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Abstract

Integration of retroviral vectors in the human genome follows non random patterns that favor insertional deregulation of
gene expression and may cause risks of insertional mutagenesis when used in clinical gene therapy. Understanding how
viral vectors integrate into the human genome is a key issue in predicting these risks. We provide a new statistical method
to compare retroviral integration patterns. We identified the positions where vectors derived from the Human
Immunodeficiency Virus (HIV) and the Moloney Murine Leukemia Virus (MLV) show different integration behaviors in human
hematopoietic progenitor cells. Non-parametric density estimation was used to identify candidate comparative hotspots,
which were then tested and ranked. We found 100 significative comparative hotspots, distributed throughout the
chromosomes. HIV hotspots were wider and contained more genes than MLV ones. A Gene Ontology analysis of HIV targets
showed enrichment of genes involved in antigen processing and presentation, reflecting the high HIV integration frequency
observed at the MHC locus on chromosome 6. Four histone modifications/variants had a different mean density in
comparative hotspots (H2AZ, H3K4me1, H3K4me3, H3K9me1), while gene expression within the comparative hotspots did
not differ from background. These findings suggest the existence of epigenetic or nuclear three-dimensional topology
contexts guiding retroviral integration to specific chromosome areas.
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Introduction

Seminal clinical studies have recently shown that transplantation

of stem cells, genetically modified by retroviral vectors, may cure

severe genetic diseases such as immunodeficiencies [1,2], skin

adhesion defects [3] and lysosomal storage disorders [4]. Unfortu-

nately, some of these studies also showed the limitations of retroviral

gene transfer technology, which may cause severe and sometimes

fatal adverse effects. In particular, insertional activation of proto-

oncogenes by vectors derived from the Moloney murine leukemia

virus (MLV) caused T-cell lymphoproliferative disorders in five

patients undergoing gene therapy for X-linked severe combined

immunodeficiency [5,6], and pre-malignant expansion of myeloid

progenitors in two patients treated for chronic granulomatous

disease [7]. Pre-clinical experiments showed that HIV-derived

lentiviral vectors are less likely to cause insertional gene activation

than MLV vectors. Most of the studies on retroviral integration

preferences, however, have been carried out on cell lines that poorly

represent the genomic characteristics of somatic stem cells, or on

limited numbers of patient-derived cells. A better understanding of

the interactions between retroviral vectors and the genome of

clinically relevant target cells may provide a more rational basis for

predicting genotoxic risks in clinical gene therapy.

A large number of studies have focused on the molecular

mechanisms by which mammalian retroviruses choose their

integration sites in the target cell genome. After entering a cell,

the retroviral RNA genome is reverse transcribed into double-

stranded DNA, and assembled in pre-integration complexes (PICs)

containing viral as well as cellular proteins. PICs associate with the

host cell chromatin, where the virally encoded integrase mediates

proviral insertion in the genomic DNA. Retroviral integration is a

non-random process, whereby PICs of different viruses recognize

components or features of the host cell chromatin in a specific

fashion [8]. The LEDGF/p75 protein has been identified as the

main factor tethering HIV PICs to active chromatin [9], while

mechanisms underlying integration site selection of other retrovi-

ruses remain largely unknown. We recently showed that MLV-

derived vectors integrate preferentially in hotspots near genes

involved in the control of growth, differentiation and development

of hematopoietic cells and flanked by defined subsets of

transcription factor binding sites; this suggested that MLV PICs

are tethered to transcriptionally active regulatory regions engaged

by basal components of the RNA Pol II transcriptional machinery

[10,11]. On the contrary, HIV-derived vectors target expressed

genes in their transcribed portions away from regulatory elements,

suggesting a different evolutionary strategy for these two viruses.
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The molecular basis of retroviral target site selection is still

poorly understood. The concept of integration ‘‘hotspot’’ was

introduced to describe areas of the genome where integrations

accumulate more than expected by chance in the absence of any

selection process [10]. Hotspots therefore differ from ‘‘common

integration sites’’ (CIS), which were defined as sites recurrently

associated with virus-induced malignant expansion [12]. The final

goal in finding hotspots is to investigate genomic properties that

lead certain areas to ‘‘attract’’ or ‘‘refuse’’ integration. We

suggested in previous work that integration preferences are

dependent on the intrinsic gene density distribution and on the

type of vector [13,14].

In this paper we develop a statistical methodology to detect

‘‘comparative’’ hotspots, i.e. areas of the genome where

integration intensities of MLV and HIV appear to differ. We

do not find regions where the viruses prefer to integrate, but

where the integration patterns are different. Our approach

followed two steps: first candidate comparative hotspots were

identified by comparing variability bands around estimated

integration intensities along the genome, and then each

candidate comparative hotspot was tested in turn. After

multiplicity correction we produced a list of 100 comparative

hotspots, ready for further biological validation. Our analysis

discriminated regions which were targeted by both viruses, most

likely on the basis of their accessibility (high content of active

genes), from regions specifically that are preferred by either

MLV or HIV. We show that HIV and MLV integrate

differently in regions spanning 0.2 to .6 Mb in the human

genome, with specific patterns. In particular, HIV-specific

hotspots are wider and contain a larger number of genes. The

preference of HIV or MLV for these regions cannot be

explained by the known viral target site selection preferences,

or by the expression characteristics of the targeted genes,

suggesting the existence of epigenetic or nuclear topology

contexts that drive retroviral integration to specific chromosome

territories.

Results

We developed a new statistical method to compare the

integration preferences of distinct retroviral vectors in the human

genome and we used it to analyze a collection of ,30,000 MLV

and HIV-vector insertion sites in human CD34+ hematopoietic

stem-progenitor cells [15]. Figure 1 illustrates how the method-

ology performs on chromosome 6. We compared the two

integration propensities for each arm and strand separately. The

blue 99% variability band corresponds to the integration density of

HIV, estimated from our data; in red the band for MLV. When

the two bands stay apart, one above the other, a candidate

comparative hotspot is identified as the segment of such empty

intersection. These are depicted as blue and red thick segments in

the center of the plot. In chromosome 6 we identified 12 candidate

hotspots where MLV shows more integrations than HIV, and 5

candidate hotspots where HIV is dominating. In most of

chromosome 6, we found no differences in integration patterns.

Note the high peak of integration on the p-arm for HIV, on both

strands, corresponding to the MHC locus. Similar plots for all

chromosomes are available in supplementary material Figure S1

and Figure S2.

The panels of Figure 2 show two typical situations in detail. The

panel A (left side) from the HIV HLA locus in chromosome 6, arm

p; upper panel refers to strand+, lower panel refers to strand -. We

see how the estimated variability bands, around the non-

parametrically estimated integration densities, are clearly apart

from each other. The bands overlap at both ends of the

comparative hotspot, which is therefore well defined. The width

of the bands describes the statistical uncertainty attached to the

estimated densities: in both cases the MLV bands are quite thin, as

there are a total large number of integrations. The bands for HIV

are larger; the exact density function is difficult to estimate with

limited sample size. Despite the uncertainty, the candidate hotspot

in panel A is clearly identified. The panels B of Figure 2 show a

candidate comparative hotspot in the plus strand of chromosome

6, arm q, which has no corresponding in the minus strand. In

other locations of the genome, the two bands often overlap simply

due to lack of data, rather than because the two vectors are equally

distributed. This indicates that our method will leave undiscovered

comparative hotspots (false negatives). Not all the candidate

comparative hotspots that we identified were clearly distinguish-

able.

Our analysis led to 256 candidate comparative hotspots on all

chromosomes (see, supplementary material, Table S1). Each

candidate comparative hotspot was then tested individually. We

computed odds ratios, between HIV and MLV odds of

integrations in each hotspot, and tested the null hypothesis that

the odds ratio is one. P-values were then corrected for multiple

testing. This reduced the number of significative comparative

hotspot to 100, reported in Table 1.

The length of the hotspots varies between ca. 200,000 bp and

7,000,000 bp, but most are longer than 106 bp. They include

between 1 and 179 genes. Of the 100 significative comparative

hotspots, 49 have a higher density of HIV integrations (lengths

ranging between 378,200 and 6,857,000 bp; median:

2,651,000 bp, 2,027 unique target genes) while 51 contain a

higher MLV density (lengths ranging between 211,300 and

6,021,000 bp; median: 1,319,000 bp, 475 unique target genes).

The median length of MLV hotspots is about the half of the

median length of HIV hotspots with a significative difference (p-

value: 2.108N10206; Mann-Whitney test, p-values computed by

permutations). The wideness of HIV hotspots only partially

accounts for the higher number of target genes compared to

Author Summary

Understanding how retroviral vectors integrate in the
human genome is a major safety issue in gene therapy,
since a concrete risk of developing tumors associated with
the integration process has been observed in several
clinical trials. Statistical analyses confirmed the non
randomness of the integration. Where and why do virus-
specific integrations tend to accumulate in the genome?
We compared integration preferences of two retroviral
vectors derived from HIV and MLV, which are used in most
gene therapy trials for hematological disorders, in their
actual clinical targets, i.e., human hematopoietic stem/
progenitor cells. We developed a new statistical method to
find areas of the genome, called comparative hotspots,
where integration preferences are significantly different.
We modeled the integration process as a stochastic
process, so that integration sites are seen as samples from
an unknown virus-specific probability density function.
Thus, the problem became to identify areas where two
empirical density functions differ significantly. The com-
parison of nonparametric variability bands around the
estimated integration densities allowed identifying and
ranking candidate comparative hotspots. Results indicated
clear differential patterns of integration between HIV and
MLV, leading to new hypotheses on the mechanisms
governing retroviral integration.

Comparative Retroviral Hotspots
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MLV (2,027 vs. 475), as shown by plotting the number of targets

per hotspot normalized by the hotspot length (see Figure 3: p-

value = 1.953*1028, Mann-Whitney test, p-values computed by

permutations). This hints at gene density as a critical parameter for

HIV integration site selection and is in accordance with the recent

finding that MLV integration is associated to transcription

regulatory regions rather than to genes [11,15,16].

To investigate the categories of genes preferentially targeted by

the comparative hotspots we performed a Gene Ontology (GO)

classification of HIV and MLV target genes (supplementary

material, Table S2). Among the 2,027 genes in the comparative

hotspots with HIV preference, the analysis showed a significant

enrichment over the background (0.005,p-values,0.05, Fischer’s

exact test with Bonferroni correction for multiple testing) for genes

involved in antigen processing and presentation, and in hormone

nuclear receptor activity. Remarkably, both GO terms exclusively

contained genes located in the MHC locus on chromosome 6

(highest peak in Figure 1). Among the 475 MLV targets, genes

participating in adaptive immune response, signal transduction,

and regulation of biological processes were over-represented

(0.005,p-values,0.05). Differently from HIV targets, these genes

did not belong to the same chromosomal region.

The annotation of oncogenes [17] (Sanger Cancer Gene Census,

http://www.sanger.ac.uk/genetics/CGP/Census) incorporated into

comparative hotspots (see the full gene Table S1 in supplementary

material) did not reveal a significant difference in the targeting

Figure 1. Integration densities of HIV and MLV in CD34+ cells, for chromosome 6. We analyzed each strand separately: the upper half is
the + strand and the lower the - strand. In blue the estimated variability band at level 0.99 for HIV integrations (n = 1629), in red for MLV (n = 1815).
Candidate comparative hotspots are plotted in the two central x-axes, the color indicating which of the two vectors had stronger integration
intensity (HIV: blue; MLV: red). In the other four x-axes, each tick represents one integration site, with the same color code. Because of resolution,
many ticks fall on the same point and cannot be distinguished.
doi:10.1371/journal.pcbi.1002292.g001
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frequency between the two vectors, both when considering all genes

(0.045 for HIV vs. 0.050 for MLV, p-value: 0.4109) or the sole genes

in the 100 significative comparative hotspots (0.047 for HIV vs. 0.054

for MLV, p-value: 0.06707). We next investigated the relation

between gene expressions and comparative integration hotspots. We

compared the frequency of expressed genes belonging to comparative

integration hotspots with the frequency of transcribed genes located

elsewhere in the genome. After multiple testing corrections, we found

just one hotspot with increased presence of expressed genes with

respect to the genomic baseline (hiv_55, adjusted p-value 0.02800; see

Table S1, supplementary material for full results). Three comparative

hotspots, all with higher MLV density (mlv_50, mlv_51, mlv_124,

p-values: 0.00075, 00.00197, 0.00778 respectively), showed instead a

reduced presence of expressed genes.

Since there is strong evidence of association between integration

sites and specific histone modifications [18,19,20], we also

investigated the histone methylation [21] density in comparative

hotspots, defined as the methylation intensities (i.e., the number of

ChIP-seq reads) in each comparative hotspot, divided by the

hotspot length; the same was done for the histone variant H2A.Z.

Figure 2. Two typical situations in comparative hotspots. In panel A (left side) the bands don’t overlap in plus and minus strands, suggesting
the presence of two candidate comparative hotspots (hotspots ID: hiv_36 and hiv_40, see supplementary material, Table S1). Differences in
integration densities in one versus the other strand may reflect a preferential integration orientation at that particular locus. In panel B (right side) the
bands don’t overlap in the plus strand (upper panel) whereas on the minus strand they do (lower panel), suggesting only one candidate (hotspot ID:
mlv_43, see supplementary material, Table S1). These examples are taken from chromosome 6.
doi:10.1371/journal.pcbi.1002292.g002
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We compared the mean density of histone modifications

associated to transcription or heterochromatin in HIV vs. MLV

hotspots using the Welch statistic test, which does not assume the

same variance for the two groups, with p-values computed by

permutations. After adjustment for multiplicity (Bonferroni-Holm)

three methylations and the one histone variant analyzed were

found to have different mean density in HIV vs. MLV hotspots

(H3K4me1, H3K4me3, H3K9me1, H2AZ; adjusted p-values:

0.000096, 0.000010, 0.020986, 0.000018 respectively). Results are

summarized in table 2.

The construction of the variability bands of an integration

density depends on a design smoothing parameter, as described in

Table 1. Comparative Hotspots.

virus chr strand start end length OR adjusted-p # genes

hiv chr11 + 63052973 68240744 5187771 6.73 1.16e-052 177

hiv chr6 2 29857643 34003291 4145648 25.59 7.53e-046 171

hiv chr16 2 0 3573133 3573133 9.82 1.85e-045 171

hiv chr11 2 63408683 68252636 4843953 5.23 6.59e-045 169

hiv chr6 + 29653216 33939640 4286424 31.23 2.42e-043 179

hiv chr16 + 0 3106569 3106569 13.06 3.32e-042 153

hiv chr1 + 0 4770330 4770330 14.32 1.66e-027 89

hiv chr3 2 46696908 53554160 6857252 4.03 1.58e-025 159

hiv chr17 2 70567573 74031223 3463650 4.35 1.14e-024 81

hiv chr17 + 77083925 78700791 1616866 8.53 2.45e-024 56

hiv chr9 + 136302969 140273252 3970283 7.96 4.03e-023 97

hiv chr1 2 151528646 154707353 3178707 4.77 4.52e-020 114

hiv chr9 2 135483396 140273252 4789856 6.70 1.62e-019 105

hiv chr3 + 46805137 51013082 4207945 3.78 1.18e-014 101

hiv chr1 + 152393200 155051471 2658271 3.61 1.36e-014 97

hiv chr8 + 143266499 146274826 3008327 5.29 1.76e-013 94

hiv chr17 2 76476613 78537508 2060895 4.42 1.85e-013 67

hiv chr2 2 26376098 28509807 2133709 5.32 4.64e-013 51

hiv chr8 2 142937251 146274826 3337575 5.58 7.07e-013 94

hiv chr17 + 71000437 72361727 1361290 5.03 2.53e-012 50

mlv chr18 + 71458533 76117153 4658620 14.38 1.65e-011 17

mlv chr21 2 38477753 39470763 993010 23.96 1.13e-010 5

hiv chr22 + 48573053 49691432 1118379 6.34 8.99e-010 38

hiv chr20 2 60274607 62435964 2161357 6.34 8.99e-010 60

mlv chr17 + 51301476 53344785 2043309 15.10 5.64e-009 12

hiv chr4 2 0 3791201 3791201 4.67 1.23e-008 61

hiv chr16 + 86724460 88827254 2102794 4.08 3.24e-008 45

mlv chr20 + 51190248 52356969 1166721 13.94 5.88e-008 6

hiv chr19 + 54403063 55308772 905709 5.97 7.82e-008 47

mlv chr12 + 115324321 117477353 2153032 10.89 1.10e-007 16

mlv chr6 2 5956453 7313927 1357474 33.96 1.20e-007 6

hiv chr2 + 26617223 28096371 1479148 3.50 1.34e-007 47

hiv chr19 2 54293977 55393350 1099373 5.65 4.17e-007 54

hiv chr22 2 48767773 49691432 923659 4.40 4.85e-007 33

hiv chr2 2 185808293 188459285 2650992 8.25 5.51e-007 7

mlv chr18 2 71648647 73379689 1731042 10.02 1.04e-006 5

hiv chr12 + 47052128 48977359 1925231 4.53 1.39e-006 53

hiv chr15 + 38942654 41945536 3002882 3.80 2.97e-006 61

mlv chr20 2 51173685 52422011 1248326 9.58 3.17e-006 6

mlv chr3 + 70940451 72487606 1547155 9.36 5.55e-006 4

List of the 40 top hotspots for which the p-value (Bonferroni-Holm adjusted [41]) of the odds ratio (OR) being equal to one, was below 0.05. The first column indicates
which virus had most integrations. Columns 2–5 locates the hotspot on its chromosome. Column 6 contains the width of the hotspot (min: 211313 bp, max: 6857252).
The OR (column 7) was always defined to be larger than 1 (min: 2.24, max: Inf). The adjusted p-values are in column 8. The number (#) of genes included in each
hotspot is in the last column (range: 1 to 179). Full table is available in supplementary material Table S1.
doi:10.1371/journal.pcbi.1002292.t001
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the Materials and Methods section. The choice of such smoothing

parameters controls the regularity of the variability bands and

therefore had an effect on the comparison. We estimated the

smoothing parameters in an optimal fashion (in correspondence to

which results were reported), but also studied robustness of the

hotspots by varying them systematically. We systematically

checked if a comparative hotspot would have persisted for larger

and smaller smoothing parameters. Figure 4 shows the results of

such a sensitivity study for two strands of chromosome 6. The

middle line, corresponding to 1, shows the hotspot identified by

the two optimal smoothing parameters, while above and below

that we see how hotspots would grow and shrink by increasing and

reducing the smoothing level. It is important that the chosen

segments at level 1 continue to appear for values just above and

under, as happened systematically. This visual inspection strength-

ens the validity of the way we chose the smoothing parameters. See

Methods for more details and supplementary material Figures S3,

S4, S5, S6, S7 and S8 for robustness plots for all chromosomes.

Discussion

Integration of MLV-derived retroviral vectors may have

significant consequences on gene expression and homeostasis of

transduced and transplanted target cells, particularly in the

hematopoietic system. The enhancer activity of the MLV LTRs

may de-regulate proto-oncogenes, and cause pre-neoplastic clonal

expansion [7,22], leukemic transformation without clonal expan-

sion [5,6,23], or no apparent adverse effect [1] depending on the

disease context and a number of still ill-defined factors. Integration

sites can be used as markers of clonality to study the clonal

dynamics of transduced cells in vivo, and provide important clues to

predict the potential genotoxicity of MLV integration in a specific

Figure 3. Gene density of HIV and MLV comparative hotspots. Histogram of the number of target genes per hotspot normalized by hotspot
length in HIV (blue bars, upper panel) and MLV (red bars, lower panel).
doi:10.1371/journal.pcbi.1002292.g003
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cell or disease context [23,24,25,26,27]. We used LM-PCR and

pyrosequencing to derive high-definition maps of MLV and HIV

integration sites in the genome of human CD34+ hematopoietic

progenitors. As previously reported [14], MLV integrations were

clustered around gene regulatory elements (promoters, enhancers,

evolutionarily conserved non-coding regions) bearing epigenetic

marks of active transcription (H3K4me1, H3K4me2, H3K4me3,

H3K9Ac) and specialized chromatin configurations (H2A.Z). On

the contrary, HIV integrations occurred away from regulatory

elements, and are associated with histone modification enriched in

the body of transcribed genes (H3K36me3 and H2BK5me1). In

both cases, statistical analysis identified hotspots of clustered

integrations with strong correlation with transcriptional activity,

using random integration datasets as controls.

In this study, we identify broad areas of the genome where HIV

and MLV integrate differently; therefore it was not expected to

find comparative hotspots in areas of high gene expression. This is

in accordance with the fact that a single hotspot showed an

increased expression level with respect to the rest of the genome.

We used non-parametric density estimation and variability bands

to identify regions of the genome as candidate comparative, i.e.,

virus-specific, hotspots. Thereafter, these were tested for signifi-

cance. The first step delivers a series of bins, of variable length,

were the two integration frequencies appear to be different. This

strategy is more effective than binning the chromosome with equal

size bins, since some of them might not be large enough to contain

enough integrations. An optimal bin size algorithm, producing a

constant bun size, would easily divide a chromosome in a dozen

bins, which would be too large to be of practical interest as

candidate hotspots. Our approach generates a list of bins of

variable and adaptive length, only in areas of interest. Interest-

ingly, this analysis identified large genomic regions (0.2 to .6 Mb

in length) rather than local (,100 kb) hotspots. Most genomic

regions are targeted by both virus types, most likely because they

contain a high proportion of active genes and regulatory elements.

Some regions, however, are targeted by either virus in a specific

fashion, where HIV-specific hotspots tend to be larger in size and

to contain more genes. The expression and gene ontology

characteristics of the genes contained in MLV and HIV-specific

regions, however, were comparable, and there are no obvious

characteristics that would predict such a striking virus-specific

preference. While MLV-specific regions are enriched for histone

modifications/variants correlated with active regulatory regions

(H3K4me1, H2A.Z), HIV-specific regions have a higher density of

H3K4me3, associated to active transcription start sites. Although

counterintuitive, given the well-known MLV preference for

transcription start sites, this might be simply explained by the

higher gene content of HIV-specific hotspots. Unfortunately,

genomic distribution of HIV tethering factors, such as LEDGF/

p75, is not known, particularly for hematopoietic progenitors, and

it is therefore impossible to test whether high protein concentra-

tion in specific chromosomal region may explain the HIV-specific

preferences.

Interestingly, we found a significant comparative hotspot

spanning the entire MHC locus on chromosome 6 (from the

MHC class I to the extended MHC class II subregions [28]) with

increased HIV, but not MLV, integration propensity. Importantly,

a gene-centric hotspot definition would have failed to detect this

locus, since in this particular case intergenic regions rather than

single genes are highly targeted by HIV.

Large, virus-specific hotspots may suggest that tethering of PICs

to chromatin favors relatively wide chromosomal territories

independently from their content or local concentration of

‘‘attractive’’ features, such as GC content of DNA, binding of

factors or transcriptional complexes, nucleosome density or

epigenetic marks. This type of preference may instead reflect

larger scale, nuclear topology factors that make these regions more

accessible to one or another virus type. The modalities by which

HIV and MLV access target cell chromatin, may be a critical

factor underlying these preferences. MLV is incapable of entering

intact nuclei and requires cell division in order to integrate, while

HIV is actively imported in interphase nuclei through the nuclear

pores. MLV and HIV PICs therefore ‘‘see’’ chromatin in different

phases of the cell cycle, and may have access to different regions

simply because they are differently exposed. Recent studies

showed that alterations in the nuclear pore architecture impairs

HIV nuclear import and impacts on integration efficiency,

suggesting that access to chromatin is mediated by the nuclear

pore and may be a critical component of target site selection

[29,30]. The HIV-specific hot regions identified in this study may

Table 2. Density of histone modifications in comparative hotspots.

methylation HIV MLV p adjusted-p

mean SD mean SD

H3K27me3 0.002805 0.001179 0.003140 0.001585 0.069324 0.347210

H2AZ 0.003625 0.001441 0.004494 0.001444 2e-06 0.000018

H3K27me1 0.003399 0.000889 0.003774 0.001235 0.008568 0.050412

H3K36me3 0.006188 0.005843 0.005998 0.003063 0.766001 1

H3K4me1 0.002469 0.001630 0.003486 0.001823 6e-06 0.000096

H3K4me3 0.001617 0.001179 0.001078 0.000494 1e-06 0.000010

H3K9me1 0.006676 0.004553 0.008585 0.005302 0.00297 0.020986

H3K9me3 0.003696 0.003790 0.003555 0.001467 0.728885 1

H4K20me1 0.008214 0.005921 0.007407 0.004374 0.212219 0.846512

PolII 0.001876 0.000829 0.002016 0.001054 0.263484 0.846512

Columns 2 and 3 report the mean density of modifications and relative standard deviation in comparative hotspots with HIV abundance. Columns 4–5 are mean density
and standard deviation in MLV preferred hotspots. The p-values for the equality of the means are in column 5 (Mann-Whithney test statistics, p-values computed by
permutations) and adjusted p-values in column 6 (Bonferroni-Holm method). In bold, methylations/histone variants with significative difference.
doi:10.1371/journal.pcbi.1002292.t002
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therefore reflect the chromatin organization in the vicinity of the

nuclear pore. Studies are in progress to test this hypothesis in

clinically relevant target cells.

Materials and Methods

Integration within CD34+ cells
We worked with a previously published collection of 28,382

HIV and 32,631 MLV retroviral integration sites isolated by

linker-mediated PCR (LM-PCR) and pyrosequenced by GS-FLX

Genome Sequencer (Roche/454 Life Sciences, Branford, CT)

from cord blood-derived human CD34+ hematopoietic stem-

progenitor cells [15]. The bioinformatics pipeline used to process

crude MLV and HIV sequence reads was previously described

[15]. Briefly, valid reads 20-bp or longer were used to generate a

non-redundant dataset using the nrdb tool (available at http://

www.advbiocomp.com/blast.html in the AB-BLAST software

package). Non-perfectly redundant reads were than mapped onto

the human genome, requiring the alignment to start within the

first three nucleotides and to possess a minimum of 90% identity.

Sequences were discarded when mapping to multiple sites if they

had more than one match on the human genome differing in

identity less than 2%. Overall valid sequence recovery was similar

between MLV and HIV (13.3% and 17.3%, respectively). The

expression profile of CD34+ cells was determined by microarray

analysis of cytokine-activated cells from three independent

umbilical cords. RNA was extracted from 1–26106 cells,

transcribed into biotinylated cRNA and hybridized to Affymetrix

HG-U133A plus 2.0 Gene Chip arrays.

Functional clustering analysis
Functional clustering of target genes was performed by the

DAVID 2.0 Functional Annotation Tool and EASE score, as

previously described [10]. GO categories were considered over-

represented when yielding an EASE score ,0.05, after Bonfer-

roni-Holm correction for multiple testing.

Blind regions
Certain areas of the genome cannot be scanned in order to

investigate the presence of integrations. This is mainly due to two

reasons: genome mappability and the presence of what we call

‘‘blind regions’’. Although extremely critical in determining the

randomness of single integration patterns, genome mappability

was not a concern in our comparative study, since only

unequivocally mapping reads were considered, for the comparison

of MLV and HIV integration patterns (i.e., the mappability bias, if

any, was the same for the two vectors). Blind regions instead derive

from the use of restriction enzymes and size-selection during the

integration library preparation, and represent portions of the

genome that are scarcely accessible to detection due to their

distance to the closest 39 restriction site (Figure 5). Specifically, if

this distance is shorter than the sensibility of alignment programs,

in terms of minimum length of the processable sequence,

integration is not identifiable. For example, if a viral vector

integrated 10 bps far from the closest 39 cut sequence, then from

the sequencing platform we obtained a 10 bps sequence, that for

most of alignment program is not processable. We used Blat [31]

which has minimum sequence length of 20 nt. On the other hand,

the size-fractionation step only includes fragments ,500 nt, this

being the maximum estimated length for efficient 454 bead

loading (see supplemental methods in [10]). Therefore, integra-

tions with a distance to the closest 39 restriction enzyme site of, for

example, 600 bps, would not be detected. These blind regions

need to be excluded from further analysis, as it was impossible to

determine accurately integration frequencies occurring therein.

We first identified these blind regions by looking for the position of

Figure 4. Robustness plots. Panel A: chromosome 6, arm p; strand -. Panel B: chromosome 6, arm q; strand -. Here we can observe how hotspots
would change in length and location if we were to use different smoothing parameters. Most importantly, we see that the hotspots identified at level
1, corresponding to our choice of the smoothing parameters, persist at slightly larger and smaller values, confirming their validity. At smaller levels of
smoothing many spurious hotspots appear, of very short length. There is no support from the data for these, as they either disappear for more
smoothing or they merge into larger and more robust segments. Large smoothing either impairs the creation of hotspots (as bands tend to become
large and flat) or they deliver very large hotspots, which are difficult to interpret biologically.
doi:10.1371/journal.pcbi.1002292.g004
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restriction sequences over the whole genome. We then cut off the

blind regions. When performing density estimation, we skipped

blind regions and connected together successive non-blind parts.

We assumed smoothness of the density at mending points, as the

blind regions were comparably short. Once hotspots were found,

the blind areas were placed back in the original topology.

Integration analysis was performed separately for each chromo-

somal arm, so that it was not affected by the centromere, which is

a giant blind region. Furthermore, we studied separately each

strands, since blind regions are strand specific. The presence of

blind regions due to the restriction enzyme digestion is known. It

has been shown that the ‘‘invisible’’ portion of the genome is

substantially affected by the use of different and/or multiple

restriction enzymes [32]. We also found the percentage of blind

regions to be very significant, ranging from 10% up to 40% of the

length of the chromosome. For example, 30.5% of chromosome 1

was blind (total length 247.249.719 bp); see supplementary

material Table S1 for percentages for all chromosomes. Blind

regions were identified by means of a custom R-script (R ver 2.10

[33] and Bioconductor [34]) which searched for the TTAA

sequences (MseI) on the Hg18 UCSC genome. Once occurrences

were identified, blind regions were estimated as follows: from

TTAA to 20 bp downstream (due to algorithm limitation) and

from 500 bp downstream to the consecutive restriction site (due to

deep sequencing platform limitation).

Statistics
The integration dynamics was modelled as a stochastic process,

where integration points were considered as samples from an

unknown density function on the region of study D. We assumed

that each integration was independent of any other. Each virus

was considered as a random variable v with its own unknown

probability density function fv. Comparing integration preferences

of two viruses v1 and v2 was then turned into the statistical problem

of comparing two unknown densities fv1 and fv2, defined on the

same genomic range D, based on an independent and identically

distributed sample from each of the two densities. The samples

were allowed to have different sample size. Our approach was fully

nonparametric and led to candidate comparative hotspots, which

were then individually tested. Specifically, non-parametric kernel

density estimation with Gaussian kernels was used [35]. In a

basepair x, the estimated density f̂fh xð Þ, based on the sample

x1,x2 . . . ,xnð Þ in D, is given by the kernel density estimator

f̂fh xð Þ~ 1

n

Xn

i~1

Kh x{xið Þ~ 1

nh

Xn

i~1

K
x{xi

h

� �

where K(?) is the kernel and h.0 is the smoothing parameter

(bandwidth). We used the Gaussian kernel

K uð Þ~ 1ffiffiffiffiffiffi
2p
p e

{1
2
u2
:

Notice the scaling of the kernel with h, which controls how much

weight each integration xi has in the estimate at a basepair x. We

performed a small approximation, as the kernel should integrate to

1 over D, and the domain D is discrete. However, the resolution at

basepair level of the chromosome arms is extremely high, so that

the effect of this was negligible.

We wished to construct simultaneous confidence bands (at 0.99

level, say) for the two densities to be compared, in order to identify

areas (if any) where the confidence bands did not overlap: in such

segments of D, one density must clearly be below the other.

However, such confidence bands depend on the second derivative

of the unknown density, controlling both bias and variance;

approximations are available only in some special cases under very

strong conditions. We instead calculated pointwise variability

bands around the estimated densities, where the variation in the

density estimates were taken into account, but the bias was

ignored. The segments of the chromosome D where the two

Figure 5. Blind regions. These plots illustrate the presence of blind regions, which are scattered over the genome and usually short, but
occasionally also of appreciable length (panel A: mlv_53, chromosome 7, arm p strand -; panel B: mlv_147, chromosome 22 arm q, strand +). Not all
the candidate comparative hotspots that we identified were clearly distinguishable, see for example panel A.
doi:10.1371/journal.pcbi.1002292.g005

Comparative Retroviral Hotspots

PLoS Computational Biology | www.ploscompbiol.org 9 December 2011 | Volume 7 | Issue 12 | e1002292



variability bands had empty intersection were considered as

candidate comparative hotspots. The 0.99 variability band for the

estimated density was computed [36] starting with the Taylor

expansion

Var

ffiffiffî
ff

q� �
*

1

4

1

nh
R Kð Þ

where

R Kð Þ~
ð

K2 xð Þdx

is the integral of the squared kernel function and n is the sample

size. The root transform allowed obtaining an approximation of

the variance which was independent from the unknown density.

Therefore, on the square root scale, a 1{a level error band could

be computed, using the half width

Za=2

ffiffiffiffiffiffiffiffiffiffiffi
R Kð Þ
4nh

r

around the squared root of the estimate, whereZa=2
is the quantile

of the normal standard distribution. Then, as in [36], the edges of

this band were transformed back to the original scale as

ffiffiffî
ff

q
+Za=2

ffiffiffiffiffiffiffiffiffiffiffi
R Kð Þ
4nh

r !2

,

where the lower bound is set to zero if it took a negative value. We

used a~0:01.

This is not a confidence band and there is no nominal coverage

probability. The effect of the bias is to diminish modes and fill

valleys, as it depends on the curvature of f (and on the bandwidth),

see [36]. Variability bands of this type were computed for both

densities. Typically, a detected candidate comparative hotspot

(where the two variability bands had empty intersection) resulted

from a pronounced peak in one density and a valley or flat area in

the other. In these situations, adjusting for the bias would have

strengthened further the indication of a hotspot. On the other

hand, the absence of bias adjustment could in some special

situations hide a difference. This indicates that in most cases we

have identified candidate comparative hotspots conservatively.

We compared the two pointwise variability bands at level

a~0:01, one for each virus, to detect where the bands did not

overlap. These segments in D were considered as candidate

comparative hotspots. This approach is different from [37], where

bins are decided in advance, instead than being data-driven.

Though the band was computed pointwise, it inherited

smoothness from the smooth density estimate around which it

was built. For computational efficiency, the density was estimated

on a grid of points, which were then interpolated with a spline

function [38]. We did not implement any particular boundary

control at the border of the chromosome arm not flanking the

centromere.

The choice of the smoothing parameters h1 and h2, one for each

viral integration density, is important: too much smoothing would

flatten the kernel estimates, hiding every difference; too little

smoothing would lead to a too rich and fragmented identification

of comparative hotspots, with very high false positive findings. Our

choice was to perform an automatic and optimal choice of the

smoothing parameter for each density and then study how results

would change when this value was perturbed in both directions,

towards more and towards less smoothing. We chose the optimal

smoothing parameters, hopt, one for each density, using unbiased

cross-validation [39]. Briefly, hopt is chosen to minimize the

measure of closeness of f̂f to f given by the Integrated Squared

Error

ISE f̂f h

� �
~ð

f̂f h xð Þ{f fð Þ
� �2

dx~

ð
f̂f xð Þ
� �2

dx{2

ð
f̂f h xð Þf xð Þdxz

ð
f 2 xð Þdx,

through a least square, leave-one-out crossvalidation criterion. For

this purpose we minimized the estimate of the first two terms of the

ISE (the last term does not depend on h) given by

1

n

Xn

i~1

ð
f̂f {i xð Þ
� �2

dx{
2

n

Xn

i~1

f̂f {i xið Þ,

where f̂f{i xð Þ denotes the kernel estimator constructed from the

data without the observation xi. See [39,40] for more details. In

order to test sensitivity of results with respect to the choice of h, we

reparameterized the smoothing parameter as h = hopt s, where the

sensitivity factor s was left to vary in [0.05, 20]. We then repeated

the comparison of the variability bands for the two viral

integration densities, using the crossvalidated optimal smoothing

parameter for each virus, adjusted with the same s. We plotted the

comparative hotspots while varying s, to see the robustness of each

hotspot, as in Figure 4.

Candidate comparative hotspots were then tested individually,

to confirm (or not) that the integration propensities of the two

viruses were significantly different. As many comparisons were

performed, multiple testing correction was done. We computed

the odds ratio of the two integration intensities, one for each virus,

for each candidate hotspot as

HIVinH=HIVoutH

MLVinH=MLVoutH

when HIV had a higher density and the inverse of it when the

MLV density was higher instead. Here HIVinH is the number of

integration of HIV falling inside the candidate hotspot H, HIVoutH

is the number of integration outside hotspot H, and similarly for

MLV. We computed 0.95 confidence intervals for this odds ratio

and tested the null hypothesis that the odd ratio is 1. We used the

Fisher exact test. Raw p-values were then corrected for multiple

testing by Bonferroni-Holm [41]. All computations and analyses

were performed in R and Bioconductor environment [33,34].

Supporting Information

Figure S1 Integration densities of HIV and MLV in
CD34+ cells, for chromosomes chr1, chr2, chr3, chr4,
chr5, chr6, chr7, chr8, chr9, chr10, chr11 and chr12. We

analyzed each strand separately: the upper half is the+strand and

the lower the2strand. In blue the estimated variability band at level

0.99 for HIV integrations, in red for MLV. Candidate comparative

hotspots are plotted in the two central x-axes, the color indicating

which of the two vectors had stronger integration intensity (HIV:

blue; MLV: red). In the other four x-axes, each tick represents one

integration site, with the same color code. Because of resolution,

many ticks fall on the same point and cannot be distinguished.

(TIFF)
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Figure S2 Integration densities of HIV and MLV in
CD34+ cells, for chromosomes chr13, chr14, chr15,
chr16, chr17, chr18, chr19, chr20, chr21, chr22, chrX
and chrY. We analyzed each strand separately: the upper half is

the+strand and the lower the2strand. In blue the estimated

variability band at level 0.99 for HIV integrations, in red for

MLV. Candidate comparative hotspots are plotted in the two

central x-axes, the color indicating which of the two vectors had

stronger integration intensity (HIV: blue; MLV: red). In the other

four x-axes, each tick represents one integration site, with the same

color code. Because of resolution, many ticks fall on the same point

and cannot be distinguished. Since no integration was found in p-

arm of chromosomes chr13, chr14, chr15, chr21 and chr22, in

such cases only the q-arm was plotted.

(TIFF)

Figure S3 Robustness plots for all hotspots, chromo-
somes chr1, chr2, chr3 and chr4. The name of each figure

identifies the chromosome and the arm and strand. In these figures

we can observe how hotspots would change in length and location

if we were to use different smoothing parameters. Most

importantly, we see that the hotspots identified at level 1,

corresponding to our choice of the smoothing parameters, persist

at slightly larger and smaller values, confirming their validity. At

smaller levels of smoothing many spurious hotspots appear, of very

short length. There is no support from the data for these, as they

either disappear for more smoothing or they merge into larger and

more robust segments.

(TIFF)

Figure S4 Robustness plots for all hotspots, chromo-
somes chr5, chr6, chr7 and chr8. The name of each figure

identifies the chromosome and the arm and strand. In these figures

we can observe how hotspots would change in length and location

if we were to use different smoothing parameters. Most

importantly, we see that the hotspots identified at level 1,

corresponding to our choice of the smoothing parameters, persist

at slightly larger and smaller values, confirming their validity. At

smaller levels of smoothing many spurious hotspots appear, of very

short length. There is no support from the data for these, as they

either disappear for more smoothing or they merge into larger and

more robust segments.

(TIFF)

Figure S5 Robustness plots for all hotspots, chromo-
somes chr9, chr10, chr11 and chr12. The name of each

figure identifies the chromosome and the arm and strand. In these

figures we can observe how hotspots would change in length and

location if we were to use different smoothing parameters. Most

importantly, we see that the hotspots identified at level 1,

corresponding to our choice of the smoothing parameters, persist

at slightly larger and smaller values, confirming their validity. At

smaller levels of smoothing many spurious hotspots appear, of very

short length. There is no support from the data for these, as they

either disappear for more smoothing or they merge into larger and

more robust segments.

(TIFF)

Figure S6 Robustness plots for all hotspots, chromo-
somes chr13, chr14, chr15 chr16 and chr17. The name of

each figure identifies the chromosome and the arm and strand. In

these figures we can observe how hotspots would change in length

and location if we were to use different smoothing parameters.

Most importantly, we see that the hotspots identified at level 1,

corresponding to our choice of the smoothing parameters, persist

at slightly larger and smaller values, confirming their validity. At

smaller levels of smoothing many spurious hotspots appear, of very

short length. There is no support from the data for these, as they

either disappear for more smoothing or they merge into larger and

more robust segments. Since no integration was found in p-arm of

chromosomes chr13, chr14 and chr15 in such cases only the q-arm

was plotted.

(TIFF)

Figure S7 Robustness plots for all hotspots, chromo-
somes chr18, chr19, chr20, chr21 and 22. The name of

each figure identifies the chromosome and the arm and strand. In

these figures we can observe how hotspots would change in length

and location if we were to use different smoothing parameters.

Most importantly, we see that the hotspots identified at level 1,

corresponding to our choice of the smoothing parameters, persist

at slightly larger and smaller values, confirming their validity. At

smaller levels of smoothing many spurious hotspots appear, of very

short length. There is no support from the data for these, as they

either disappear for more smoothing or they merge into larger and

more robust segments. Since no integration was found in p-arm of

chromosomes chr21 and 22 in such case only the q-arm was

plotted.

(TIFF)

Figure S8 Robustness plots for all hotspots, chromo-
somes chrX and chrY. The name of each figure identifies the

chromosome and the arm and strand. In these figures we can

observe how hotspots would change in length and location if we

were to use different smoothing parameters. Most importantly, we

see that the hotspots identified at level 1, corresponding to our

choice of the smoothing parameters, persist at slightly larger and

smaller values, confirming their validity. At smaller levels of

smoothing many spurious hotspots appear, of very short length.

There is no support from the data for these, as they either

disappear for more smoothing or they merge into larger and more

robust segments.

(TIFF)

Table S1 Comparative Hotspots. List of the hotspots. The

first column indicates the hotspot ID. Column 4 shows which virus

had most integrations. Columns 2,3,5,6,7 locates the hotspot on its

chromosome. Column 8 and 9 contain the number of integrations.

Column 10 contains the width of the hotspot. The OR (column

11) was always defined to be larger than 1. The confidence

interval, raw p-values and adjusted p-values are in columns 12–15.

The number of genes included in each hotspot is in column 16.

The Proto Oncogenes founded in each hotspot is in columns 17.

The number of Proto Oncogenes and their density with respect

the number of genes in each hotspots are reported in columns 18–

19. Number of present and absent genes are in columns 20–21.

OR of the present vs absent genes, OR confidence interval, raw p-

value and adjusted p-values are reported in columns 22–26.

(XLS)

Table S2 Gene Ontology (GO) analysis of genes targeted
by HIV and MLV comparative hotspots. 2027 and 475

genes targeted by HIV and MLV comparative hotspots were

analyzed by the DAVID Functional Annotation tool [1,2], using

the Human Genome as a background population. The table

summarizes the significantly over-represented GO categories (GO

terms) in the two datasets, after Bonferroni correction for multiple

testing. The number of genes included in each GO category is

specified (Count), together with their percentage (%) with respect

to the total number of genes in the list (List Total) and the fold

enrichment over the background. The GO class to which each
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category belongs is also given (BP: biological process, MF:

molecular function, CC: cellular compartment).

(DOC)
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