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Simple Summary: OV is the most lethal gynecological malignancy. M6A and lncRNAs have a
great impact on OV development and patient immunotherapy response. This study provided an
accurate prognostic signature for patients with OV and elucidated the potential mechanism of the
mRLs in immune modulation and treatment response, giving new insights into identifying new
therapeutic targets.

Abstract: Background: OV is the most lethal gynecological malignancy. M6A and lncRNAs have a
great impact on OV development and patient immunotherapy response. In this paper, we decided
to establish a reliable signature of mRLs. Method: The lncRNAs associated with m6A in OV were
analyzed and obtained by co-expression analysis of the TCGA-OV database. Univariate, LASSO and
multivariate Cox regression analyses were employed to establish the model of mRLs. K-M analysis,
PCA, GSEA and nomogram based on the TCGA-OV and GEO database were conducted to prove the
predictive value and independence of the model. The underlying relationship between the model and
TME and cancer stemness properties were further investigated through immune feature comparison,
consensus clustering analysis and pan-cancer analysis. Results: A prognostic signature comprising
four mRLs, WAC-AS1, LINC00997, DNM3OS and FOXN3-AS1, was constructed and verified for OV
according to the TCGA and GEO database. The expressions of the four mRLs were confirmed by
qRT-PCR in clinical samples. Applying this signature, one can identify patients more effectively. The
samples were divided into two clusters, and the clusters had different overall survival rates, clinical
features and tumor microenvironments. Finally, pan-cancer analysis further demonstrated that the
four mRLs were significantly related to immune infiltration, TME and cancer stemness properties in
various cancer types. Conclusions: This study provided an accurate prognostic signature for patients
with OV and elucidated the potential mechanism of the mRLs in immune modulation and treatment
response, giving new insights into identifying new therapeutic targets.

Keywords: ovarian serous cystadenocarcinoma; N6-methyladenosine; long noncoding RNAs;
prognosis; tumor microenvironment

1. Introduction

Ovarian cancer is a gynecological malignancy which is prevalent in women aged 40 to
79 [1]. Additionally, OV is a common type of this cancer, and the occurrence of OV is ninety
percent in all patients with ovarian cancer [2]. Due to the lack of specific initial symptoms
and sensitive biomarkers for early diagnosis, most OV patients cannot be diagnosed at an
early stage and the progression is rapid [3,4]. Consequently, developing novel and reliable
signatures to diagnose and prognose OV at an early stage is an urgent need.
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The results of randomized trials show that transvaginal ultrasound and CA-125 testing
are of little help to diagnose ovarian cancer and change the mortality rate [5].

Therefore, more attention has been given to discovering key regulatory genes involved
in cancer pathogenesis and progression and constructing prognostic signatures based on
them. Recently, as a reversible epigenetic modification of various RNAs, the vital role and
molecular mechanisms of m6A RNA modification in cancer pathogenesis, drug response
and developing new targets for therapy have been intensely studied and confirmed [6].
Furthermore, it has also been found that m6A RNA modification functions in immunity,
which provides insights into cancer immunotherapy [7]. M6A is dynamically regulated by
three types of proteases with distinct functions, namely “writers, “erasers” or “readers” [8,9].
Changing the structure of RNA can influence a variety of cell processes. As a result, the
effect of mRLs may play an important role in the transfer of cancer cells.

LncRNA is a group of RNA molecules. Although lncRNA cannot be translated
into protein, it has a vital effect on many biological processes such as tumorigenesis and
development [10–12]. The relationship between m6A and lncRNAs is under in-depth study.
Extensive studies have revealed that the biogenesis and functions of lncRNAs depend
on m6A modification [13–15]. YTHDF1 and YTHDF2, m6A readers, modify the stability
of oncogenic lncRNA THOR, thus promoting the biological behavior of cancer cells [16].
LncRNA RP11 dependent on m6A induction can trigger colorectal cancer metastasis by
preventing the degradation of Zeb1 [17]. In addition, m6A modification is also adversely
affected by lncRNAs [18], and they can function together to regulate protein translation [18,
19]. For instance, LINRIS stabilize IGF2BP2 (an m6A reader) by preventing its K139
ubiquitination, thus promoting colorectal cancer cell line growth [20]. In OV, the stability of
RHPN1-AS1 is improved by m6A modification, promoting the proliferation and metastasis
of OV cell [21]. Hence, linking m6A and lncRNA, and further studying the function and
molecular mechanism of mRLs in tumorigenesis and progression can affect the overall
survival rate of OV. However, such research on OV is still lacking.

This study established and verified a mRL prognostic signature for OV using the
TCGA and GEO database. The underlying correlation between the signature and TME, as
well as therapeutic response, was also explored. Moreover, clustering subgroups and pan-
cancer analysis were also used to verify the application value of the model in distinguishing
patients in terms of prognosis and therapeutic response.

2. Materials and Methods
2.1. Collecting and Disposing Data

The flow chart of our study is performed in Figure 1a. We collected gene expression
profiling and clinicopathological data of OV samples from the TCGA dataset (https://
cancergenome.nih.gov/, (accessed on 5 February 2022)) and the GSE9891 database (http:
//www.ncbi.nlm.nih.gov/geo/, (accessed on 5 February 2022)). The single gene expression
in OV samples with different stages was obtained from GEPIA (http://gepia.cancer-pku.
cn/index.html, (accessed on 5 February 2022)) [22]. To identify the role of the four mRLs in
more cancers, we obtained the pan-cancer data of 33 cancers from the UCSC Xena database
(https://xenabrowser.net/datapages/, (accessed on 5 February 2022)) [23], including RNA-
seq, immune subtypes, prognosis profiles and stemness scores.

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://gepia.cancer-pku.cn/index.html
http://gepia.cancer-pku.cn/index.html
https://xenabrowser.net/datapages/
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Figure 1. (a) Flow chart of the study and (b) co-expression network diagram of m6A regulators and
lncRNAs in the TCGA dataset.
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2.2. Identification of mRLs Associated with OV Prognosis

Firstly, the expression matrix of 23 m6A regulators (METTL3, METTL14, METTL16,
WTAP, VIRMA, ZC3H13, RBM15, RBM15B, YTHDC1, YTHDC2, YTHDF1, YTHDF2,
YTHDF3, HNRNPC, FMR1, LRPPRC, HNRNPA2B1, IGFBP1, IGFBP2, IGFBP3, RBMX,
FTO and ALKBH5) was achieved in previous studies [24]. Secondly, Pearson correlation
analysis was implemented to select 419 mRLs according to the standard of p < 0.05 and
absolute correlation coefficient >0.3, then 61 mRLs shared in both TCGA and GEO were
obtained after the removal of batch effects through combat via the “sva” R package. Finally,
we collected 374 samples with sufficient prognostic clinical data and lncRNAs expression
information from TCGA. The 374 samples from the TCGA-OV dataset were assigned into
TCGA-train (n = 187) and TCGA-test (n = 187) according to 1:1 randomly, and we employed
the train set to build the signature. The test set (187 samples), the entire set (374 samples)
and the GSE9891 database (278 samples) were applied for validation and further research.
Univariate Cox regression analysis was applied to screen the relationships between mRLs
related to the patients’ prognoses in the TCGA-train set using the survival package of R
(https://www.bioconductor.org/packages/release/bioc/html/rbsurv.html, (accessed on 5
February 2022)).

2.3. RNA Isolation and qRT-PCR

The research was approval by the First Affiliated Hospital of Nanjing Medical Univer-
sity Ethics Committee and the participants who took part in the study all provided written
informed consent. Total RNA of the OV and normal tissues was obtained through TRIzol
reagent (Thermo Fisher Scientific, Waltham, MA, USA), whose integrity was estimated
by the Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). cDNA
synthesis was conducted using the high-capacity reverse transcription kits (TaKaRa, Shiga,
Japan) and then qRT-PCR was based on SYBR Green PCR Kit (Thermo Fisher Scientific,
Waltham, MA, USA) and the 2−∆∆Ct method on Light Cycler 480 (Roche, Switzerland).
GAPDH was the endogenous control. Primer sequences for GAPDH and four mRLs were
presented in Table S1.

2.4. Establish and Prove an mRL Prognostic Signature for OV

The model was established using LASSO in TCGA-train. Then, the multivariate regres-
sion analysis was conducted to determine mRLs with independence. The format to assess
the risk score was: risk score = ∑n

i=1 coef(i)∗lncRNA(i)expression. The patients were
divided into two groups in terms of median risk score of train set. Kaplan–Meier analysis of
the OS of the groups was conducted through the “survival” R package. Through the “ROC”
R package, the ROC was depicted and the AUC was calculated to determine its specificity
and sensitivity. PCA was used to prove the grouping ability of the model by grouping the
visualization of high-dimensional data of the risk model [25]. We also conducted subgroup
analysis to verify the prognostic ability of the mRL model. Univariate and multivariate Cox
analysis were applied to assess whether the signature was an independent factor.

2.5. Establishment and Validation of a Nomogram

To improve the predictive ability of the mRL signature, we established a nomogram
composed of the signature, patient age, grade and tumor stage. Calibration curves were
applied to explore the accuracy and reliability of the nomogram.

2.6. Gene Set Enrichment Analysis

As carried out in our previous study [26], we performed function annotation through
GSEA to reveal potential mechanisms in different risk groups. KEGG in GSEA was applied
to select predefined gene sets; 5000 permutations were conducted for the gene set to
calculate p-values. GSEA was analyzed using “clusterProfiler” package [27].

https://www.bioconductor.org/packages/release/bioc/html/rbsurv.html
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2.7. The Correlation between the Signature and Tumor Infiltration Immune Cells (TIICs)

CIBERSORT was employed to assess the abundance of TIIC profiles in all tumor
tissues. We assessed the proportion of 22 types of TIICs in every patient according to the
CIBERSORT score [28]. Furthermore, the correlation between the lncRNAs and TIICs score
was evaluated to identify which immune cells had distinguished between cancers.

2.8. The Correlation to Other Immune Features

ESTIMATE was used to compute the proportion of immune and stromal components
in TME for each sample [29]. The relationships between lncRNA expression and the risk
score were calculated by Spearman correlation. Furthermore, we identified six immune
types and used the analysis of variance (ANOVA) to evaluate the relationships between
these subtypes and lncRNA expression. The data of cancer stem cell-like properties were
employed to assess the stemness characteristics of the cancer cells. The association between
stemness features and lncRNA was also evaluated by Spearman analysis.

2.9. Immunotherapy Response Prediction

Immunophenoscores (IPSs) are calculated based on four major categories of gene
expression z-scores to evaluate and compare the potential reaction to ICI between the
two groups, and the high scores represent high immunogenicity [30]. IPS data of each
OV patient in TCGA-entire were achieved from The Cancer Immunome Atlas (TCIA)
(https://tcia.at/home, (accessed on 5 February 2022)).

2.10. Assess Drug Sensitivity

The newest CellMiner version (https://discover.nci.nih.gov/cellminer/, (accessed on
5 February 2022)) could help researchers achieve the NCI-60 data flexibly for correlations
between genomic, molecular and pharmacologic parameters [31]. We collected the expres-
sion of 4 m6A-related genes and z-score for cell sensitivity data (GI50) from the webpage
and used Pearson’s correlation coefficient to assess the influence of the m6A-related gene
expression on drug sensitivity.

2.11. Consensus Clustering

The expression of the lncRNAs was utilized to recognize the subtypes in OV patients
via “ConsensusClusterPlus” R package (http://www.bioconductor.org/, (accessed on 5
February 2022)). We used the log-rank test and K–M curve to calculate the OS difference
between groups.

2.12. Statistical Analysis

R 4.0.2 was used to carry out statistical analyses. The relationships between the risk
score or the mRL expression level and stemness score, estimate score and drug sensitivity
were calculated using Spearman or Pearson correlation analysis. Univariate or multivariate
regression analyses were applied to calculate the relationships between the four mRLs
with patient OS. Kaplan-Meier analysis could compare the survival state between the
groups. Time-dependent ROC curve analysis could test the predict ability of the model.
Subgroup analysis could evaluate the stability of the prognostic signature in subgroups
stratified by clinical characteristics. Student’s t-test and ANOVA were applied to find
the differences between the different groups. Linear mixed-effect models were used for
pan-cancer analysis. The hazard ratio and 95% confidence interval were assessed to screen
prognosis-related genes. p < 0.05 was regarded as statistically significant.

3. Results
3.1. Identification of mRLs in OV

Firstly, we abstracted the expression of lncRNAs from the TCGA-OV dataset and
identified 419 mRLs (p < 0.05, absolute correlation coefficient > 0.3) through Pearson’s
correlation analysis with m6A regulators. The relational network between the m6A regula-

https://tcia.at/home
https://discover.nci.nih.gov/cellminer/
http://www.bioconductor.org/
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tors and mRLs was shown in Figure 1b. After collecting the expression of lncRNAs in the
GSE9891 dataset, we found 61 mRLs shared in both datasets. When combined with clinical
information, we screened five mRLs related to prognosis through the univariate regression
analysis of the TCGA-train (Table S2).

3.2. Establish and Verify a Prognostic Signature Based on mRLs in OV Patients

Firstly, 374 OV patients were randomly classified into train and test sets at a 1:1 ratio,
including 187 OV patients, respectively. Secondly, we performed the LASSO (Figure S1a,b)
and multivariate regression analysis (Figure S1c) in the train set to build a reliable prognostic
signature. The formula was as follows:

Risk core = (−0.068088177 × expr (WAC-AS1)) + (−0.276777737 × expr (LINC00997))
+ (0.09155959 × expr (DNM3OS)) + (−0.137781856 × (FOXN3-AS1), expr means the ex-
pression value. WAC-AS1, LINC00997, DNM3OS and FOXN3-AS1 were finally identified
as key mRLs. Both the outcomes of the expression analyses in the GEPIA dataset and the
qRT-PCR results indicated that the expression of DNM3OS and FOXN3-AS1 was higher
in normal tissue compared to the tumor tissue (p < 0.05) (Figure S2a–h). Afterward, we
assessed the risk score of OV patients in the TCGA-train and separated them into two
groups. The distributions of risk score, survival status of each sample (Figure 2a) and
the heatmap of key gene expression patterns (Figure 2e) in the TCGA-train are shown
in Figure 2. People in the high-risk group had poor survival prognosis compared to the
low-risk groups in the TCGA-train (Figure 2i). Time-dependent receiver-operating charac-
teristic curve (ROC) analysis based on the signature revealed that the AUC of 1-, 2- and
3-year survival was 0.624, 0.694 and 0.630, respectively (Figure 2m). To verify the mRL
prognostic signature, we calculated the risk score of the patients in the TCGA-test (N = 187),
TCGA-entire (N = 374) and GEO datasets (N = 278) and divided the patients into either
group according to their median risk score of the TCGA-train (Figure 2b–d). The heatmap
showed that, with the exception of DNM3OS, the expression of WAC-AS1, LINC0099 and
FOXN3-AS1 was higher in the low-risk groups (Figure 2e–h). The Kaplan–Meier analyses
of the TCGA-test, TCGA-entire and GEO datasets revealed the same trend, that the OV
patients with a low risk had higher OS than the high-risk group (p < 0.01) (Figure 2j–l).
Furthermore, the time-dependent ROC curve highlighted the capability of the prognostic
signature based on mRLs. The AUC of 1-, 2- and 3-year survival in the three sets is shown
in Figure 2n–p. In addition, the distributions of the groups are different in the PCA plots
(Figure S3). These results all demonstrate the accuracy and reliability of the mRL prognostic
signature in OV prediction.

3.3. The Relationships between the Model and Clinical Factors

The correlations between the risk core and clinical characteristics are performed in
Figure S4a–f. The risk score in the age ≤ 60 group was lower than the age > 60 group
(p < 0.05, Figure S4d), and the proportion of older patients with a high-risk score was 52%,
while the people with a low-risk score was 40% (Figure S4a). However, the difference in
the risk score in the groups assigned by tumor grade and tumor stage was not significant
(Figure S4b–c,e–f). Furthermore, the risk score of the high immune score group was
markedly higher than the lower score patients (p < 0.05, Figure S4g), and the significant
difference could be found in the risk core of Cluster 1 and Cluster 2 subgroups (p < 0.05,
Figure S4h). Stratification analysis grouped by patient age, tumor grade and tumor stage
highlighted that the OS of the patients in the high-risk group was worse than the low-risk
group (Figure S4i–n). When comparing the patients’ states between the groups, we also
found a higher mortality of patients in the high-risk group (Figure S5a), and the risk scores
of dead patients were statistically higher than the alive patients (p = 0.002, Figure S5b).
K–M curves of OS for patients subjected to chemotherapy demonstrated that patients at a
high risk had poorer prognoses than those at a lower risk (p < 0.001, Figure S5c). In patients
with BRCA1, the low-risk group also had a favorable survival outcome (Figure S5d).
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Figure 2. Construction and validation of the mRL prognostic signature. Distribution of risk score,
OS status (a–d) and heatmap of the expression of the four prognostic mRLs (e–h) in the TCGA-train,
test, entire and GEO dataset. (i–l) Kaplan–Meier curves of OS for OV patients with a high- or low-
risk score in the TCGA-train, test, entire and GEO dataset. (m–p) Time-dependent ROC analysis
of risk score in predicting the prognosis in the TCGA-train, test, entire and GEO dataset. ROC,
receiver-operating characteristic. In the TCGA-train set, N = 187; in the TCGA-test set, N = 187; in the
TCGA-entire set, N = 374; in the GEO set, N = 278.
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3.4. Clinical Application of the Signature

Univariate and multivariate regression analyses in the TCGA-train, TCGA-test, TCGA-
entire and GEO datasets all indicated the independence of the mRL model (Table S3).
Moreover, patient age and tumor stage were also crucial poor prognostic factors for OV. To
predict performance of the signature, we built a nomogram comprising the risk score, age,
grade and stage in both the TCGA (Figure 3a) and GEO datasets (Figure S6). Figure 3b–d
revealed that the predicted rates of OS were highly consistent with the observed rates. In
addition, the prognostic signature showed superior predictive ability compared to other
clinical characteristics, and when combined with clinical characteristics, the model showed
better predictive power than the signature when used alone (Figure 3e).

Figure 3. A nomogram for OV patients in TCGA dataset. (a) A nomogram for predicting the 1-, 2-
and 3-year OS of OV patients. (b–d). Calibration curves for the prediction of 1-, 2- or 3-year overall
survival of OV patients. (e) Time-dependent ROC curves for each parameter and the combination of
independent prognostic risk factors in the TCGA dataset (for predicting 1, 2 and 3-year OS). In the
TCGA-entire set, N = 374.
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3.5. The Correlations between the mRL Prognostic Signature and TME

GSEA indicated that the pathway related to immunity was enriched in people with
a high-risk score (Figure 4a,b). Firstly, we implemented the ESTIMATE algorithm which
indicated that the stromal score, immune score and ESTIMATE score were higher in
the high-risk group (p < 0.05), and the risk score had a positive association with them
(Figure 4c–h). The same trends were found in the GEO dataset (Figure 4i–n). Then, by
comparing the 22 TIICs between the groups, we identified that the resting dendritic cells and
M2 macrophages were positively related to the risk score and (p < 0.05) and the infiltration
level of the T follicular helper cells and regulatory T cells (Tregs) had a negative correlation
with the risk score (p < 0.05) in the TCGA dataset (Figure 5a–i). In the GEO dataset, the
risk score had a positive correlation with gamma delta T cells and resting memory CD4
T cells, while the risk score has a negative relationship with Tregs, resting NK cells and
activated dendritic cells (Figure S7). The differences in immune score and abundance of
TIICs between the groups showed that patients with a high risk had a repressive immune
phenotype, which could partly explain the poorer OS of people with a high risk score.

To identify the immunological role of the four mRLs, we assessed their association
with the TIICs using the CIBERSORT algorithm. We found that DNM3OS had a significant
association with T follicular helper cells, M2 macrophages and memory B cells (p < 0.001);
WAC-AS1 was correlated with T follicular helper cells and M2 macrophages (p < 0.001)
(Figure S8a). Moreover, WAC-AS1 (R = −0.15, p = 0.0041) and LINC00997 (R = −0.23,
p < 0.001) had negative relationships with the immune score, whereas DNM3OS (R = 0.13,
p = 0.008) and FOXNS-AS1 (R = 0.19, p < 0.001) were positively related to the immune
score (Figure S8b). Next, to clarify the potential mechanisms of the lncRNAs in tumor
progression, we used GSEA analysis to establish the enriched pathways of the mRLs in OV
(Figure S8c–f). DNM3OS was highly enriched in the calcium signaling pathway, the focal
adhesion pathway, the hematopoietic cell lineage pathway, the neuroactive ligand–receptor
interaction pathway and cancer pathways.

The expression level of PD-L2 was higher in tumor tissues than in normal tissues
(p < 0.05, Figure 6a), and it was markedly higher in people with a high risk score in both
the TCGA and GEO dataset (p < 0.05, Figure 6c–f), suggesting that people in the high-risk
group will benefit less from immune checkpoint inhibitors (ICIs). In addition, LINC00997
showed a high correlation with PD-L2 (Figure 6b); thus, the function of LINC00997 in the
tumor immune microenvironment deserves further research. Comparing the IPSs between
the groups, low-risk groups had significantly higher IPSs, suggesting a more immunogenic
phenotype (Figure 6g–j). These results all demonstrate that the signature can predict the
efficacy of immunotherapy for OV patients.

3.6. Consensus Clustering for mRLs Related to OV Prognosis and TME

After the consensus clustering, OV patients in the TCGA dataset were classified into
Cluster 1 and Cluster 2 subgroups following the expression of the significant prognostic
mRLs (Figure 7a–d). The heatmap of the expression pattern between Cluster 1 and Cluster
2 subgroups was performed in Figure 7e. In addition, the stroma, immune and ESTIMATE
scores were markedly higher and the tumor purity was substantially lower (p < 0.05)
in Cluster 2 (Figure 7g–j). Moreover, the infiltration of naïve B cells (p < 0.05), T cell
activated memory CD4 cells (p < 0.05), T follicular helper cells (p < 0.05), M1 macrophages
(p < 0.05) and resting mast cells (p < 0.05) was higher in the Cluster 1 subgroup, whereas
the abundance of M0 macrophages (p < 0.05), M2 macrophages (p < 0.05), activated mast
cells (p < 0.05) and neutrophils (p < 0.05) was higher in the Cluster 2 subgroup (Figure 7f);
thus, the Cluster 2 subgroup tended to behave more as immunosuppressive phenotype.
Moreover, the results of Kaplan–Meier analyses highlighted that the OS of Cluster 2 was
dramatically worse than that of Cluster 1 (Figure 7k), and the expression of PD-L2 was
higher in Cluster 2 (Figure 7l); this indicates that patients in the Cluster 2 may respond
more sensitively to immunotherapy. The above results all demonstrate that the expression
of the mRLs influences the TME, leading to different prognoses.
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Figure 4. The correlation between risk score and immune features in the TCGA dataset. (a,b) GSEA
showed that immune response and immune system process were enriched in the high-risk group.
(c–e) Stroma, immune and ESTIMATE scores in the high- and low-risk groups in TCGA dataset.
(f–h) The correlation between risk score and stroma, immune and ESTIMATE scores in TCGA dataset.
(i–k) Stroma, immune and ESTIMATE scores in the high- and low-risk groups in GEO dataset.
(l–n) The correlation between risk score and stroma, immune and ESTIMATE scores in GEO dataset.
In TCGA-entire set, N = 374; in GEO set, N = 278.
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Figure 5. Relationships between the risk score and immune cell infiltration and the role of the mRLs
in tumor microenvironment in TCGA dataset. (a) The proportion of 22 immune cells infiltration in
high- and low-risk groups. (b–i) Correlation of expression of the mRLs and infiltration of specific
immune cell type. In TCGA-entire set, N = 374.

3.7. The Expression and Immune Status of lncRNAs in Pan-Cancer

We used the pan-cancer data of 33 cancers from TCGA to further study the rela-
tionships between the four mRLs and immune features, stem-like properties and patient
prognoses in pan-cancer. The expression pattern of lncRNAs in 33 cancers (Figure 8a–d)
and the heatmap (Figure S9a) showed inter-tumor heterogeneity, but in most cancers, the
expression level of WAC-AS1 was higher in tumor tissues, whereas the expression level of
DNM3OS was the opposite, which was consistent with the expression trend in OV (Figure
S2). The expression distribution of the four mRLs across all 33 cancer types showed the
same trend as the above results (Figure 8e). Moreover, there is no significant correlation
between the key mRLs (Figure S9b). The Kaplan–Meier analyses (Figure S9c) and univari-
ate regression (Figure S10a) analyses showed that the role of the mRLs in the survival of
patients with different cancers varied.
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Figure 6. IPSs and immunotherapy gene expression analysis. (a) The expression of PD-L2 in tumor
and normal tissues. (b) The correlation between the mRLs and PD-L2. (c–f) The expression of PD-L2
in low- and high-risk groups in TCGA and GEO datasets. (g–j) The IPSs of low- and high-risk groups.
* p < 0.05. In TCGA-entire set, N = 374; In GEO set, N = 278.

To identify the relationships between the key mRLs and immune features in pan-cancer,
we investigated the immune subtype and the landscape of correlation with stromal score,
immune score, stemness scores based on DNA-methylation (DNAss) and stemness scores
based on mRNA (RNAss). Through an extensive immunogenomic analysis of pan-cancer,
six immune subtypes, including wound healing (C1), IFN-γ dominant (C2), inflammatory
(C3), lymphocyte depleted (C4), immunologically quiet (C5) and TGF-β dominant (C6),
were identified according to differences in immune, genetic and clinical features, in which
C3 had great OS, C2 and C1 had poor prognosis, while C4 and C6 had the least favorable
outcomes [32]. We evaluated the correlations between the mRL expression level and the six
immune subtypes and found that all of them were related to pan-cancer immune subtypes
and elevated C1, C2 and C6 subtypes with upregulated expression of DNM3OS (Figure 9a).
Additionally, DNM3OS had a positive correlation with stromal score and immune score,
whereas WAC-AS1 and LINC00997 were negatively related to stromal and immune score
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(Figure 9b–d), which showed similar correlation in OV. All four mRLs were negatively
related to RNAss (Figure 9e). Therefore, the four mRLs took part in the formation of specific
TIME. Finally, we applied the CellMiner database to evaluate the correlation between the
mRLs and drug sensitivity. A higher z-score means higher sensitivity to one specific drug.
Significantly, the expression of FOXNS-AS1 influenced drug sensitivity in various cell lines
(Figure S10b).

Figure 7. Prognosis and immune infiltrations in consensus clustering subgroups of OV. (a) Consensus
clustering matrix for k = 2. (b) Consensus clustering cumulative distribution function (CDF) for k = 2
to 9. (c) Relative change in area under the CDF curve for k = 2 to 9. (d) Tracking plot for k = 2 to 9.
(e) Expression pattern of the mRLs in Cluster 1 and Cluster 2 subgroups. (f) The abundance of 21
immune cells in Cluster 1 and Cluster 2 subgroups. (g–j) Stroma, immune and ESTIMATE scores
and tumor purity in Cluster 1 and Cluster 2 subgroups. (k) Kaplan–Meier analysis of patients in
Cluster 1 and Cluster 2 subgroups. (l) The expression of PD-L2 in Cluster 1 and Cluster 2 subgroups.
** p < 0.01.
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Figure 8. Expression of pan-cancer mRLs. (a–d) Boxplot showing the expression level of the mRLs
in tumor tissue compared with normal tissue in 18 cancer types which were composed of at least
5 normal samples. (e) Boxplot showing the expression distribution of the mRLs across pan-cancer.
* p < 0.05, ** p < 0.01 and *** p < 0.001.
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Figure 9. Association of expression of the mRLs with immune subtypes, tumor microenvironment
and cancer stemness in pan-cancer. (a) Association of expression of the m6A-related lncRNA with
immune infiltrate subtypes across all the cancer types tested with ANOVA. (b,c) Correlation matrix
between tumor microenvironment stromal scores (b) and immune scores (c) and the mRL expression
using the ESTIMATE algorithm. (d,e) Correlation matrix plots showing the association between the
m6A-related gene expression and cancer stemness DNA score (d) and RNA score (e). *** p < 0.001.

4. Discussion

Due to the rapid progression and challenge of early diagnosis, people with OV face
a poor OS, with five-year survival rates below 45% [33]. More and more efforts have
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been carried out to discover robust and sensitive predictive models for early diagnosis
and prognosis prediction, including models based on immune genes, autophagy-related
genes, m6A regulators and so on [34–38]. We found emerging evidence proving that m6A
modification had a crucial effect in the formation of TME landscape heterogeneity and
complexity [39–41]. Zhang et al. constructed an m6A score and demonstrated that a low
m6A score was correlated with a high mutation burden, an inflamed TME phenotype and
improved survival [42]. As the main modification for RNAs, m6A modifications almost
regulate all biological pathways and their changes in tumors reprogram the tumor immune
microenvironment, helping tumor cells escape and metastasize [15,43]. This study focused
on mRLs, established a signature for OV patients and validated its predictive capability
using TCGA and GEO datasets.

The model was established based on four mRLs associated with patient prognoses,
including DNM3OS, WAC-AS1, FOXNS-AS1 and LINC00997, among which DNM3OS was
correlated with a high-risk score, while the others were correlated with a low-risk score.
It was proved that the overexpression of DNM3OS played a role in the development of
ovarian cancer [44]. WAC-AS1, a competing endogenous RNA, has a great influence on the
regulation of tumor glycolysis [45]. Additionally, the prognoses of glioma patients who had
low WAC-AS1 expression were better than the high-expression group [46]. In contrast to
our results, it was reported that LINC00997 had a positive relationship with the metastasis
and development of colorectal cancer [47]. Subsequently, OV patients were separated into
two groups in terms of the median risk score, and the patients in higher risk group had
a worse prognosis. Multivariate Cox regression analysis highlighted that the model had
a great effect on OS. ROC analysis proved that the model was more accurate than single
clinical characteristics to predict the outcomes of OV. We constructed a nomogram for
clinical application. GSEA revealed that people with a high-risk score were significantly
enriched in immune response and immune system process pathways. We believe that
the mRLs can take part in the mechanisms of tumorigenesis and progression of OV, and
the signature might provide an accurate prediction and a theoretical foundation for the
treatment of OV.

Due to the resistance to chemotherapy, patients with OV ultimately die of recurring
lesions after surgical removal. To improve the prognoses of OV patients, new treatment
modalities have emerged, especially immunotherapy, which could boost the patient’s
immune system to find and kill tumor cells. The immune landscape of an OV patient
determines their specific response to various treatments and subsequent prognosis. The
proportion of intratumoral CD8+TILs, CD4+ Treg, macrophages and MDSC was signifi-
cantly correlated with patients’ outcomes [48–50]. This finding has led to several stratifica-
tion strategies, such as based on the number of CD8+TILs [50], six immune subtypes [32]
or cytotoxic immunophenotypes [51] to identify those who benefit from immunotherapy.
After validating the mRL prognostic signature in TCGA and GEO datasets, we performed
immune subtype, consensus clustering and pan-cancer analyses to further research their
function when regulating TME and the underlying molecular mechanism of interaction
between lncRNA and m6A regulators in OV.

TIME is associated with cancer occurrence and progression [48,52]. This study calcu-
lated the correlation between the signature and TME in OV. According to the above results,
high immune scores means higher risk scores. Some published articles showed that OV
higher immune score patients had a poorer prognosis [53,54], consistent with our findings.
After that, positive associations were identified between the risk score and resting dendritic
cells, M2 macrophages, gamma delta T cells as well as resting memory CD4 T cells, while
negative associations were identified between the risk score and T follicular helper cell
infiltration, Tregs and resting NK cells. TIICs in the TME have been found to be related to
the prognoses of OV patients [55]. For example, tumor-infiltrating macrophages with an
M2 phenotype showed immunosuppressive activity, negatively related to OS [56]. It was
also reported that the function of resting dendritic cells could be inhibited through GDF-15
interacting with CD44, thus facilitating ovarian cancer immune escape [57]. Therefore, the
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high level of M2 macrophages is closely correlated with a higher risk score and poorer
prognosis, while resting NK cell infiltration improved the survival of patients with ovarian
cancer [58,59]. Therefore, bad clinical prognosis of high-risk patients may be associated
with TIICs, and mRLs may act as significant regulators of TIIC infiltration in OV.

Cancer cells can create an immunosuppressive microenvironment by activating im-
mune checkpoint pathways, thus achieving immune escape [60]. Therefore, blocking the
role of immune checkpoints in cancer treatment has attracted attention. Some ICIs have
been approved for clinical application in several human malignancies [61]. Although no
study has found an improvement in the survival of patients in clinical trials, including using
ICIs targeting PD1, PD-L1 and CTLA4 in OV [62], identifying treatment targets, predicting
treatment response, screening potential drugs and providing new immunotherapy will
provide new breakthroughs for combined and personal therapy of OV [63]. The relation-
ships between mRLs and immune checkpoint expression indicated that the risk score had a
positive relationship with the PD-L2 expression level. The high expression of an immune
checkpoint ligand PD-L2 represents a suboptimal response to ICIs [64]. The low-risk groups
exhibited higher IPSs, indicating they may benefit more from immunotherapy, which is
consistent with previous research that found that the anti-tumor responses mediated by
ICIs depend on basic immunophenotypes [65–68]. Based on the above results, we propose
that our risk signature may help predict immunotherapy efficacy for OV. Additionally,
our study highlights the biological mechanism of mRLs in the occurrence and progression
of OV.

Furthermore, we conducted consensus clustering analysis to screen m6A-related genes
of OV and achieved two clusters according to the expression of four mRLs. We found that
the expression of WAC-AS1, LINC00997 and FOXN3-AS1 was higher, and the expression
of DNM3OS was lower in Cluster 1; thus, patients in Cluster 1 had lower risk scores.
We compared the biological characteristics between the two clusters to further clarify the
relationships between immune features and the mRLs. Cluster 1 showed higher infiltration
of niave B cells, memory-activated CD4 T cells, T follicular helper cells and M1 macrophages
than Cluster 2, while Cluster 2 had a higher infiltration of M2 macrophages than Cluster
1. The estimate score was higher in Cluster 2, and the tumor purity was higher in Cluster
1, which was consistent with the above results. The Kaplan–Meier analysis suggested
that Cluster 2 had a poor prognosis. Furthermore, the expression of PD-L2 was higher
in Cluster 2, which suggested that Cluster 1 respond more sensitively to ICIs. How m6A
modification influences the tumor microenvironment, especially the TIIC types, has been
researched [42,69,70]; our study might provide more evidence for further research.

Finally, we used pan-cancer analysis to further study the role of the mRLs in different
cancers. The expression pattern of the four mRLs in pan-cancer showed intertumor het-
erogeneity, but in most cancer types, WAC-AS1 had a higher expression in tumor tissues,
whereas the expression level of DNM3OS was the opposite, which was consistent with the
expression trend in OV. By calculating the correlation between the lncRNAs and immune
features, we found that DNM3OS was closely related to M2 macrophages (p < 0.001) in OV,
elevated C1, C2 and C6 subtypes and an immune score with upregulated expression of
DNM3OS in pan-cancer. Das et al. proved that the overexpression of DNM3OS promoted
macrophage inflammatory phenotype, immune response genes and phagocytosis [71]. It
was also reported that the function of DNM3OS was cooperated by miR-214 through the
proinflammatory TLR4/IFN-γ/STAT1 pathways regulated pericystic macrophage accumu-
lation [72]. These findings all demonstrate that mRLs play a role in TME and significantly
influence OS.

Our study still has several limitations. Firstly, the results were entirely based on open
access databases, limiting the validation of our cohort and external multicenter cohorts.
Secondly, the interactions between mRLs and m6A regulators and the mechanism of the
function of lncRNAs in TME were not demonstrated by the experiments. Thirdly, the
prognostic signature needs to be applied in a real-world setting in order to explore its
sensitivity and efficiency in classifying patients for target therapies.
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5. Conclusions

In conclusion, our study established an independent and reliable prediction signature
of mRLs, and systematically evaluated its predictive accuracy and role in TIME. Consensus
clustering analysis and pan-cancer analysis demonstrated the vital role of the specific mRLs
in different cancer types, which may help the discovery of novel therapeutic targets for OV.
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ANOVA analysis of variance
AUC area under the curve
CI confidence interval
DNAss stemness scores based on DNA methylation
GEO Gene Expression Omnibus
GSEA gene set enrichment analysis
HR hazard ratio
ICIs immune checkpoint inhibitors
IPSs immunophenoscores
LASSO least absolute shrinkage and selection operator
lncRNAs long noncoding RNAs
m6A N6-methyladenosine
mRLs N6-methyladenosine-related long noncoding RNAs
OS overall survival
OV ovarian serous cystadenocarcinoma
PCA principal component analysis
qRT-PCR quantitative real-time PCR
RNAss stemness scores based on mRNA
ROC receiver-operating characteristic curves
ssGSEA Single Sample Gene Set Enrichment Analysis
TCGA The Cancer Genome Atlas
TCIA The Cancer Immunome Atlas
TIICs tumor-infiltration immune cells
TME tumor microenvironment
Treg regulatory T cells
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