern and
Western blot analysis to chart changes in levels of
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Presence of Hsp70 in HIV-1 virions relative to p24 and Pr55gag capsid moieties

Pr55

p24HIV

Hsp70 Hsp70
Pr55g

p24HIV

A. Blot A probed with
tzp24 antibodies

B. Blot B probed with
ctHsp70 antibodies

C. Blot A reprobed with
otHsp70 antibodies

Fig. 3. Western blot analysis showing the presence of A) HIV-I p24 reactive capsid determinants in virion particles; B) hsp70
in purified HIV-I virions; and (2) levels of hsp70 relative to HIV-I gag proteins.

Hsp mRNA and protein expression in CD4 cells
during single-cycle HIV-1 infections,sl Acute HIV
infection of H9, CEM, Jurkat and MT-2 lympho-
cytic cell lines leads to eight- to 20-fold increases in
levels of hsp27 and hspT0 mRNA and protein ex-

pression at early stages of infection (1-6 hr) subse-
quent to viral penetration but prior to viral mRNA
synthesis that occurs 36-48 hr postinfection,sl,s2

Initial increases in hsp27 and hsp70 are down-
regulated during productive stages of viral synthe-
sis. Elevations in levels of these Hsp species recur
at lyric endstages of infection, concomitant to viri-
on release and cytolysis. Induction of hsp27 and
hsp70 synthesis are viral dose-related and abro-
gated by HIV-1 neutralizing antibodies, CD4 anti-
bodies or inactivation of virus. In direct contrast to

that observed with hsp27 and hsp70 species, levels
of hsp60 and hsp90 mRNA and protein moieties
remain unaltered throughout the course of HIV in-
fection. Two-dimensional gel electrophoresis re-

veals that the hsp70 isoforms induced following
HIV infection show distinct isoelectric mobilities
from constitutive and heat-inducible hsp70 species.

Studies by a number of investigators have as-
sessed correlative changes in levels of HIV-1 and
Hsp gene and protein expression in infected cells.
Somewhat contradictory results have been ob-
tained. Stress stimuli, including heat, tumor necro-
sis factor- (TNF-), and interleukin 2 (IL-2), can

induce in Hsp and viral gene transcription with
similar kinetics,s3-ss However, heat shock and
TNF-a induce states of cellular latency, where-
in enhanced Hsp synthesis markedly inhibits
overall levels of viral mRNA and protein
synthesis.56,unpublished results Cyclopentenone pros-
taglandins (prostaglandins A and J) have also been
known to block human T-cell lymphotropic virus
(HTLV-1) and HIV-1 viral replication through in-
duction of an hsp70 stress response,s7-61 Hyper-
thermia at 3-4C above physiological range can
block HIV-1 viral replication in vivo and has led to

the postulated benefits of localized or systemic hy-
perthermia in HIV infection,z,6z

HSP27 AND HSP70 EXPRESSION ON THE
SURFACE OF HIV-I INFECTED CELLS

Apart from their increased intracellular levels of
expression during infection, significant amounts of
hsp27 and hspT0 have been shown to redistribute
to the cell surface of CD4+ cell lines following heat
stress or HIV-1 infection,z3,z4 The enhanced ex-

pression of HIVol on the cell surface contribute
to the enhanced susceptibility of HIV-infected
cell lines to NK, LAK, and HIV-specific ADCC
cell-mediated cytotoxicity when compared to

that observed for their uninfected counterparts
(Fig. 1).23’24’63’64’unpublished results
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Fig. 4. Cumulative information showing sites of interaction of hsps and cyclophilins (Cyp) with HIV-I viral proteins and
virions. RNP ribonucleoprotein; HIV-LTR HIV-Iong terminal repeat.

This enhanced susceptibility of HIV-infected
lymphocytes to natural immunity may contribute
to antiviral immunity in vivo. However, it should
be noted that basal and IL-2 inducible NK cell-
mediated cytotoxicity has been shown to decline
progressively with advancing HIV disease.63-68 In-
deed, inducible NK cell function is among the
most sensitive functional correlates of immunologi-
cal dysfunction in HIV infection.

INTERACTIONS OF STRESS PROTEINS
WITH HIV VIRAL PROTEINS AND

VIRION PARTICLES

The association of stress proteins with viral inter-
mediates can facilitate their folding, assembly, and
morphogenesis with a direct impact on rates of viral
production and infectivity. Biosynthetic assembly
of the HIV-1 envelope protein glycoprotein 160
(gpl60) to its native state has been shown to in-
volve the cellular chaperonins grp78-BiP (the en-

doplasmic reticulum hspT0 species) and calreticu-
lin.69,7 These stress proteins bind in a specific and
transient fashion and are released only after the
envelope protein assumes its native conformation.

Our laboratory has used reciprocal co-immuno-

precipitation approaches to show that hsp27 and
HIV-1 capsid (gag) moieties form intracellular com-

plexes (manuscript in preparation). Similarly,
hsp70 can be shown to be complexed with HIV-1
gag precursor moieties that can be precipitated with
HIV-1 p24 antibodies.
The strongest evidence that stress proteins are

fundamentally required for HIV-1 virion assembly
and infectivity come from studies with the chap-
eronin, cyclophilin (CypA). CypA has been shown
to specifically interact with the HIV-1 capsid (gag)
protein and is essential for the production of infec-
tious HIV-1 virions.49,71-73 CypA weakens gag-
capsid strips and promotes capsid disassembly fol-
lowing HIV-1 penetration into cells.49,74 Studies
with cyclosporins show that the failure to incorpo-
rate CypA in HIV-1 virions abrogates the infectiv-
ity of viruses.49’7s CypA is found to associate with
some HIV-1 clades and not others and is generally
absent in simian immunodeficiency viruses.76 Lev-
els of HIV-1 virus infectivity and CypA in virions
are directly related to cellular levels of CypA ex-

pression.77,78 Recent studies indicate that CypA
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and FKBP can also bind to the V3 loop of HIV
envelope (env) protein.79 Indeed, HIV-1 infection
of peripheral blood lymphocytes can be blocked by
an excess CypA or neutralizing antibodies to

CypA.8

Studies in our laboratory have determined that
select Hsp subspecies also associate with HIV-1
virions purified from HIVIIIb-infected (CEM, H9,
Jurkat) (manuscript in preparation). HspT0 (induc-
ible) proteins are specifically incorporated into
HIV-1 virions (Fig. 3). These findings contradict
earlier studies by Bartz et al., who found hsp60 but
not hsp70 moieties in polyethylene glycol precipi-
tated viruses isolated from HIV-1 and SIV viri-
ons.81 Using subtilisin extraction procedures, we

show that hsp70 is retained in virions while con-

taminating microvesicular elements are degraded.
Thus, hsp60 may be associated with HIV-1 virion
assembly intermediates but are not present in pu-
rified virions.81

Like that reported for CypA, we show hsp70 to

be notably absent in SIV virions. We have also iso-
lated capsid virus-like particles from COS-7 cells
transfected with vectors producing Pr55 or Prl60
gag capsid precursor proteins. Hsp70, FKBPs
(hsp56), and CypA are found to be present in gag-
capsid particles.

SUMMARY
Taken together, these results show correlative
links in stress protein and HIV replicative path-
ways in CD4 cells (Fig. 2, Fig. 4). Infection with
HIV-1 viruses induces a stress response and stress

agonists, such as heat, IL-2 and TNF-ot, affect
HIV-1 replicative events. Hsp27 and hspT0 stress

pathways are induced in CD4 cells concomitant to

HIV-1 infection, and these species can distribute
on the cell surface of infected cells. Cumulative
evidence indicates that hspT0, hsp78, calreticulin,
FKBPs, and CypA are among those stress protein
subspecies found to be associated with HIV-1 viral

proteins or virions.
Having documented existent interactions be-

tween stress proteins and HIV-1 viral constituents,
it is feasible that Hsp-viral complexes may offer a

number of unique vaccine approaches against
AIDS. The inherent adjuvant properties of hsps
may enhance the immunogenicity of HIV-1 pro-
teins and allow exogenously-presented HIV-1 viral

proteins to be processed for CTL presenta-

tion.3s,41,44,8z Specific HIV subunit vaccines conju-
gated to hsp70, hsp78, and gp96 proteins may en-

hance CTL immunity. Immunization with hetero-
geneous mixtures of Hsp-viral antigenic species
may prevent the emergence of CTL escape mu-

tants. Hsp-viral complexes may customize immu-

nogens in distinct HIV-1 infected populations.
Preliminary clinical trials of a number of Hsp-

based vaccines against cancer and microbial infec-
tions are ongoing. Phase trials for the use of Hsp-
p24gag fusion complexes as an AIDS vaccine are in

place. 16,3 Given the difficulty, to date, in generat-
ing an AIDS vaccine, investigations into the poten-
tial use of Hsp-based AIDS vaccines are warranted.
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