
����������
�������

Citation: Alghamdi, S.J. Classifying

High Strength Concrete Mix Design

Methods Using Decision Trees.

Materials 2022, 15, 1950. https://

doi.org/10.3390/ma15051950

Academic Editor: Sérgio Manuel

Rodrigues Lopes

Received: 31 January 2022

Accepted: 4 March 2022

Published: 6 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Classifying High Strength Concrete Mix Design Methods Using
Decision Trees
Saleh J. Alghamdi

Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099,
Taif 21944, Saudi Arabia; sjalghamdi@tu.edu.sa

Abstract: Concrete mix design methods are used to determine proportions of concrete ingredients
needed for certain workability and strength. Each mix design method operates under certain as-
sumptions and suggests slightly different proportions. It is of great importance that site/construction
engineers know the method by which the mix was designed. However, it can be difficult to know the
designing method based solely on mix proportions. Hence, in this work, a decision trees model was
used to classify high strength concrete mix design methods based on their produced concrete mix
proportions. It was found that the trained decision tree model is capable of classifying mix design
methods with high accuracy. Further, based on dimensionality reduction methods, the amount of
cement in a concrete mix was found to be the paramount predictor of the used mix design method.
In this work, a novel high-accuracy model for determining a mix design method based only on mix
proportion is proposed.

Keywords: mix design; high strength concrete; machine learning; compressive strength

1. Introduction

There are many methods for designing normal and high strength concrete mixes.
The objective of designing a concrete mix is to determine the amounts of concrete mix
constituents. Depending on how and where concrete is going to be used, its compressive
strength and workability are determined, taking into account durability requirements. Nor-
mal strength mix design methods are used for designing concrete mixes, having strengths
ranging from 20 to 55 MPa. Concrete having compressive strength higher than 55 MPa is
considered to be high strength. For high strength concrete mix design, many methods can
be used, including the American Institute of Concrete, ACI 211.4R-08, Guide for Selecting
Proportions for High-Strength Concrete Using Portland Cement and Other Cementitious
Materials [1], the Aïtcin method [2], and the modified department of environment method
(Modified DOE) [3]. For a specified compressive strength, these methods suggest slightly
different proportions of cement, water, sand, gravel, and chemical admixtures.

These methods are used by concrete manufacturers all over the world to design
and make concrete mixes according to customers’ needs. It is of great importance that
site/construction engineers know the method by which a concrete mix was designed, so
that they can correctly adjust concrete mixes according to field conditions, interpret fresh
concrete test results, as well as satisfy quality control requirements. However, determining
the method by which a concrete mix was designed can be a difficult task, because design
methods usually suggest similar mix proportions for required properties. In addition,
to the best of the author’s knowledge, existing literature does not provide a solution to
this problem. Hence, the objective of this work is to use machine learning models, in
particular, decision trees to classify high strength concrete mix design methods based on
their produced concrete mix proportions. The following section discusses the past and
current implementations of machine learning algorithms in concrete technology.
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1.1. Machine Learning Applied to Concrete Technology

At the present time, a considerable attention is directed towards machine learning and
deep learning techniques, for their capability of solving complex problems. Some of these
techniques were utilized to solve civil engineering problems including concrete mix design
problems, such as the prediction of concrete’s 7, 14 and 28-day compressive strengths.
Many researchers investigated the usefulness of using artificial neural networks (ANN)
and linear regression models in the prediction of the strength of normal and high strength
concrete [4–10], high-performance concrete [11–13], ultra-high-performance concrete [14],
recycled aggregate concrete [15], structural lightweight concrete [16], bacterial concrete [17],
green concrete [18], and self-consolidating concrete [19]. In addition to ANN, decision
trees have also been used to predict compressive strength of different types of concrete
including high strength and high-performance concrete [20,21], FRP-confined concrete [22],
as well as recycled aggregate concrete [23,24]. In addition, ensemble methods were used
to predict compressive strength of concretes containing fly ash [25], with higher accuracy
than when decision tree models (DT) are used. Moreover, ANN, K-nearest neighbor (KNN)
along with decision tree models, were leveraged to predict the healing performance of
self-healing concrete [26]. Additionally, to evaluate the compressive strength of concrete
mixes whose cement content is partially replaced with ceramic waste powder (CWP), ANN
and decision tree models were leveraged. When the two models were compared, they
demonstrated comparable performance with relatively similar R2 values [27]. More efforts
are still being devoted towards using machine learning algorithms to predict mechanical
properties of different types of concrete, for example, in their recent work, Shang et al. [28]
demonstrated how machine learning models including decision tree and AdaBoost were
utilized to predict the compressive strength and splitting tensile strength of concrete
containing recycled coarse aggregate (RCA), reaching high R2 values.

In addition to regression models, classification models have also been used in the field
of concrete technology; for instance, Akpinar and Khashman [29] used ANN to successfully
classify compressive strength grade of different concrete mixes as low, normal or high
strength. Further, Hilal Erdal [30] used two-level and hybrid ensembles of decision trees
for predicting high performance concrete compressive strength.

Despite these efforts, classification of high strength concrete mixes based on their
ingredients is still an open issue. Thus, in this work, we test the hypothesis that given
enough training data, a trained machine learning model can accurately classify mix de-
sign methods based on mix proportions. Specifically, a decision tree model will be used
to classify high strength concrete mix design methods based on their produced concrete
proportions, namely, the amounts of cement, water, gravel, sand, and chemical admix-
tures. The following section discusses the machine learning model used in this work, i.e.,
decision trees.

1.2. Decision Trees

Decision tree models [31] are a group of algorithms that can detect classes within a
dataset by passing information along a decision tree nodes and branches starting from the
root node to the leaf nodes which contain the predicted class.

The example tree in Figure 1 shows a binary target variable is classified to either Y = 0
or Y = 1, based on two predictors, X1 and X2, whose values range from 0 to 1. Nodes
and branches constitute the essential components of a decision tree model. During the
development of the decision tree, three processes take place, splitting, stopping, and prun-
ing [32]. There exist many algorithms that implement decision trees, such as classification
and regression trees (CART) [31], C4.5 [33], Chi-squared automatic interaction detection
(CHAID), and QUEST, which is the abbreviation of quick, unbiased, efficient, statistical
tree [34].
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The rest of the paper is organized as follows: methods are described in Section 2,
results are presented and discussed in Section 3, and conclusions are presented in Section 4.
Further, a paragraph describing the limitations of this work is included at the end of
the paper.

2. Materials and Methods
2.1. Dataset

Data is considered to be the backbone of any machine learning model; in this work,
thousands of mix designs were generated and used to train a decision tree model. As
designing thousands of concrete mixes to train the model is a tiresome process, computer
programs that implement high strength concrete mix design methods were used. Particu-
larly, MATLAB (MathWorks, Inc., Natick, MA, USA) was used to develop high strength
concrete mix design programs to generate the dataset for the machine learning model.
The developed programs design high strength concrete mixes using three mix design
methods [35]. Outputs of the developed programs were compared to manual calculations
to make sure no discrepancies exist between computer programs outputs and manual
calculations. A total of 10 comparisons between the output of the programs and manual
calculations were performed for each method. A representative comparison example for
each method is shown in Tables 1–3. A total of 1000 high strength concrete mix designs
were generated by the programs for each method, with a total of 3000 mix designs for
training and testing purposes. All concrete mixes in the dataset were designed by the
programs to produce concrete mixes of 28-day compressive strengths no less than 60 MPa
and no greater than 82 MPa, cylinder strength for both ACI and Aïtcin methods and cube
strength for modified DOE method. The inputs and outputs of each mix design program
are summarized below:

Table 1. A comparison between manual calculations and program outputs for ACI211.4R-8
method [35].

Mix Proportions Manual Program
Variation

Numeric %

Cement (kg/m3) 334.8 337.94 −3.14 −0.93
Water (kg/m3) 188.92 188.89 0.03 0.02

FA (kg/m3) 613.4 610.09 3.31 0.54
CA (kg/m3) 1072.5 1072.5 0 0.00

Fly ash (kg/m3) 63.77 64.37 −0.6 −0.93
Superplasticizer (kg/m3) 2.39 2.41 −0.02 −0.83



Materials 2022, 15, 1950 4 of 12

Table 2. A comparison between manual calculations and program outputs for Aïtcin method [35].

Mix Proportions Manual Program
Variation

Numeric %

Cement (kg/m3) 439.015 442 −2.99 −0.68
Water (kg/m3) 118.114 117.98 0.13 0.11

FA (kg/m3) 654.836 658.61 −3.77 −0.58
CA (kg/m3) 1089 1089 0 0

Silica Fume (kg/m3) 25.824 26 −0.18 −0.68
Fly ash (kg/m3) 51.649 52 −0.35 −0.68

Superplasticizer (kg/m3) 7.65 7.7 −0.05 −0.65

Table 3. A comparison between manual calculations and program outputs for modified DOE
method [35].

Mix Proportions Manual Program
Variation

Numeric %

Cement (kg/m3) 617.28 614.49 2.79 0.45
Water (kg/m3) 170.26 170.31 −0.05 −0.03

FA (kg/m3) 518.66 517.61 1.05 0.2
CA (kg/m3) 1098.54 1106.28 −7.74 −0.7

Superplasticizer (kg/m3) 6.688 6.66 0.03 0.42

2.1.1. ACI 211.4R-08

Input: The required strength, material properties (specific gravities, bulk densities,
and moisture content), maximum nominal size of coarse aggregates, required worka-
bility (slump), whether fly ash and/or admixtures (HRWRA) are used, cost of concrete
constituents, casting quantity, and whether previous test records are available.

Output: Weights (per cubic meter and per provided casting quantity) of cement, water,
fine and coarse aggregates as well as fly ash, admixtures (HRWRA), and the associated cost.

2.1.2. Aïtcin Method

Input: The required strength, material properties, properties of superplasticizer, aggre-
gate shape, whether slag or/and silica fumes and/or fly ash are used, moisture content
of fine and coarse aggregates, cost of concrete constituents, casting quantity, and whether
previous test records are available.

Output: Weights (per cubic meter and per provided casting quantity) of cement, water,
fine and coarse aggregates as well as fly ash, silica fume, slag cement, superplasticizers, the
calculated water/cement ratio, and the associated cost.

2.1.3. Modified DOE

Input: The required strength, material properties, maximum cement content, types of
coarse and fine aggregates, type of cement, cost of concrete constituents, casting quantity
and whether previous test records are available.

Output: Weights (per cubic meter and per provided casting quantity) of cement, water,
fine and coarse aggregates as well as superplasticizers (HRWRA), suggested ratios for
coarse aggregate and the associated cost.

2.2. Visualizing the Dataset

Figure 2 shows distribution of strengths of the concrete mixes produced from each
method. Pie charts show that for each mix design method, the designed mixes contain
uniformly distributed strengths. The relationships between mix ingredients and strength
are not always clear, and intricate overlaps are present between design methods, making
it a very challenging task to distinguish the design method based on mix proportions for
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a specified compressive strength, see Figure 3a–e. This difficulty can be clearly observed
when parallel lines of all mixes produced by all three methods are overlapped, see Figure 3f.
The overlap that exists between the paths leading to the required strength clearly shows how
it is very difficult to tell which method was used to design which mix, hence necessitating
a machine learning algorithm to tell them apart.
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Figure 3. Visualizing the training data. (a) Compressive strength vs. water. (b) Compressive strength
vs. sand. (c) Compressive strength vs. gravel. (d) Compressive strength vs. cement. (e) Compressive
strength vs. HRWRA. (f) Shows the intertwinement of mix proportion when overlapped, making the
determination of the mix design method based on mix ingredients a difficult task.
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2.3. Features

The tree models make use of data features to be trained and fitted. In this work, the
features used to train the model were the concrete mix proportions per one cubic meter of
each mix design and the corresponding compressive strength. In particular, the amounts
of cement in kg, water in liter, sand in kg, gravel in kg and HRWRA in liter, as well as
compressive strength in MPa.

2.4. Coding Environment

MATLAB (MathWorks, Inc., Natick, MA, USA) was used to preprocess and visualize
the dataset, as well as train and test the model.

2.5. Preprocessing of Dataset

Before training the dataset, it was standardized using mean and standard deviation.

2.6. Splitting the Dataset

The dataset (3000 mix designs) were split into training (2400 mix designs) and testing
(600 mix designs).

2.7. Model Choices

Three types of decisions trees were used, according to the number of nodes in the
tree, namely, fine, medium, and coarse trees. Further, during model training, 5-fold
cross validation was used to prevent overfitting. For fine tree models, the number of
maximum splits was specified to be 100 splits and the splitting criterion to be Gini’s
Diversity Index [36].

2.8. Methods of Evaluating Classifier’s Performance

To evaluate the performance of the decision tree model, accuracy measure was used,
which is defined for binary classification as the ratio of the correct predictions (true positive
TP and true negative TN) to the total number of predictions (true positive TP, true negative
TN, false positive FP, and false negative FN):

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

In addition to accuracy, the receiver-operating characteristic (ROC) was used, which
shows true positive rate versus false positive rate for the tree classifier. It is usually used for
evaluating binary classification performance but can be used in multi-class classification, as
is the case in this work, by evaluating one-vs-rest. A perfect classifier is one that correctly
classifies all data to their actual classes; this perfect classifier appears in the ROC as a
right-angle curve whose right angle is in the upper left-corner portion of the curve. ROC
shows a poor classifier as a curve close to a line inclined at 45 degrees. The area under the
ROC (AUC) is a sign of the performance of the classifier; a perfect classifier will have an
AUC of 1.

Confusion matrix was also used to further evaluate the tree classifier, which is a matrix
whose rows correspond to the predicted class, and columns correspond to the true class.
The diagonal of the confusion matrix shows instances that were correctly classified and the
off-diagonal shows instances that were incorrectly classified.

2.9. Feature Importance

A machine learning model shall be efficient as well as accurate; therefore, the number
of features used to train the model shall be optimized. This can be performed by using
principal component analysis (PCA) [37], and minimum redundancy maximum relevance
(MRMR) [38].



Materials 2022, 15, 1950 7 of 12

2.9.1. Principal Component Analysis (PCA)

PCA reduces the dimensionality of the model by linearly transforming predictors,
removing redundant predictors, and keeping only principal predictors [37].

2.9.2. Minimum Redundancy Maximum Relevance (MRMR)

MRMR algorithm determines the importance of each feature in the dataset to the
classification process. The MRMR algorithm’s goal is to find an optimal set of features
whose relevance to outcome variable is maximum and whose redundancy is minimum [38].

3. Results and Discussion

After all models were fitted to training data, they were tested using the testing dataset,
which contains 20% of the entire dataset i.e., 600 mix designs. The classification accuracies
of all models on training data and testing data are summarized in Table 4, below.

Table 4. Accuracy of tree classifiers.

Model Training Accuracy Testing Accuracy

Decision trees: Fine 98.2% 98.7%
Decision trees: Medium 97.9% 97.8%
Decision trees: Coarse 90.5% 88.3%

From the accuracy values presented in Table 4, it can be said that the simple decision
tree model successfully solved the mix design method classification problem with high
accuracy. Such high accuracies are guaranteed not to come from overfitting the training
dataset, because a 5-fold cross validation was used in the training phase to prevent overfit-
ting. In addition, when the trained models are tested using previously unseen data (testing
dataset) they show high accuracy, indicating great generalizability potential.

Figure 4a presents ROC curves, which show the performance of the tree classifier
on training data. ROC curve of ACI-vs-rest, with ACI assigned as the positive class and
the other methods assigned as the negative class shows that the AUC is 0.99, with a
true positive rate (TPR) of more than 0.98. These numbers indicate high classification
performance, because a true positive rate of above 0.98 indicates that the used model
correctly classifies more than 98% of the instances to the true class.
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(c) Modified DOE method versus ACI and Aïtcin. Similar ROC curves are shown in (d–f), however,
for the case when reduced-dimensionality tree models are used.
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In Figure 4b, Aïtcin method was assigned to be the positive class and the other methods
to be the negative class. In this case, the AUC was found to be 1.00, which indicates that the
classifier has perfect classification performance for this class. In Figure 4c, modified DOE
was assigned to be the positive class and the other methods to be the negative class. In
this case, the area under the curve was found to be 0.98, which signifies high classification
performance for this class.

Accuracy of the fine tree model that was tested using testing data is shown in the
lower right corner in the confusion matrix shown in Figure 5. In each cell in the matrix, both
the number of observations and the percentage of the number of observations are shown.
The most-right column shows the percentages of all the observations that are predicted
to belong to each class (ACI, Aïtcin, and modified DOE) that are both assigned correctly
(precision) and incorrectly (false discovery rate). The row at the bottom of the matrix
shows the percentages of all the observations that belong to each class that are correctly
classified (recall) and incorrectly classified (false negative rate). Based on the confusion
matrix, I claim that the tree model is an excellent classifier, achieving an accuracy of 98.7%,
a precision of at least 98%, and a recall of at least 96.5%, across all classes when evaluated
using testing data.
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The fine tree classifier was re-trained, however, with enabling principal component
analysis this time around, to determine feature importance. The PCA-enabled fine tree
classifier kept two features, which can explain 95% variance. Explained variance per feature
was found to be the amount of cement: 80.5%, amount of water: 18.7%, amount of sand:
0.7%, amount of gravel: 0.1%, and 0.0% for both the amount of HRWRA and concrete’s
compressive strength. Results of PCA is shown in Figure 7a.
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Degree of importance of each feature was determined using the MRMR algorithm,
which assigns scores to each feature, indicating its importance. The amount of cement was
found by MRMR to be the most important feature, with a score of 0.6, followed by the
amount of water: 0.44, amount of sand: 0.43, gravel: 0.4, HRWRA: 0.23 and compressive
strength: 0.0. The drop in score between the amount of cement and amount of water is
relatively large, which emphasizes that cement is the most important predictor of the mix
design method. On the other hand, the amount of gravel and compressive strength were
found to be weak predictors of the mix design method. The results of MRMR is shown in
Figure 7b.

Based on the results of the PCA analysis, only the two most important features
(amount of cement and amount of water) were used in fitting reduced tree models. As can
be observed in Table 5, accuracies of the reduced models were less than those of original
models with the full list of features.

Table 5. Classification accuracy of reduced-dimensionality classifiers.

Model Training Accuracy Testing Accuracy

Reduced-dimensionality fine decision tree 86.3% 86.5%
Reduced-dimensionality medium decision tree 85.1% 85.3%
Reduced-dimensionality coarse decision tree 81.3% 81.3%

In concrete technology, we seldom talk about the amount of cement and amount of
water separately; instead, we use the water/cement ratio or (W/C) for short. It can be
speculated that the W/C can be of importance in the determination of mix design method;
however, as it is merely a linear combination of two features, then its information is already
embedded in the training dataset and hence its contribution to the outcome variable may be
limited. In addition, the current set of features aided in classifying the mix design methods
with very high accuracy, eliminating the need for more features.

After only using principal predictors (amounts of cement and water) in training the
tree model, ROC was used to test the performance of the reduced models. Figure 4d
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presents ROC curves, which show the performance of the reduced tree classifier on training
data. ROC curve of ACI-vs-rest, with ACI assigned as the positive class and the other
methods assigned as the negative class, shows that the AUC for the reduced model is 0.95,
which indicates that the classification performance was slightly affected by the omittance
of some of the features. In the case where Aïtcin method was assigned to be the positive
class and the other methods to be the negative class, Figure 4b, the AUC was found to be
0.96, which indicates that the performance of the classifier was also slightly affected by the
omittance of some of the features. For the case where modified DOE was assigned to be the
positive class and the other methods to be the negative class, the classification performance
was greatly affected by the omittance of some of the features with an area under the curve
of 0.89.

Limitations

While this study successfully developed a model that is capable of classifying mix
design methods with very high accuracies, a few shortcomings exist. For example, the
training data used in training the decision tree model are synthesized. This approach
works perfectly, provided that the proportions of the mix are exactly per the mix design
recommendations, before any field adjustments. However, sometimes field conditions
necessitate that concrete consistency is adjusted, which distorts original mix design. Hence,
it is necessary that the developed model is trained/tested using real experimental data
(training/testing the model using field-adjusted concrete proportions). Another limitation
is that only one machine learning model is used in this work, while many more models can
be tested and compared to determine the most accurate and efficient model.

4. Conclusions

Mix design methods are used by concrete manufacturers all over the world to design
and make concrete mixes according to the customers’ needs. It is of great importance that
site/construction engineers know the method by which a concrete mix was designed, so
that they can correctly adjust concrete mixes according to field conditions, interpret fresh
concrete tests results, as well as satisfy quality control requirements. However, determining
the method by which a concrete mix was designed can be a difficult task because design
methods usually suggest similar mix proportions for certain required properties. This work
solved this classification problem via the use of machine learning. In particular, this work
achieved the following:

• Machine learning, specifically decision tree models were trained to classify high
strength concrete mix design methods based on concrete mix proportions with high
accuracy. It was shown that knowledge of the basic amounts of the basic ingredients
of high strength concrete mix is enough for the model to accurately determine the mix
method by which it was designed.

• Feature importance analyses demonstrated that the amount of cement and water in
the concrete mix are the most important predictors of the used mix design method.

• In this work, a novel high-accuracy model for determining the mix design method,
based only on mix proportion, was presented.

Future work includes training and testing machine learning models using real experi-
mental data (training/testing the model using field-adjusted concrete proportions). Further,
the author intends to experiment with more machine learning models to determine the
most accurate and efficient model for classifying mix design methods.
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