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Acetylcholine (ACh) signaling shapes neuronal circuit development and underlies
specific aspects of cognitive functions and behaviors, including attention, learning,
memory and motivation. During behavior, activation of muscarinic and nicotinic
acetylcholine receptors (mAChRs and nAChRs) by ACh alters the activation state of
neurons, and neuronal circuits most likely process information differently with elevated
levels of ACh. In several brain regions, ACh has been shown to alter synaptic strength
as well. By changing the rules for synaptic plasticity, ACh can have prolonged effects
on and rearrange connectivity between neurons that outlasts its presence. From recent
discoveries in the mouse, rat, monkey and human brain, a picture emerges in which the
basal forebrain (BF) cholinergic system targets the neocortex with much more spatial
and temporal detail than previously considered. Fast cholinergic synapses acting on
a millisecond time scale are abundant in the mammalian cerebral cortex, and provide
BF cholinergic neurons with the possibility to rapidly alter information flow in cortical
microcircuits. Finally, recent studies have outlined novel mechanisms of how cholinergic
projections from the BF affect synaptic strength in several brain areas of the rodent brain,
with behavioral consequences. This review highlights these exciting developments and
discusses how these findings translate to human brain circuitries.

Keywords: acetylcholine, neocortex, microcircuits, pyramidal neuron, interneurons, synaptic transmission,
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INTRODUCTION

Neuromodulation of the neocortex by acetylcholine (ACh) not only shapes neuronal circuit
development, but is also crucial for sensory and cognitive behavior, such as sensory detection,
attention, learning and memory (Dalley et al., 2004; Hasselmo and Giocomo, 2006; Sarter
et al., 2009). Due to the strong impact of cholinergic modulation of the neocortex and its role
in neuropsychiatric disorders, it is imperative that we understand the neuronal and synaptic
mechanisms underlying ACh’s role in cognition and neocortical microcircuit function. Despite
the fact that we know for instance that cholinergic signaling in the prefrontal cortex (PFC)
is involved in attention, very little is known about the neuronal circuit mechanisms involved.
How do cholinergic receptors expressed by specific types of neurons contribute to sensory
processing, attention or working memory? Many studies emphasize the sustained ACh effects, in
which ACh acts as a slow neuromodulator increasing excitability of networks (Picciotto et al., 2012).
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However, ACh does not only have tonic neuromodulatory roles
changing cortical states, but also mediates specific cognitive
operations (Howe et al., 2013). At the microcircuit level, it is
becoming clear that ACh is not only a slow neuromodulator, but
recent evidence shows that it can instantly alter information flow
by direct, fast point-to-point ACh synapses that target specific
pyramidal neurons and interneurons and act on millisecond
time scales (Arroyo et al., 2014). Moreover, recent exciting
discoveries show that the basal forebrain (BF) cholinergic system
may be innervating the neocortex at a spatially more refined
scale than previously considered, raising the possibility that a
more fine-scaled control by ACh exists that does not only confer
specificity on a brain area scale, but even on that of cortical
lamina. Finally, recent findings on cholinergic modulation of
human neocortical microcircuits suggest that also in the human
brain these mechanisms exist, which may prompt us to change
our view on the cholinergic system as being merely a slow acting
arousal system to one that includes a fast acting manipulation
of cortical information flow important for sub-second cognitive
operations. This review highlights recent evidence from rodent,
monkey and human brain that show that the cholinergic system
in the mammalian brain acts on a spatial and temporal scale that
is much more detailed than previously considered.

SPECIFICITY OF BASAL FOREBRAIN
CHOLINERGIC PROJECTIONS TO THE
NEOCORTEX

All areas of the human cerebral cortex contain cholinergic axons,
but higher densities of cholinergic axons exist in limbic and
paralimbic cortical areas, such as hippocampus and amygdala,
than in primary sensory-motor and sensory association cortex
(Mesulam et al., 1992a,b; Smiley et al., 1997). Regional variation
in cholinergic innervation of the human cerebral cortex seems
to follow the organization of information processing systems,
with lower innervation in primary sensory areas and increasing
innervation in higher order processing areas (Mesulam et al.,
1992a). Both in the primate and rodent brain, the main
cholinergic innervation of the neocortex originates in the
BF (Woolf and Butcher, 2011; Mesulam, 2013). In addition,
there are sparse local cholinergic interneurons throughout
the cortex, but it is still undetermined whether ACh release
from these neurons actually occurs (von Engelhardt et al.,
2007). Several BF nuclei containing cholinergic neurons project
to cortical and sub-cortical target areas. In the human and
non-human primate brain, four BF regions with cholinergic
neurons have been identified (Mesulam et al., 1983; Zaborszky
et al., 2008; Mesulam, 2013), of which the nucleus basalis
(NB) cholinergic neurons (substantia innominata (SI), Ch4)
innervate the neocortex (Mesulam and Geula, 1988). Medial
septal nucleus cholinergic neurons (Ch1), the vertical limb
of the diagonal band (Ch2) and the horizontal limb of the
diagonal band (Ch3) project to the hippocampus, hypothalamus,
olfactory bulb and other brain areas (Mesulam, 2013). Both
in primates as well as in rodents, neocortical innervation
by the BF cholinergic system is topographically organized,

suggesting that functional control of neocortical processing
by the BF cholinergic system can be very specific. In the
macaque brain, cholinergic neurons located in different parts
of the NB project to distinct cortical areas. For example,
the anteromedial subdivision of Ch4 is the major cholinergic
input source to medial cortical areas, such as the cingulate
gyrus; the anterolateral Ch4 subdivision to frontoparietal cortex,
opercular regions, and the amygdaloid nuclei; intermediate
Ch4 subdivision to laterodorsal frontoparietal, peristriate, and
midtemporal regions; and posterior subdivision of Ch4 to the
superior temporal and temporopolar areas (Mesulam et al.,
1983).

In the rodent brain, a detailed topographical organization
of the BF cholinergic neurons exists (Bigl et al., 1982; Lamour
et al., 1982; Price and Stern, 1983; Gritti et al., 2003; Bloem
et al., 2014; Zaborszky et al., 2015; Kondo and Zaborszky,
2016). Early studies indicated that in rat brain, large but discrete
cortical areas are innervated by small groups of cholinergic BF
neurons. Cholinergic neurons in the diagonal band of Broca
tend to innervate the cingulate and occipital cortices. The SI
cholinergic neurons project more to the frontal cortex, while
the cholinergic cells in the globus pallidus seem to target the
temporal and parietal cortices (Lamour et al., 1982; Price and
Stern, 1983; Rye et al., 1984). More recent studies show that also
on a finer scale, within brain regions such as the PFC and the
parahippocampal cortex, a topographical mapping between BF
cholinergic neurons and neocortical areas exists (Bloem et al.,
2014; Zaborszky et al., 2015; Kondo and Zaborszky, 2016).
Cholinergic neurons that innervate the PFC show a frontal-
caudal gradient in the location of the cell bodies of these neurons
in the BF. Using an anterograde viral labeling approach in
mouse brain, it was found that cholinergic neurons located
at rostral locations in the BF, in particular in the horizontal
limb of the diagonal band (HDB), innervate predominantly
rostral and ventral medial prefrontal cortical (mPFC) areas,
whereas caudo-lateral neurons in the BF, such as the SI and
NB, preferentially innervate the dorsal and caudal mPFC regions
(Bloem et al., 2014). These distinct BF regions send projections
to the neocortex through distinct pathways (Bloem et al.,
2014), as was also shown in rat (Saper, 1984; Luiten et al.,
1987; Eckenstein et al., 1988). In rat brain, using injection of
retrograde tracers in anterior cingulate cortex (ACC), mPFC
and orbitofrontal cortex, the topographic organization of BF
cholinergic projections was less pronounced. Approximately
60% of neurons in the BF targets more than one of these
areas and twenty percent of neurons innervates all three
areas (Chandler and Waterhouse, 2012; Chandler et al., 2013;
Zaborszky et al., 2015). The apparent discrepancy in topographic
organization of mouse and rat BF likely results from retrograde
vs. anterograde tracing methods. Retrograde tracing methods
can show that neurons project to a certain brain region, but
they fail to determine projection density. In contrast, projection
density can be determined using an anterograde approach
(Bloem et al., 2014). Injecting an anterograde tracer in the
magnocellular preoptic nucleus (MCPO) and SI in rat (Henny
and Jones, 2008) it was shown that labeling was strongest in the
infralimbic (IL) PFC. This suggests that the topographicmapping
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from BF cholinergic neurons to PFC is revealed by taking
innervation densities into account (Wouterlood et al., 2014).
Thus, although BF neurons in the rodent brain often project
to multiple regions of the PFC, they preferentially innervate
different regions based on their location in the BF (Bloem et al.,
2014).

Traditionally, the anatomy of the BF cholinergic system
has been studied with retrograde labeling, for instance horse
radish peroxidase (HRP) injections in neocortical target areas
or with antibody staining for cholineacetyl transferase (ChAT)
or acetylcholine esterase (AChE; Lamour et al., 1982; Rye et al.,
1984; Mesulam, 2013). With these approaches, it is virtually
impossible to establish whether individual BF cholinergic
neurons target specific cortical layers. Using an anterograde
viral labeling strategy based on cre-recombinase-dependent
expression of GFP/YFP in ChAT-cre transgenic mice it is
possible to address this issue (Wouterlood et al., 2014), and
we recently found that different locations in the BF specifically
innervate superficial or deep lamina of PFC (Bloem et al.,
2014). In superficial layers 1–3, a marked distinction between
different injection sites was found, particularly in prelimbic
(PL), IL and the ventral part of the anterior cingulate PFC.
Cholinergic neurons in the rostral part of the BF project
fibers to both superficial layers and deep layers of the mPFC.
In stark contrast, cholinergic neurons in caudal parts of the
BF preferentially projected to deep layers of the mPFC and
hardly innervate the superficial layers (Bloem et al., 2014).
This suggests that two separate populations of BF neurons
send cholinergic projections to the PL, IL and ACv, one that
innervates all layers and another that selectively targets deep
layers.

In mouse brain, cholinergic fibers travel via four routes
from the BF (medial, septal, internal capsule and lateral) to
cortical targets (Bloem et al., 2014). Cholinergic fibers enter
the neocortex either via layer 1 or layer 6. Interestingly, fibers
arising from rostral parts show a large number of fibers taking
the medial route and stronger innervation of mPFC superficial
layers. Caudal cholinergic neurons do not send projections
through the medial route, and enter the neocortex through layer
6, predominantly targeting deep layers. These specific projection
profiles of cholinergic neurons at different locations of the BF
may highlight functional differences between rostral and caudal
BF regions and the pathways innervating cortex through L1
and L6.

Similar to the BF to PFC cholinergic system, a
topographical organization also occurs between the BF and
the parahippocampal cortex (Kondo and Zaborszky, 2016). The
BF sends complementary projections to perirhinal, postrhinal,
and entorhinal cortex. The perirhinal and postrhinal cortex
receive cholinergic projections predominantly from caudal
BF regions: the caudal globus pallidus and SI and HDB. In
contrast, the rostral part of the BF, including the medial septum
and vertical limb of the diagonal band as well as from the
HDB entorhinal cortex, send projections to both the lateral
and medial entorhinal cortex. Cholinergic neurons projecting
to medial and lateral entorhinal cortex show distinct HDB
topography. Whether these cholinergic projections show

any layer-specifity in innervation of the parahippocampal
cortical areas is not known, but physiological cholinergic
responses in mouse entorhinal cortex are layer-specific (Tu et al.,
2009).

New approaches such as iDISCO that allow volume imaging
of the whole cholinergic network in cleared brain tissue will
perhaps help to get a deeper insight in the topography of
cholinergic projections in the cortex in the near future (Renier
et al., 2014).

SYNAPTIC VS. NON-SYNAPTIC
MODULATION OF NEOCORTICAL
MICROCIRCUITS

The classical view on cholinergic signaling in the cerebral
cortex is that it is slow and aspecific, most likely volume
transmission (Sarter et al., 2009; Coppola et al., 2016).
Before optogenetic tools were available to selectively activate
cholinergic fibers in the neocortex, indeed very few examples
of fast cholinergic synaptic transmission in cortical areas
existed. Interneurons in rodent hippocampus showed cholinergic
fast synaptic responses mediated by nicotinic ACh receptors
(Alkondon et al., 1998; Frazier et al., 1998). This sparseness of
functional cholinergic synapses in the neocortex was surprising,
since electron microscopy studies had revealed many examples
in the cerebral cortex of rodents and primates of synaptic
structures that were positive for the ACh synthesizing enzyme
choline acetyltransferase (ChAT). In the cingulate cortex of the
rat, 15% of cholinergic axon varicosities formed identifiable
synapses (Umbriaco et al., 1994). In monkey PFC, synapses
were identified on forty percent of cholinergic axon varicosities
(Mrzijak et al., 1995). In human cerebral cortex, 67% of all
varicosities formed identifiable synaptic specializations (Smiley
et al., 1997). This may suggest that in primate, and in particular
in human neocortex, direct point-to-point cholinergic synaptic
transmission is more prevalent than in rodent cortex.

With optogenetic activation of BF cholinergic projections to
cerebral cortex, it is now clear that ACh signaling can occur
functionally through direct, point-to-point fast synapses in the
cortex (Letzkus et al., 2011; Arroyo et al., 2012; Bennett et al.,
2012; Kimura et al., 2014; Hay et al., 2016; Verhoog et al.,
2016). Optogenetic activation of BF projections evokes barrages
of inhibitory synaptic inputs to layer (L)2/3 pyramidal cells,
mediated by nicotinic acetylcholine receptors (nAChRs; Arroyo
et al., 2014). Very few pyramidal neurons in L2/3 express
nAChRs (Poorthuis et al., 2013a) and optogenetic activation
of cholinergic fibers evokes fast synaptic inputs in a small
portion of L2/3 pyramidal neurons (Verhoog et al., 2016).
BF fiber activation generates responses in specific cortical
interneurons. L1 cells and L2/3 FS cells show mixed responses
with a fast and a slow component (Letzkus et al., 2011;
Arroyo et al., 2012; Verhoog et al., 2016). ACh generated
depolarizing currents mediated by a mixed population of
nAChRs (Arroyo et al., 2012). The slow component was
blocked by dihydro-β-erythroidine (DHβE), blocker of non-
α7∗ nAChRs. The fast component was sensitive to the α7∗
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nAChR blocker methyllycaconitine (MLA) in both L1 and
2/3 interneurons. The inhibitory barrage on L2/3 pyramidal
neurons most likely depended on the slow current component
(Arroyo et al., 2012), since it was blocked by DhβE. The large
trial-to trial variability of the fast component supports direct
synaptic ACh transmission mediated by synaptic α7∗-nAChRs.
The amplitude and kinetics of the fast current was insensitive
to ACh breakdown (Bennett et al., 2012; Arroyo et al., 2014).
In contrast, the slow component had less trial-to-trial variability
and altered upon ACh breakdown. Thus, the slow component
involves diffusion of ACh over a distance, activating extra
synaptic α4β2∗ nAChRs. The fast nAChR EPSCs result from
direct transmission via synaptic or peri-synaptic α7∗ AChRs
(Arroyo et al., 2012, 2014). Surprisingly, optogenetic activation
of BF cholinergic fibers with single short light pulses triggered
synaptic responses in neocortical circuits that were mediated
solely by nicotinic AChRs, and not mAChRs (Letzkus et al.,
2011). This contrasts with fast cholinergic control of reticular
neurons in the thalamus, where activation of nicotinic and
muscarinic responses result in a rapid, biphasic modulation
of the membrane potential (Sun et al., 2013; Beierlein, 2017).
With more sustained activation of BF projections for seconds,
however, muscarinic receptors are engaged in visual cortex
L2/3 interneurons, which together with nicotinic receptor
activation of interneurons reduced action potential firing in
pyramidal neurons that changed visual responses (Kimura
et al., 2014). These experiments demonstrate that L1 and
L2/3 interneurons receive both direct and diffuse cholinergic
inputs in sensory cortical areas, by which the cholinergic system
manipulates neocortical processing on time scales ranging
from milliseconds to minutes (Arroyo et al., 2014). Thus,
cholinergic control is much more deterministic, and their
synaptic projections induce reliable and precise postsynaptic
responses.

Direct cholinergic synaptic transmission is also found in
deep layers of the neocortex. When BF inputs are activated
by ChR2, prefrontal cortical L6 pyramidal neurons show an
inward current that is mediated by nicotinic AChRs (Hay
et al., 2016; Verhoog et al., 2016). As in L1, muscarinic
receptor blockers had no effect on this current. The current
was not mediated by fast α7∗ subunit containing nAChRs, but
was completely blocked by non-α7∗ nACh receptor blockers
(Hay et al., 2016). The slow kinetics of the current resembled
that of a β2∗ nAChRs observed in L1 interneurons, which
would suggest activation of extrasynaptic receptors. However,
the onset kinetics and amplitude of these currents were not
sensitive to ACh degradation. Furthermore, in low release
probability conditions, response kinetics were unchanged.
Finally, responsive L6 pyramidal neurons were closely apposed
by cholinergic varicosities. Thus, the authors concluded that BF
projections to L6 pyramidal neurons make synapses equipped
with β2∗ nAChRs (Hay et al., 2016).

From these studies, the picture emerges that both point-
to-point cholinergic synaptic transmission as well as tonic
cholinergic transmission exist in the neocortex, which depends
on action potential firing regimes of BF neurons. At low firing
rates, only nicotinic AChRs are recruited that are predominantly

located in synapses. Repetitive activity of BF cholinergic neurons
recruits extrasynaptic α4β2∗ nAChR receptors as well as
muscarinic receptors by spillover (Kimura et al., 2014; Hay
et al., 2016). Thus, in the neocortex, nicotinic point-to-point
synaptic transmission prevails at low firing rates of BF neurons,
while a tonic extrasynaptic mode of cholinergic signaling with
low temporal fidelity will occur at higher, sustained discharge
frequencies of BF neurons (Kimura et al., 2014; Hay et al., 2016).

CHOLINERGIC MODULATION OF
NEOCORTICAL MICROCIRCUITS IS
LAYER-DEPENDENT

AChR are abundantly expressed in primate as well as rodent
neocortex (Metherate, 2004; Zilles et al., 2004; Poorthuis and
Mansvelder, 2013; Thiele, 2013). Both muscarinic and nicotinic
AChRs alter electrical activity of target cells and can activate
intracellular signaling cascades (Dajas-Bailador and Wonnacott,
2004; Gulledge and Stuart, 2005; Intskirveli and Metherate,
2012; Thiele, 2013; Yakel, 2013), despite distinct receptor
mechanisms. Nicotinic AChRs form pentameric ionotropic
receptors and are part of the cystine-loop superfamily of
receptors which conduct sodium, potassium and calcium and
depolarize membrane potentials (Gotti et al., 2006; Changeux,
2012). Muscarinic AChRs are G-protein coupled receptors that
activate intracellular signaling cascades, which can lead to
hyperpolarizations, depolarizations or combinations of those
(Bubser et al., 2012; Dasari et al., 2017). Of the muscarinic
M1 throughM5 cholinergic receptorsmainlyM1,M2 andM4 are
expressed in the neocortex (Levey et al., 1991; Bubser et al.,
2012), although M4 has a considerable lower expression than
the first two. In rodent neocortex, immunoreactive staining
of muscarinic receptors shows strong laminar patterns (Levey
et al., 1991). M1 immuno-reactivity was present in most cortical
neurons and was particularly dense in L2/3 and L6. M2 protein
was dense in L4 and the border of L5/6. M4 immunoreactivity
was localized in L2/3, L4 and L5. In human neocortex,
highest densities of M1 and M2 mAChRs were observed in
superficial layers of most cortical areas (reviewed in Wevers,
2011).

Muscarinic and nicotinic AChRs also show a strong layer
dependency in the cell types by which they are expressed
(Gulledge et al., 2007; Poorthuis et al., 2013a). Human
pyramidal cells express M1 and M2 mAChRs. M2 protein
was located on apical dendrites and cell bodies of the
large pyramidal cells and their dendrites in L2/3 and L5
(Wevers, 2011). L5 pyramidal cells of the rodent cortex
show a biphasic response to ACh that is mediated by
M1 receptors (McCormick and Prince, 1985; Xiang et al.,
1998; Gulledge and Stuart, 2005; Gulledge et al., 2009; Dasari
et al., 2017). In rats, cholinergic signaling through M1 mAChRs
in neocortical pyramidal neurons is quite heterogeneous
when comparing prefrontal, somatosensory, and visual cortex
(Gulledge et al., 2007). M1 mAChRs inhibit L5 pyramidal
neurons in many cortical areas via activation of an apamin-
sensitive SK-type calcium-activated potassium conductance, and
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FIGURE 1 | Cholinergic responses in adult human neocortex are cell type and lamina-dependent. (A) Left: example reconstruction of biocytin-labeled human
L2/3 pyramidal neuron. Right: No change in membrane potential occurred in response to a local application (puff) of 1 mM Acetylcholine (Ach; green bar, 30 s).
(B) Left: example reconstruction of biocytin-labeled human L6 pyramidal neuron. Right: examples of no change in membrane potential (top) and a depolarization
(bottom) in response to a local application of 1 mM ACh (green bar, 30 s). (C) Examples of biocytin-labeled human interneurons, with action potential firing profiles in
response to step current injections and voltage or current responses to local application of 1 mM ACh (green bar, 30 s). Gray traces were recorded in the presence of
nicotinic acetylcholine receptor (nAChR) blockers mecamylamine (MEC, middle traces, 1 µM) or dihydro-b-erythroidine hydrobromide (DHβE, bottom traces, 1 µM).
(D) Overview of functional nicotinic AChR expression in pyramidal neurons and the predicted expression in interneurons in different lamina of the human temporal
cortex. Data figures are representing edited versions of previously published findings (Alkondon et al., 2000; Verhoog et al., 2016).

this was most robust in PFC L5 neurons. Pyramidal neurons in
L2/3 responded less to ACh (Gulledge et al., 2007). Following the
M1-mediated inhibition, rat and mouse L5 pyramidal neurons
show a prolonged depolarization, which is also blocked by
M1 antagonists (Dasari et al., 2017). Phasic ACh administration
hyperpolarized these neurons, whereas tonic presence of ACh
has opposite effects (Gulledge et al., 2007). Sustained activation
of mAChRs drives prefrontal cortical pyramidal neurons and
interneurons to rhythmic activity that is layer-dependent:
superficial L2/3 pyramidal neurons synchronize firing at higher
frequencies than deep L6 pyramidal neurons (van Aerde et al.,
2009). L5 pyramidal neurons are flexible in timing their
action potentials either to L2/3 or to L6 pyramidal neuron
firing.

Cholinergic modulation can inhibit action potential firing of
pyramidal neurons in superficial cortical layers by augmenting
GABAergic inhibition through nAChRs and mAChRs (Kimura
and Baughman, 1997; Disney et al., 2012; Alitto and Dan,
2013; Soma et al., 2013; Kimura et al., 2014). In rodents,
application of ACh to non-fast spiking (non-FS) interneurons
in layers 2/3 and 5 generates mixed responses mediated by
muscarinic and nicotinic AChRs. Fast spiking (FS) interneurons
in rodent neocortex generally do not show muscarinic responses
(Gulledge et al., 2007), but species differences are large on

this point. More than 75 percent of PV-immunoreactive
visual cortical neurons in macaques, humans and guinea
pigs express M1 mAChRs (Disney and Reynolds, 2014).
In contrast, in rats only 25% of the visual cortex PV
population is immunoreactive for M1 mAChRs. Similar to
rodent cortex, non-PV interneurons in primate neocortex also
express M1 mAChRs (Disney et al., 2014). M2 mAChRs are
typically expressed at axons in neocortical interneurons (Disney
et al., 2006).

Nicotinic AChRs are highly expressed across all neocortical
regions (Metherate, 2004; Millar and Gotti, 2009). Different
cell types express various nAChR subunits depending on the
cortical layer they are in. In addition to α4, β2 and α7 subunits,
which are the most abundant neocortical nAChR subunits, the
accessory α5 subunit is highly expressed in neocortex (Millar
and Gotti, 2009; Counotte et al., 2012; Poorthuis et al., 2013a;
Tian et al., 2014). In most cortical areas, α5 subunits are
preferentially expressed in deep cortical layers (Wada et al.,
1990; Tian et al., 2014), and α5 subunit expression is much
lower in superficial layers (Winzer-Serhan and Leslie, 2005;
Poorthuis and Mansvelder, 2013; Poorthuis et al., 2013b).
Both in mouse and human neocortex, pyramidal neurons in
layer 2/3 hardly ever express nAChRs: over 90% of them are
devoid of nAChR currents (Figures 1A,B; Poorthuis et al.,
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2013a; Verhoog et al., 2016). Rodent L5 pyramidal neurons
show fast nAChR currents upon ACh application, mediated
by α7-containing nAChRs, whereas L6 pyramidal neurons
express β2 and α5 subunit containing nAChRs that give rise
to sustained inward currents that can drive action potential
firing (Kassam et al., 2008; Poorthuis et al., 2013a; Verhoog
et al., 2016). Human L6 pyramidal neurons also express these
nAChRs and are strongly excited by them (Figures 1B,D).
Interestingly, in smokers, the amplitude of nAChR currents
in L6 pyramidal neurons were substantially larger than in
non-smokers (Verhoog et al., 2016). Excitatory thalamocortical
inputs to L5 pyramidal neurons are strongly increased by
activation of presynaptic, axonal β2-containing nAChRs, as in
sensory cortical areas (Lambe et al., 2003; Metherate, 2004;
Kawai et al., 2007; Poorthuis et al., 2013a). Excitatory inputs
to L6 pyramidal neurons are not affected by nAChR activation
(Kassam et al., 2008; Poorthuis and Mansvelder, 2013). Overall
activation of the prefrontal cortical network is dominated
by β2-containing nAChRs and is layer specific with most
prominent neuronal activation in L6, while in superficial layers,
nAChRs specifically enhance inhibitory signaling (Poorthuis
et al., 2013a).

Both mouse and human neocortical interneurons express
functional nicotinic AChRs (Figures 1C,D; Alkondon et al.,
2000; Alkondon and Albuquerque, 2004; Poorthuis et al.,
2013a). In mouse PFC, fast-spiking interneurons, do not express
β2 receptors. However, in contrast to fast-spiking cells in L6,
parvalbumin-positive fast-spiking cells in L2/3 of the mPFC
do express α7-containing nAChRs receptors (Xiang et al.,
1998; Gulledge et al., 2007; Poorthuis et al., 2013a). Since PV
interneurons target perisomatic compartments of pyramidal
neurons, α7-containing nAChRs might regulate feedforward
inhibition (Tierney et al., 2004; Rotaru et al., 2005). Somatostatin-
expressing Martinotti cells in the mPFC are regulated by
β2∗ nAChRs and hence in part might account for the
strong inhibition of the pyramidal network observed during
nicotinic receptor stimulation (Gulledge et al., 2007; Poorthuis
et al., 2013a), which might serve to fine-tune processing
of synaptic inputs arriving at distal dendrites of pyramidal
neurons.

In sensory cortical areas, such as auditory and visual cortex,
VIP-positive neurons in superficial layers are recruited by
cholinergic inputs that activate nicotinic AChRs (Porter et al.,
1999; Letzkus et al., 2011; Bennett et al., 2012; Poorthuis
et al., 2014). Non fast-spiking (NFS) interneurons form
a heterogeneous group of interneurons and half of them
express β2-containing nAChRs, sometimes accompanied by
α7-containing nAChRs (Poorthuis et al., 2013a). β2-containing
nAChR expression of this cell type was found across
all cortical layers, indicating that they perform similar
roles across these microcircuits to fine-tune pyramidal
function. Since VIP-positive interneurons preferentially
inhibit somatostatin-positive and PV-positive interneurons,
nAChRs can augment inhibitory as well as disinhibitory
signals to neocortical pyramidal neurons. The phenomena
of augmented inhibition and increased disinhibition by
nicotinic AChR activation has been observed both in

mouse as well as in human neocortex (Alkondon et al.,
2000).

Cholinergic receptors are thus placed in excellent positions
to rapidly modulate various inhibitory circuit motifs (Tremblay
et al., 2016): feed-forward inhibition, lateral inhibition and
disinhibition. Thereby, the distributed laminar expression
pattern of nicotinic and muscarinic receptors can facilitate
specific and instantaneous changes in the direction of
information flow within cortical circuits (Xiang et al., 1998;
Gulledge et al., 2007; Poorthuis et al., 2013a). This will depend
on the cortical layer in which they are located and the temporal
pattern by which these receptors are activated, but can occur on
time scales of milliseconds to minutes.

LAYER-DEPENDENT MODULATION OF
CORTICAL SYNAPTIC PLASTICITY

Cholinergic modulation of cerebral cortical circuits is not
limited to transient changes in cellular and synaptic activity.
Both short-term and long-term synaptic plasticity can be
altered by cholinergic receptor activation by BF inputs. The
cellular and sub-cellular location of cholinergic receptors not
only affects neuronal circuitry excitability, but it will also
determine how glutamatergic synapse plasticity is affected by
cholinergic inputs (Verhoog et al., 2016). For instance, nAChRs
containing α5 subunits expressed in L6 pyramidal neurons
regulate short-term plasticity at L6 glutamatergic synapses
(Hay et al., 2016). Nicotinic AChRs on presynaptic terminals
transiently augment synaptic glutamate release (McGehee
et al., 1995; Gray et al., 1996), and presynaptic α7 subunit-
containing nAChRs with high calcium permeability, induce
long-term potentiation of glutamatergic synapses in several
brain areas (Mansvelder and McGehee, 2000; Gu and Yakel,
2011).

Modulation of synaptic plasticity by muscarinic receptors
has been found in hippocampal circuits. Low concentrations of
mAChR agonists can modulate plasticity of glutamatergic
synapses onto hippocampal pyramidal neurons (Shinoe
et al., 2005), by inhibiting potassium channels (Buchanan
et al., 2010). M1 mAChRs directly excite CA1 pyramidal
neurons and induce a robust strengthening of glutamatergic
synapses in CA1 pyramidal neurons (Dennis et al., 2016).
Whether these muscarinic mechanisms also modulate synaptic
plasticity in the neocortex remains to be established. Spike-
timing-dependent plasticity is altered by recruitment of
mAChRs and presynaptic nAChRs (Ji et al., 2001; Ge and
Dani, 2005; Gu and Yakel, 2011). Activity of nAChRs
bi-directionally alters plasticity, and the sign of synaptic
change depended on timing and localization of nAChR
activation. Dendritic α7 nAChRs boost short-term plasticity
into long-term plasticity. When nAChRs on neighboring
interneurons were activated, plasticity was blocked (Ji et al.,
2001). In L6 of the entorhinal cortex, non-α7 nAChRs can
also boosted short-term to long-term potentiation (Tu et al.,
2009), but mechanisms and locations of nAChR remain to be
elucidated.

Frontiers in Neural Circuits | www.frontiersin.org 6 December 2017 | Volume 11 | Article 100

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Obermayer et al. Cholinergic Modulation of Cortical Microcircuits Is Layer-Specific

FIGURE 2 | In adult human neocortex, ACh alters long-term synaptic plasticity of glutamatergic synapses in opposite directions in superficial and deep layers. Top,
left: In adult human neocortical L2/3 pyramidal neurons in control conditions (open gray square) and experiments where ACh was present in the bath during
long-term potentiation induction (pre- and postsynaptic activity pairing, open green circle). Top, middle: top traces: example EPSP waveforms recorded during
baseline (light color) and 20–25 min. after pairing (dark color), for tLTP experiments with and without ACh present in bath during pairing. Horizontal scale bar: 30 ms;
vertical scaling as below. Bottom traces: membrane potential change over course of pairing period (gray shading) relative to baseline for experiments where ACh was
washed-in during pairing. Scale bars, 3 mV, 2 min. Top, right: summary bar chart showing change in EPSP slope of control LTP and ACh LTP experiments in human
L2/3 neurons. Bottom, as in top figure, for nAChR-bearing human L6 pyramidal neurons. Note that in contrast to L2/3, in L6 long-term potentiation of human
glutamatergic synpases is increased by ACh (∗p ≤ 0.05). Figure is modified from Verhoog et al. (2016), no permission required.

Over the past decade, we have found that in the rodent
PFC, the rules of inducing plasticity of glutamatergic synapses
are altered by cholinergic inputs from the BF depending on
the cortical layers, resulting from a layer-and cell-type specific
expression of nAChRs (Couey et al., 2007; Goriounova and
Mansvelder, 2012; Verhoog et al., 2016). Recently, we identified
similar mechanisms in human neocortex: Cortical lamina-
specific distributions of nAChRs induce opposite manipulation
of synaptic plasticity by ACh in superficial and deep layers
(Figure 2; Verhoog et al., 2016).

In the rodent PFC, despite the robust nAChR modulation
of thalamic excitatory inputs (Lambe et al., 2003; Couey
et al., 2007; Poorthuis et al., 2013a), inhibitory synaptic
transmission is increased and the excitability of L2/3 and
L5 pyramidal neuron is reduced by nAChRs located on
GABAergic interneurons. Activation of these nAChRs on

interneurons by BF inputs suppresses long-term potentiation
of glutamatergic synapses by reducing calcium signaling in
pyramidal neuron dendrites of L2/3 and L5 (Couey et al.,
2007; Goriounova and Mansvelder, 2012; Verhoog et al.,
2016). These mechanisms are also in place in the rodent
insular cortex (Sato et al., 2017). In contrast to superficial
layers, nAChRs do not modulate inhibitory GABAergic and
excitatory glutamatergic transmission in L6 pyramidal neurons.
Instead, L6 pyramidal neurons are directly activated by
postsynaptic nAChRs (Kassam et al., 2008; Bailey et al.,
2012; Poorthuis et al., 2013a). Activation of these postsynaptic
nAChRs on L6 pyramidal neurons by ACh release from BF
inputs increases glutamatergic synaptic plasticity by augmenting
calcium influx in pyramidal neuron dendrites (Verhoog
et al., 2016). Thus, in L6 glutamatergic synaptic plasticity is
modulated in the opposite direction from superficial layers
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by endogenous ACh, which oppositely modulates dendritic
calcium signals in superficial and deep layer pyramidal
neurons. These mechanisms also exist in human brain: cortical
lamina-specific nAChR expression drives opposite cholinergic
modulation of synaptic plasticity in superficial and deep
layers (Figure 2). Thus, the functional organization of cortical
microcircuit modulation by the cholinergic system is most
likely similar in rodent and human neocortex (Verhoog et al.,
2016).

In the rodent PFC, fast synaptic cholinergic synaptic inputs
mediated by nAChR containing β2 and α5 subunits are
received by L6 pyramidal neurons (Hay et al., 2016), and
these inputs can enhance synaptic plasticity (Verhoog et al.,
2016). Since distinct BF nuclei preferentially target superficial
or deep layers (Bloem et al., 2014), distinct BF cholinergic
neuron populations may innervate superficial interneurons and
L6 pyramidal neurons. The combination of the cell-type and
lamina-specific distribution of cortical nAChRs taking part in
ACh synaptic transmission (Poorthuis et al., 2013a; Arroyo et al.,
2014; Hay et al., 2016), enables a fine spatial and temporal

control of cortical signaling and plasticity by BF cholinergic
neurons.

CONCLUSION AND FUTURE DIRECTIONS

The evidence thus presents us with a landscape of cholinergic
modulation of the cerebral cortex that is much more refined than
previously considered, both on a spatial as well as a temporal
scale. From various retrograde and anterograde anatomical
methods it is now becoming clear that the BF cholinergic system
specifically targets sub-regions of brain areas, as found in both
prefrontal cortical subareas as well as rhinal cortical subareas
(Bloem et al., 2014; Kondo and Zaborszky, 2016). Based on
topographic location of cholinergic neurons, not only specific
parts of brain areas are targeted, but superficial and deep
cortical layers are distinctly innervated as well. Both neocortical
pyramidal and interneurons can receive fast point-to-point
cholinergic synapses that use nicotinic AChRs. Extrasynaptic
nicotinic and muscarinic AChRs are predominantly recruited
during repeated firing by BF cholinergic neurons. Thereby, both

TABLE 1 | Cross-species comparison of the neocortical cholinergic system.

Anatomy of cholinergic projections Rodent Monkey Human

Topographical organization of cholinergic
projections from the BF to the cortex

Yes (1,2,3) - Yes (4)

Dominant BF origin of neocortical
cholinergic innervation

Nucleus Basalis, SI (5,6,7) Nucleus Basalis, SI (Ch4) (8) Nucleus Basalis, SI (Ch4) (8)

Cholinergic synapses
Percentage of varicosities on cholinergic
axons that from identified synaptic
structures in EM

15% (Cingulate cortex) (9) 40% (PFC) (10) 67% (Temporal cortex) (11)

Muscarinic acetylcholine receptors
Layer dependent expression of muscarinic
receptors M1–M5

Yes (12,13) Yes (14) Yes (14)

Expression of M1 mAChR L2/3 and 6 (14) L1–6 (15) Superficial layers (14)
Expression of M2 mAChR L4 and border L5/6 (14) L1–6 (23) Superficial layers (14)
Expression of M1 mAChR in pyramidal
neurons in the neocortex

L5 (12) - -

Expression of M1 mAChR in non-PV
interneurons in the neocortex

Yes (14) Yes (15) -

Percentage of PV-interneurons in the visual
cortex that express M1 mAChR

25% (15) 75% (15) -

Expression of M2 mAChR in non-PV
interneurons in the neocortex

No (12) Yes (23) -

Percentage of PV-interneurons in the visual
cortex that express M2 mAChR

- 20%–70% (23) -

Nicotinic acetylcholine receptors
Expression of active nAChRs in pyramidal
and interneurons in the neocortex

Yes (16,17,18,19,20) - Yes (20,21,22)

Layer specific expression of nAChRs in
pyramidal neurons in the neocortex

Yes (20) - Yes (20)

Increased dishinhibition by activation of
nAChR in the neocortex

Yes (22) - Yes (21)

Plasticity
Layer specific modulation of plasticity in the
human neocortex by nAChRs

Yes (20) - Yes (20)

References: 1,2,3 (Bloem et al., 2014; Woolf and Butcher, 2011; Zaborszky et al., 2015), 4 (Mesulam, 2013), 5,6,7 (Lamour et al., 1982; Price and Stern, 1983; Rye et al.,
1984), 8 (Mesulam and Geula, 1988), 9 (Umbriaco et al., 1994), 10 (Mrzijak et al., 1995), 11 (Smiley et al., 1997), 12,13 (Gulledge et al., 2007; Levey et al., 1991), 14
(Wevers, 2011), 15 (Disney et al., 2014), 16,17,18,19,20 (Counotte et al., 2012; Millar and Gotti, 2009; Poorthuis et al., 2013a; Tian et al., 2014; Verhoog et al., 2016),
21,22 (Alkondon et al., 2000; Alkondon and Albuquerque, 2004), 22 (Letzkus et al., 2011), 23 (Disney et al., 2006).
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specific rapid changes in microcircuit activity can be induced
on a millisecond time scale, as well as cortical state changes
that last minutes or more. The striking observation that in
human neocortex, 67% of cholinergic varicosities form synaptic
specializations (Smiley et al., 1997), in contrast to only 15%
in rodent neocortex (Umbriaco et al., 1994), may suggest that
direct point-to-point cholinergic synaptic transmission is highly
prevalent in human cortex, but this awaits further testing. Both
in rodent and human neocortical microcircuits, the cell-type
specific distribution of nicotinic and muscarinic support a layer-
specific modulation of circuit motifs and synaptic plasticity.
Although the human neocortex shows structural similarities
to the rodent neocortex, many striking differences in cellular
and synaptic structure and function have been uncovered in
recent years (presented in detail in Table 1, Molnár et al., 2008;
Verhoog et al., 2013; Testa-Silva et al., 2014; Mohan et al.,
2015; Eyal et al., 2016). The fact that a layer-specific pattern
of nAChR expression underlies distinct cholinergic modulation
of glutamatergic synaptic plasticity in human neocortex as
well (Verhoog et al., 2016), raises the possibility that in the
human brain too, cholinergic modulation of cortical information
processingmay operate on a highly detailed scale, both in cortical
space and time. Novel approaches will be needed to be able to test
whether functional fast cholinergic transmission is prevalent in
human neocortex, as is suggested by the ultrastructural analysis.

The findings that ACh can act both on a slow time scale and in
fast synaptic transmission, in both a volume transmission mode
and point to point cholinergic synapse level extends our views on

how ACh can modulate microcircuit function in the cortex. New
in vivo optogenetic approaches should test what the role of these
different signaling modes is in behavior. Activating or inhibiting
cholinergic projections on a fast time scale should bring us in
a position to unravel how this correlates with attention and
memory performance. Disentangling the contributions of fast
and slow signaling modes could also provide a novel view on
disorders in which cholinergic signaling is affected, such as
Alzheimer disease. The binding of Aβ to α7 nAchRs (Nagele
et al., 2002; Lamb et al., 2005; Gu and Yakel, 2011) may
differentially affect synaptic vs. slower cholinergic signaling
modes.
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