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Improvement of prediction accuracy of estimated breeding values (EBVs) can lead
to increased profitability for swine breeding companies. This study was performed to
compare the accuracy of different popular genomic prediction methods and traditional
best linear unbiased prediction (BLUP) for future performance of back-fat thickness
(BFT), average daily gain (ADG), and loin muscle depth (LMD) in Canadian Duroc,
Landrace, and Yorkshire swine breeds. In this study, 17,019 pigs were genotyped using
Illumina 60K and Affymetrix 50K panels. After quality control and imputation steps,
a total of 41,304, 48,580, and 49,102 single-nucleotide polymorphisms remained for
Duroc (n = 6,649), Landrace (n = 5,362), and Yorkshire (n = 5,008) breeds, respectively.
The breeding values of animals in the validation groups (n = 392–774) were predicted
before performance test using BLUP, BayesC, BayesCπ, genomic BLUP (GBLUP),
and single-step GBLUP (ssGBLUP) methods. The prediction accuracies were obtained
using the correlation between the predicted breeding values and their deregressed
EBVs (dEBVs) after performance test. The genomic prediction methods showed higher
prediction accuracies than traditional BLUP for all scenarios. Although the accuracies of
genomic prediction methods were not significantly (P > 0.05) different, ssGBLUP was
the most accurate method for Duroc-ADG, Duroc-LMD, Landrace-BFT, Landrace-ADG,
and Yorkshire-BFT scenarios, and BayesCπ was the most accurate method for Duroc-
BFT, Landrace-LMD, and Yorkshire-ADG scenarios. Furthermore, BayesCπ method
was the least biased method for Duroc-LMD, Landrace-BFT, Landrace-ADG, Yorkshire-
BFT, and Yorkshire-ADG scenarios. Our findings can be beneficial for accelerating the
genetic progress of BFT, ADG, and LMD in Canadian swine populations by selecting
more accurate and unbiased genomic prediction methods.
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INTRODUCTION

In the pork industry, genetics has a pivotal role in improving
the economically important traits, such as meat quality,
growth, and reproductive performance (Badke et al., 2014).
The genetic improvement has been spectacularly successful
using traditional genetic improvement tools, such as best
linear unbiased prediction (BLUP) method (Henderson, 1975);
however, the genetic gain achieved is relatively slow for traits
that are expensive and difficult to measure such as those
measured postmortem (Dekkers et al., 2010; Wolc et al., 2011;
Miar et al., 2015). On the other hand, evaluation methods
based on genotypic information or genomic evaluation are
being used increasingly in modern pig breeding industry
(Badke et al., 2014) because of their accelerative role in
genetic improvement specifically through augmentation of
predictive ability.

In genomic evaluation, the effects of markers are estimated
based on genomic and phenotypic data in the reference group,
and then it is used to predict genomic breeding values (GEBVs)
in the validation group (Hayes and Goddard, 2001). The accuracy
of genomic prediction can be influenced by several factors
such as the reference population size (Samore and Fontanesi,
2016), genetic architecture of the trait, marker density, and
method assumptions used for prediction (Zhang et al., 2019).
Several former studies have compared different methods on
genomic prediction accuracy in livestock species such as cattle
(Luan et al., 2009; Guo et al., 2017; Mehrban et al., 2017;
Li et al., 2018; Mrode et al., 2018) and mink (Karimi et al.,
2019). However, there are still limited numbers of literature
in pig (Song et al., 2017; Jafarikia et al., 2018; Zhang et al.,
2018). Some popular genomic evaluation approaches such as
genomic BLUP (GBLUP) and Bayesian methods have been
widely used in the recent studies. For example, Zhang et al.
(2018) showed higher predictive ability of BayesB method over
GBLUP for average daily feed intake in a small population
(n = 1,363) of Duroc pigs. The single-step GBLUP (ssGBLUP)
method was considerably more accurate than GBLUP and
BayesR for growth traits in a larger population (n = 2,084) of
Yorkshire breed (Song et al., 2017). The differences between
these approaches are their assumptions, for example, about
the distribution of marker effects (Hayes and Goddard, 2001).
Therefore, determining the most accurate method for genomic
evaluation of different swine breeds is an important step of
selective breeding.

Several genomic prediction models of GBLUP (Badke et al.,
2014; Song et al., 2017, 2019b, 2020; Jafarikia et al., 2018; Zhang
et al., 2018), ssGBLUP (Song et al., 2017, 2019b; Thekkoot et al.,
2018; Hong et al., 2019; Lopez et al., 2019; Zhou et al., 2019;
Aliakbari et al., 2020), and BayesC (Esfandyari et al., 2016;
Song et al., 2020) have frequently been used for prediction
of various traits in the previous studies in swine. The main
assumption of GBLUP method is based on the infinitesimal
model (i.e., the genetic variation of the trait was explained
by a large number of loci) (Karaman et al., 2016, 2018)
that has been widely used in genomic evaluation, principally
due to its ease of implementation, in developed countries’

breeding programs, such as Holstein cattle breeding programs
in Canada1. Similar to GBLUP method, the infinitesimal model
is assumed in ssGBLUP method. The pivotal difference between
ssGBLUP and GBLUP methods is applying a blended genetic
relationship matrix (using genomic and pedigree relationship
matrices) in the ssGBLUP method (Legarra et al., 2009). This
method has been implemented in developing countries and
breeding companies with small number of genotyped animals
due to the improving role of blended relationship matrix in
increasing the accuracy of predicted GEBVs (Mrode et al.,
2018). This method can also allow detecting the conflicts of
pedigree and regulating the relationship between genotyped
and non-genotyped animals (Amaya Martínez et al., 2020).
Additionally, breeding values for non-genotyped animals can
be obtained simultaneously using ssGBLUP method, which is
not the case in GBLUP analysis (Tsuruta et al., 2013; Misztal
et al., 2014). The Bayesian genomic evaluation approaches (A,
B, C, etc.) are nonlinear methods and are mostly applied using
Markov chain Monte Carlo (MCMC) algorithm (Iheshiulor
et al., 2017). Despite the linear genomic evaluation methods
(e.g., ssGBLUP and GBLUP), some Bayesian methods (e.g.,
BayesCπ) assume that the genetic variation is explained by
a fewer number of loci. This characteristic can be helpful
to improve the evaluation accuracies for traits where their
genetic architecture violates the infinitesimal model assumption
(Hayes and Goddard, 2001; VanRaden et al., 2008). However,
GBLUP can be considerably faster than Bayesian approaches
in terms of computational speed (Song et al., 2019b). In
BayesC model (Kizilkaya et al., 2010), a common variance for
single-nucleotide polymorphisms (SNPs) with nonzero effects
is assumed instead of a locus-specific variance. Although
assuming that the probability of SNPs with nonzero effects
(π) is known, it might be problematic for some traits in
BayesC model. Habier et al. (2011) developed the BayesC
model through hypothesizing unknown π that can be estimated,
and therefore its prior distribution becomes uniform (0, 1)
(Habier et al., 2011).

The prediction ability of genomic evaluation methods,
which is considerably affected by their assumptions,
is an important factor for genetic improvement in
swine breeding companies. Therefore, the main goal
of our study was to compare the prediction accuracies
of traditional BLUP with different popular genomic
evaluation methods including GBLUP, ssGBLUP, BayesC,
and BayesCπ for average daily gain (ADG), back-fat thickness
(BFT), and loin muscle depth (LMD) traits in Canadian
swine populations.

MATERIALS AND METHODS

Ethics Statement
The hogs used in this study were cared for according to the
Canadian Council on Animal Care (Olfert et al., 1993) guidelines.

1https://interbull.org

Frontiers in Genetics | www.frontiersin.org 2 June 2021 | Volume 12 | Article 665344

https://interbull.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-665344 May 28, 2021 Time: 17:14 # 3

Salek Ardestani et al. Genomic Prediction in Canadian Swine Populations

Animals, Genotyping, Quality Control,
and Imputation
In this study, we used genotypic and phenotypic data of BFT,
ADG, and LMD in three swine breeds of Duroc, Landrace, and
Yorkshire. The BFT and LMD were measured by ultrasonic
machine (B mode), and ADG was calculated using Eq. 1:

ADG =
Final weight − birth weight

Days
(1)

.
These phenotypes were collected from 2010 to 2019 and

adjusted to the weight of 120 kg (Table 1). The average
numbers of phenotyped boars and gilts per litter for Duroc,
Landrace, and Yorkshire breeds are reported in Supplementary
Table 1. In this study, phenotypic and genotypic information
was collected from distributed swine breeding companies across
Canada, which participated in the Canadian Swine Improvement
Program coordinated by the Canadian Centre for Swine
Improvement2.

Animals in the reference (n = 4,615–5,875) and validation
(the performance tested animals after January 2019, n = 392–
774) groups were genotyped with Illumina 60K (Illumina
Inc., San Diego, CA, United States) or Affymetrix 50K
(Affymetrix, Santa Clara, CA, United States) panels (Table 1).
Quality control was performed by removing SNPs with minor
allele frequency <0.05, call rate <0.9, and Hardy–Weinberg
P < 0.0001. After quality control steps, the remaining SNPs
(52,025 for all breeds) were used for imputation of the
missing genotypes with FImpute 2.2 software (Sargolzaei
et al., 2014). After the imputation step, 1,341 SNPs on sex
chromosomes were discarded.

Statistical and Genetic Analyses
Traditional Estimated Breeding Value
Model 1 was used for estimation of breeding values of each animal
using the AIREMLF90 1.61 software (Misztal et al., 2002):

Model 1. yc = 1µ+ Xb+ Za+Wu+ e,

where y is the vector of phenotypic data, µ is the overall mean,
X is the incidence matrix relating fixed effects of herd–year–
season–sex to phenotypes, b is the vector of fixed effects, Z is the
incidence matrix relating phenotypes to additive genetic effects,
a is the vector of additive genetic effects, W is the incidence
matrix relating phenotypes to random common litter effects,
u is the vector of random common litter effects, and e is the
vector of random residual effects. It was assumed that a ∼
N(0,Aσ2

a), u ∼ N(0, Iσ2
u), and e ∼ N(0, Iσ2

e ), where A is the
pedigree-based relationship matrix, σ2

a is the variance of additive
genetic effects, σ2

u is the variance of common litter effects, I
is the identity matrix, and σ2

e is the residual variance. The
estimated variance components (before and after performance
tests) using AIREMLF90 implemented in BLUP model (Model 1)
are reported in Supplementary Table 2. The estimated breeding

2https://www.ccsi.ca/

values (EBVs) of parents were used to calculate parent average
EBV (PA) for each animal using the following equation:

PA =
EBV (sire) + EBV(dam)

2
. (2)

GBLUP
After calculating the deregressed EBVs (dEBVs) as
pseudophenotypes according to the approach proposed by
Garrick et al. (2009), the GBLUP method was performed
using Model 2 implemented in SNP1101 software 1.0
(Sargolzaei, 2014).

Model 2. yc = 1µ+ Zg + e

In Model 2, yC is the vector of dEBVs (reference population) as
pseudophenotypes, µ is the overall mean effect, Z is the incidence
matrix relating phenotypes (dEBVs) to GEBVs, g is the vector
of GEBVs, and e is the vector of random residual effects. It was
assumed that g ∼ N(0,Gσ2

g) and e ∼ N(0,Wσ2
e ), where G is the

genomic relationship matrix, σ2
g is the genomic variance, W is

a diagonal matrix of residual weights, and σ2
e is the residual

variance. The residual weights (wi =
1−r2

i
r2

i
) were calculated based

on the reliability of dEBVs (r2
i ) as described by Garrick et al.

(2009).
The genomic relationship matrix was constructed as

VanRaden (2008) described:

G =
ZZ
′

2
∑i

j=1 pj(1− pj)
, (3)

where Z is the allele frequency adjusted genotype matrix with 0–
2pj(for AA genotype), 1–2pj (for AB genotype), and 2–2pj (for BB
genotype) elements, and dimension of the number of individuals
by the number of markers. pj is the minor allele frequency for
j-th marker.

The estimated variance components obtained from the
“aireml” procedure (in SNP1101 software) implemented in
GBLUP model (Model 2) are reported in Supplementary Table 2.
The genomic relationship matrix visualization was performed
using a custom-made script in python.

Single-Step GBLUP
The ssGBLUP analysis (Legarra et al., 2009; Christensen and
Lund, 2010) was performed using AIREMLF90 1.61 software
(Misztal et al., 2014). Model 3 was used for single-step genomic
evaluation of each animal:

Model 3. y = 1µ+ Xb+ Zg +Wu+ e

where y, µ, X, b, W, u, and e were explained in Model 1,
Z is the incidence matrix relating phenotypes to GEBVs, and
g is the vector of GEBVs. It was assumed that the variance of
genomic effects (σ2

g ), variance of common litter effects (σ2
u), and

residual variance (σ2
e ) are governed by the normal distribution

(g ∼ N(0,Hσ2
g), u ∼ N(0, Iσ2

u), and e ∼ N(0, Iσ2
e ), respectively).

In ssGBLUP model, the H matrix was used, which was a
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TABLE 1 | Number of animals with phenotypes and genotypes in reference and validation groups for back-fat thickness at 120 kg (BFT), average daily gain from birth to
120 kg (ADG), and loin muscle depth at 120 kg (LMD) in three breeds of Duroc, Landrace, and Yorkshire (validation groups were phenotyped after January 2019).

Trait Breed No. of phenotypes No. of genotypes

Reference Validation

Boar Gilt/sow Total Boar Gilt/sow Total Boar Gilt/sow Total

BFT (mm) Duroc 24,461 25,588 50,049 3,690 2,184 5,874 504 270 774

Landrace 32,304 50,259 82,563 2,519 2,371 4,890 467 4 471

Yorkshire 33,421 60,916 94,337 2,160 2,455 4,615 386 7 393

ADG (g/day) Duroc 24,470 25,590 50,060 3,691 2,184 5,875 504 270 774

Landrace 32,311 50,288 82,599 2,519 2,372 4,891 467 4 471

Yorkshire 33,428 60,947 94,375 2,161 2,455 4,616 385 7 392

LMD (mm) Duroc 24,461 25,588 50,049 3,690 2,184 5,874 504 270 774

Landrace 32,304 50,259 82,563 2,519 2,371 4,890 467 4 471

Yorkshire 33,421 60,916 94,337 2,160 2,455 4,615 386 7 393

combination of relationship matrices based on marker genotypes
(G) and pedigree information (A). In the inverse of H matrix,
A22 is the pedigree-based relationship matrix for genotyped
animals, and τ and ω are the scaling factors, which both were set
equal to one as the default option in AIREMLF90 1.61 software
(Misztal et al., 2014). The blending factors of G (α) and A
(β) matrices in the inverse of H matrix were set equal to 0.95
and 0.05, respectively, which were defined as H−1

= A−1
+[

0 0
0 τ(αG+ βA22)

−1
− ωA−1

22

]
to avoid singularity problems

and improve predictions (VanRaden, 2008; Lourenco et al.,
2014). The estimated variance components from AIREMLF90
implemented in ssGBLUP model (Model 3) are reported in
Supplementary Table 2.

Bayesian Approaches
In BayesC framework, the genomic evaluation was performed by
implementing Model 4 and MCMC process in GS3 2.0 software
(Legarra et al., 2011a) with the following criteria: NITER (number
of iterations) = 100,000, BURNIN (beginning of the MCMC
run) = 20,000, and THIN (thin interval) = 100. The applied
prior of variance components were similar to the estimated
variance components in BLUP model before performance test
(Supplementary Table 2).

Model 4.yC = 1µ

n∑
i=1

Ziαiδi + e

In Model 4, yC is the vector of pseudophenotypes as defined in
Model 2, µ is the overall mean, n is the number of SNPs, Zi is the
vector of genotype covariates, αi is the allele substitution effect for
SNPi, δi is an indicator for whether the SNPi has effect (1) or not
(0), and e is the vector of random residual effects. The residuals
were weighed based on the reliabilities of dEBVs as defined by
Legarra et al. in GS3 software (Legarra et al., 2011a). For BayesCπ,
the π prior as the probability level of an SNP having no effect was
set equal to 0.99.

Validation and Model Comparison
The accuracies of genomic predictions and PAs were calculated
as the correlation between breeding values (GEBVs or PAs) of
the validation group and their dEBVs after performance test. The
standard errors of prediction accuracies were calculated using
Eq. 4:

Standard error =
1−accuracy2

√
number of individuals− 1

(4)

The regression coefficients of dEBVs (after performance test in
January 2019) on predicted breeding values (before performance
test in January 2019) were calculated to evaluate the bias of
predictions (Figure 1). The regression coefficients and their
standard errors were calculated using “lm” and “summary”
functions in R 4.0.2 software (R Core Team, 2013).

The accuracy improvements were calculated using Eq. 5:

Improvement of accuracy

=

(
accuracy of GEBV− accuracy of PA

accuracy of PA

)
× 100. (5)

Two criteria of accuracy and regression coefficient of dEBV
on GEBV were used to compare the predictive ability of
different genomic prediction methods. Additionally, a fixed
model equation (Model 5) was employed to detect the significant
differences of the prediction accuracies obtained from different
methods.

Model 5.yij = µ+Mi + Bj + eij,

where y is the accuracy of prediction for the trait, µ is the
overall mean, M is the fixed effect of prediction method i, B is
the fixed effect of breed j, and e is the random residual effect
for i-th method and j-th breed. The computational times of
different scenarios with the same number of threads (n = 80)
and memories (202 GB) were calculated using the default
option of Slurm 20.02.3 software3 in Compute Canada server

3https://slurm.schedmd.com
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FIGURE 1 | The summary of breeding value prediction workflow using the best linear unbiased prediction (BLUP), genomic BLUP (GBLUP), single-step genomic
BLUP (ssGBLUP), BayesC, and BayesCπ methods in this study.

(Niagara cluster4). In this study, the computing time included
the construction of genomic relationship matrix and its inverse,
variance components estimation, and solving models.

RESULTS AND DISCUSSION

Descriptive Statistics
The standard deviation, minimum and maximum values, and
the coefficient of variation for each trait and breed are given in
Table 2. The minimum (n = 50,060) and maximum (n = 94,375)
numbers of phenotyped animals were observed for Duroc-ADG
and Yorkshrie-ADG scenarios. The Landrace-BFT (14.27 mm),
Duroc-ADG (736.72 g/day), and Duroc-LMD (72.61 mm) had
the highest averages. The coefficients of variation ranged from
18.78 (Duroc) to 23.07 (Landrace), from 8.34 (Landrace) to 8.65
(Yorkshire), and from 8.25 (Duroc) to 8.83 (Yorkshire) for BFT,
ADG, and LMD, respectively.

Validation of Genomic Evaluations
After quality control, removing SNPs on sex chromosomes, and
imputation, the total numbers of 41,304, 48,580, and 49,102
SNPs remained for genomic evaluation of Duroc, Landrace, and
Yorkshire breeds, respectively. Finding an accurate and unbiased
genomic prediction method can be a lucrative strategy for genetic
improvement of key traits in livestock species (Mrode et al.,
2018). The predictive ability of genomic methods depends on
various factors such as method hypothesis (Momen et al., 2018).
However, limited numbers of literature are available in swine

4https://docs.scinet.utoronto.ca

(Esfandyari et al., 2016; Song et al., 2017, 2019a; Zhang et al.,
2018). Several genomic evaluation studies in livestock species
such as cattle (Cardoso et al., 2014; Neves et al., 2014; Brown
et al., 2016; Júnior et al., 2016; Silva et al., 2016; Costa et al.,
2019) investigated and compared different genomic prediction
methods; for example, Silva et al. (2016) showed the superior
prediction accuracy of ssGBLUP over BayesCπ and GBLUP
methods for residual feed intake (RFI) and feed conversion
ratio (FCR) in Nelore cattle. Therefore, comparing different
genomic prediction methods is important to detect more accurate
methods for genomic evaluation of key traits in the swine
breeding industry.

The average computational times for GBLUP, ssGBLUP,
BayesC, and BayesCπ were 00:00:33, 00:18:47, 15:16:37, and
15:40:02 h, respectively. The computational times of GBLUP,
ssGBLUP, BayesC, and BayesCπ ranged from 00:00:27 h
(Yorkshire-BFT and Landrace-BFT) to 00:00:43 h (Duroc-
LMD), 00:09:54 h (Duroc-LMD) to 00:31:43 h (Landrace-
BFT), 14:21:19 h (Yorkshire-ADG) to 16:21:31 h (Duroc-ADG),
and 14:16:28 h (Yorkshire-BFT) to 16:22:40 h (Duroc-LMD),
respectively (Supplementary Table 3). The correlation between
dEBVs (after performance test) and predicted GEBVs (before
performance test) was considered as the accuracy of genomic
prediction (Table 3). Moreover, the correlation between PAs
(before performance test) and dEBVs (after performance test)
was calculated as the accuracy of PAs (Table 3).

The accuracies ranged from 13.9% (Duroc-PA) to 52.7%
(Landrace-ssGBLUP) for BFT, from 5.7% (Duroc-PA) to
34.5% (Landrace-ssGBLUP) for ADG, and from 3.7% (Duroc-
PA) to 25.1% (Landrace-BayesCπ) for LMD. The accuracy
improvements over PA ranged from 35.6% (Yorkshire-BayesC)
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TABLE 2 | Descriptive statistics of back-fat thickness at 120 kg (BFT), average daily gain from birth to 120 kg (ADG), and loin muscle depth at 120 kg (LMD) for
Yorkshire, Landrace, and Duroc breeds.

Breed Trait n Mean SD Min Max CV (%)

BFT (mm) Duroc 50,049 12.5 2.55 4.9 32.8 18.78

Landrace 82,563 14.27 3.29 5.1 39.4 23.07

Yorkshire 94,337 14.26 3.04 5.8 39.2 21.30

ADG (g/day) Duroc 50,060 736.72 62.56 354.4 1,072.1 8.49

Landrace 82,599 711.74 59.34 396 1,077.5 8.34

Yorkshire 94,375 706.97 61.16 353.9 1,061.6 8.65

LMD (mm) Duroc 50,049 72.61 5.99 41.3 101.1 8.25

Landrace 82,563 68.39 5.95 38.7 96.4 8.71

Yorkshire 94,337 69.51 6.14 39.6 103.7 8.83

n, number of animals per trait; SD, standard deviation; Min, minimum value; Max, maximum value; CV, coefficient of variation.

to 204.6% (Duroc-BayesCπ) for BFT, from 62.1% (Landrace-
BayesC) to 314.3% (Duroc-ssGBLUP) for ADG, and from 6.4%
(Landrace-BayesC) to 284.5% (Yorkshire-GBLUP) for LMD
(Table 3). The prediction accuracies of genomic methods were
not significantly (P > 0.05) different from each other based on
Tukey test implemented in Model 5 (Supplementary Table 4).
However, the prediction accuracies obtained from PA were
significantly (P < 0.05) lower than those obtained from genomic
methods except for BayesC in LMD trait (Supplementary
Table 4). Moreover, the prediction accuracies obtained from
genomic methods were significantly (P < 0.05) different among
breeds except for Yorkshire-Duroc (for BFT) and Yorkshire-
Landrace (for ADG and LMD).

Back-Fat Thickness
The results demonstrated that ssGBLUP was the most accurate
method for genomic evaluation of BFT in Landrace (52.7%)
and Yorkshire (44.7%) breeds (Figure 2). The ssGBLUP method
had the same prediction accuracy (44.1%) for BFT in Chinese
Yorkshire population as our prediction (Zhou et al., 2019).
However, the accuracy of ssGBLUP method for Yorkshire-BFT
scenario was considerably higher than Thekkoot et al.’s (2018)
result (30%), which might be due to their smaller number
of genotyped animals in the reference group (n = 2,489).
Higher prediction accuracies obtained from ssGBLUP for BFT
in Yorkshire and Landrace breeds compared to Duroc breed
might be due to the similarity of these breeds as maternal
lines as well as using the larger population size (pedigree and
phenotype data) of Yorkshire-BFT (n = 94,337) and Landrace-
BFT (n = 82,563) in comparison with Duroc-BFT (n = 50,049).
For BFT, the prediction accuracy superiority of ssGBLUP method
over the other genomic prediction methods such as GBLUP
was confirmed by previous studies in American Yorkshire breed
(Song et al., 2017, 2019a). The regression coefficients of dEBVs
on predicted GEBVs were estimated and applied as indices of
prediction bias of the genomic evaluation methods (Table 4).

The regression coefficients higher and lower than 1 indicate
overestimation and underestimation, respectively. The ssGBLUP
method showed higher prediction accuracies in Landrace-BFT
and Yorkshire-BFT scenarios, but BayesCπ was the least biased
method in these scenarios (1.06 for Landrace-BFT and 1.12 for

Yorkshire-BFT). In Duroc-BFT scenario, BayesCπ (42.4%) and
GBLUP (1.11) were the most accurate and least biased methods,
respectively. The higher prediction accuracy of BayesCπ for
Duroc-BFT scenario might be due to a low number of major-
effect SNPs underlying genetic variation of BFT in Duroc breed
(Zhang et al., 2020). However, Tukey test showed that the
genomic prediction accuracies for BFT were not significantly
(P > 0.05) different across breeds. In a previous genomic
prediction study on a small population size of Canadian Duroc
breed (n = 1,363), Zhang et al. (2018) showed the superiority
of BayesRC approach for BFT. The BayesRC is a new method
based on BayesR that combines prior biological datasets through
explaining variant classes presumably to be enriched for causal
polymorphisms (MacLeod et al., 2016). Compared to our results,
they (Zhang et al., 2018) showed higher prediction accuracy (62
vs. 42.4%) for Duroc-BFT using whole-genome sequence data
that might be due to using sequence data and a different method
in their prediction.

Average Daily Gain
Our results indicated that ssGBLUP was the most accurate
method (34.5%) for prediction of ADG in Landrace breed
(Figure 3); however, BayesCπ was the least biased (1) method
for ADG genomic evaluation (Table 4). Our prediction accuracy
of ssGBLUP for Landrace-ADG (34.5%) was slightly higher than
the results of Hong et al. (2019) (31–33%), who used different
blending strategies of pedigree and genomic relationship matrices
in ssGBLUP method. For Yorkshire-ADG, they obtained 21–
22% accuracy of prediction using ssGBLUP method (Hong et al.,
2019). In this study, BayesCπ was the most accurate (29.5%),
and least biased (1.06) method for Yorkshire-ADG scenario.
The prediction accuracy obtained from ssGBLUP method in
Duroc-ADG scenario (23.7%) was similar to the study by Jiao
et al. (2014) (24.10%) and slightly lower than that by Zhang
et al. (2018) (25%). Jiao et al. (2014) used the Bayes A model
in a small population size (n = 1,022) of Duroc breed in
the reference group. The implementation of genomic multitrait
models using ADG, FCR, and RFI traits might be beneficial for
improvement of prediction accuracy for ADG in Duroc breed
through implementing information from genetically correlated
traits (Guo et al., 2014). Additionally, the prediction accuracy is

Frontiers in Genetics | www.frontiersin.org 6 June 2021 | Volume 12 | Article 665344

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-665344 May 28, 2021 Time: 17:14 # 7

Salek Ardestani et al. Genomic Prediction in Canadian Swine Populations

TABLE 3 | The prediction accuracies (%), their standard errors and their improvement (%) over parent average EBV (PA) for back-fat thickness (BFT), average daily gain
(ADG), and loin muscle depth (LMD) traits in Duroc, Landrace, and Yorkshire breeds.

Trait Breed PA GBLUP ssGBLUP BayesC BayesCπ

Accuracy Accuracy Improvement Accuracy Improvement Accuracy Improvement Accuracy Improvement

BFT Duroc 13.9(3.5) 39.1(3.1) 181.4 39.2(3) 182.1 35.0(3.2) 151.4 42.4(3) 204.6

Landrace 28.5(4.2) 49.2(3.5) 72.4(3.5) 52.7(3.3) 84.6 52.6(3.3) 84.4 50.8(3.4) 78.1

Yorkshire 30.4(4.6) 42.4(4.1) 39.8(4.1) 44.7(4) 47.3 41.1(4.2) 35.6 41.2(4.2) 35.6

ADG Duroc 5.7(3.6) 20.9(3.4) 266.4 23.7(3.4) 314.3 21.5(3.4) 276.7 19.3(3.5) 238

Landrace 16.4(4.5) 33.0(4.1) 100.8 34.5(4.1) 110.0 26.6(4.3) 62.1 32.8(4.1) 99.7

Yorkshire 12.0(5) 28.8(4.6) 140.7 26.2(4.6) 119.5 27.5(4.7) 129.8 29.5(4.6) 147

LMD Duroc 3.7(3.6) 12.0(3.6) 225.6 12.6(3.5) 240.8 11.2(3.6) 202.6 10.3(3.6) 178.4

Landrace 17.2(4.5) 22.5(4.4) 31.2 22.8(4.4) 33.1 18.3(4.5) 6.4 25.1(4.3) 46.2

Yorkshire 5.6(5) 21.6(4.8) 284.5 21.3(4.8) 277.9 17.7(4.9) 213.6 20.7(4.8) 267.4

GBLUP, genomic BLUP; ssGBLUP, single-step genomic BLUP.

FIGURE 2 | (A) The accuracies with their standard errors and (B) accuracy improvements obtained from genomic BLUP (GBLUP), single-step genomic BLUP
(ssGBLUP), BayesC, BayesCπ, and parent average EBV (PA) methods for back-fat thickness.
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TABLE 4 | Regression coefficient and their standard errors of deregressed EBV (dEBV) on predicted breeding values obtained from genomic BLUP (GBLUP), single-step
genomic BLUP (ssGBLUP), BayesC, BayesCπ, and parent average EBV (PA) for back-fat thickness (BFT), average daily gain (ADG), and loin muscle depth (LMD) in
Duroc, Landrace, and Yorkshire breeds.

Trait Breed PA GBLUP ssGBLUP BayesC BayesCπ

BFT Duroc 0.90 (0.23) 1.11 (0.09) 1.60 (0.13) 0.58 (0.05) 1.12 (0.08)

Landrace 0.76 (0.11) 1.15 (0.09) 1.14 (0.08) 0.62 (0.04) 1.05 (0.08)

Yorkshire 1.16 (0.18) 1.22 (0.13) 1.31 (0.13) 0.55 (0.06) 1.11 (0.12)

ADG Duroc 0.98 (0.62) 1.15 (0.19) 2.36 (0.34) 1.23 (0.20) 1.27 (0.23)

Landrace 1.00 (0.28) 1.17 (0.15) 1.27 (0.16) 0.37 (0.06) 1.0 (0.13)

Yorkshire 0.85 (0.36) 1.30 (0.22) 1.23 (0.23) 0.46 (0.80) 1.05 (0.17)

LMD Duroc 0.58 (0.56) 1.21 (0.36) 1.48 (0.42) 0.40 (0.12) 0.83 (0.20)

Landrace 0.75 (0.20) 1.01 (0.20) 0.90 (0.17) 0.32 (0.08) 0.90 (0.16)

Yorkshire 0.34 (0.31) 1.15 (0.26) 0.97 (0.22) 0.27 (0.07) 0.82 (0.19)

FIGURE 3 | (A) The accuracies with their standard errors and (B) the accuracy improvements obtained from genomic BLUP (GBLUP), single-step genomic BLUP
(ssGBLUP), BayesC, BayesCπ, and parent average EBV (PA) methods for average daily gain.

considerably related to the genomic heritability, which is affected
by the number of markers (Goddard, 2009). By comparing the
genomic prediction abilities using different SNP densities (whole-
genome sequence, 650K and 80K SNP panels) and prediction

methods, Zhang et al. (2018) revealed that the density of SNPs
could affect the prediction accuracy in a small population size
of Canadian Duroc breed (n = 1,363) (Zhang et al., 2018).
Although, except for BayesRC (25%) method, the GBLUP
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(12%), and BayesB (12%) methods showed lower prediction
accuracies using the whole-genome sequence data in the study
by Zhang et al. (2018) compared to our result (23.7%) for
Duroc-ADG-ssGBLUP, these results can confirm the importance
of population size, method assumptions, and SNP densities in
genomic prediction analysis.

Loin Muscle Depth
The highest accuracies for LMD in Duroc, Landrace, and
Yorkshire breeds were derived from ssGBLUP (12.6%), BayesCπ

(25.1%), and GBLUP (21.6%) methods, respectively (Figure 4).
However, the regression coefficients followed a different trend
for LMD scenarios. For LMD scenarios, the least biased
methods were BayesCπ in Duroc (0.83), GBLUP in Landrace
1.01, and ssGBLUP (0.97) in Yorkshire breed. In this study,
the highest genomic prediction accuracies for Yorkshire-LMD
(21.6%) and Landrace-LMD (25.1%) scenarios were lower
than the results by Jafarikia et al. (2018) for Yorkshire

(38%) and Landrace (38%) that might be due to their larger
reference group size of Canadian Yorkshire (n = 8,756) and
Landrace (n = 6,754) pigs (Jafarikia et al., 2018), although,
our genomic prediction accuracy (25.1%) for Landrace-LMD
using the BayesCπ method was higher than the result of
another study on Landrace (17.9–18.8%) pigs using different
genomic relationship matrices (Sevillano et al., 2017). In
Duroc-LMD scenario (GBLUP = 12%, ssGBLUP = 12.6%,
BayesC = 11.2, and BayesCπ = 10.3%), the genomic prediction
accuracies were lower than Landrace-LMD (GBLUP = 22.5%,
ssGBLUP = 22.8%, BayesC = 18.3%, and BayesCπ = 25.1%)
and Yorkshire-LMD (GBLUP = 21.6%, ssGBLUP = 21.3%,
BayesC = 17.7%, and BayesCπ = 20.7%) that were similar
to most of the scenarios for ADG and BFT traits. A small
portion of these lower accuracies in Duroc scenarios might be
due to slightly lower genomic relationships between validation
and reference groups in Duroc (Supplementary Figure 1)
compared to Landrace (Supplementary Figure 2) and Yorkshire

FIGURE 4 | (A) The accuracies with their standard errors and (B) the accuracy improvements obtained from genomic BLUP (GBLUP), single-step genomic BLUP
(ssGBLUP), BayesC, BayesCπ, and parent average EBV (PA) methods for loin muscle depth.
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(Supplementary Figure 3). Our results also showed the same
patterns for genomic relationships among animals within the
validation sets. However, the patterns were reverse in the
pedigree-based relationships. The negative effects of weak
genomic relationships between validation and reference groups
on predictive ability were reported previously (Hayes et al., 2009a;
Song et al., 2017).

The prediction accuracy is also affected by response variables
through correlating predicted breeding values and response
variables (adjusted phenotype, EBV, or dEBV) after performance
test. The reliability of dEBV as a response variable is highly
dependent on the population size of phenotyped animals
(Mrode et al., 2018). In Duroc, the main reason for these
low accuracies can be referred to the low reliabilities of
dEBVs in the validation group derived from the smaller
population size of phenotyped Duroc (50,049–50,060) compared
to Yorkshire (94,337–94,375) and Landrace (82,563–82,599)
(Table 1), whereas the reference population size of Duroc (5,874–
5,875) was higher than Yorkshire (4,615–4,616) and Landrace
(4,890–4,891). Additionally, the size of validation group in Duroc
(774) was higher than Yorkshire (471) and Landrace (392–393),
which could be an important factor in calculating the genomic
prediction accuracy. The validation group size and selection of
response variable are important factors on prediction accuracy,
which have not been highlighted in the previous genomic
prediction studies in pig (Badke et al., 2014; Song et al., 2017,
2019a; Thekkoot et al., 2018; Zhang et al., 2018; Lopez et al., 2019;
Aliakbari et al., 2020).

It is evident that ssGBLUP was the most accurate method
in five scenarios of Duroc-ADG, Duroc-LMD, Landrace-BFT,
Landrace-ADG, and Yorkshire-BFT, and BayesCπ was the most
accurate method in three scenarios of Duroc-BFT, Landrace-
LMD, and Yorkshire-ADG. However, it should be noted that the
accuracies obtained from different genomic prediction methods
were not significantly (P > 0.05) different in all scenarios.
High prediction accuracies obtained from ssGBLUP method in
aforementioned scenarios might be due to the blended pedigree
and genotypic data used for prediction of GEBVs (Silva et al.,
2016; Mrode et al., 2018). The assumption of ssGBLUP method is
based on the infinitesimal model of polygenic control of the trait
(Karaman et al., 2016, 2018). Although we obtained the higher
prediction accuracies for ssGBLUP compared to other methods
in five scenarios, our regression coefficients showed considerably
underestimated GEBVs for Duroc-BFT (1.60), Duroc-ADG
(2.36), and Duroc-LMD (1.48) using ssGBLUP in comparison
with the other methods. A reason for these underestimated
values in Duroc-ssGBLUP scenarios might be due to the used
scaling factors (τ = 1 and ω = 1) to combine G−1 and A−1

22
matrices. Alvarenga et al. (2020) indicated that optimization of
scaling factors might be helpful for obtaining more unbiased
values using ssGBLUP method (Alvarenga et al., 2020). Another
possible reason for these underestimated values in Duroc-
ssGBLUP scenarios can be due to the preferential treatment
to select elite pigs for genotyping in breeding companies. The
effect of preferential treatment on level bias was highlighted
by former studies in dairy cattle breeding industry (Wiggans
et al., 2011; Nordbø et al., 2019). However, it may need more

investigation for future studies on swine. In contrast to the
GBLUP prediction methods, some genomic prediction methods
based on Bayesian approaches such as BayesCπ assume that the
genetic variation of a trait is explained by a small number of SNPs
(Habier et al., 2007; Hayes et al., 2009b; de los Campos et al.,
2013). Therefore, the superiority of BayesCπ in some scenarios
might be due to the effective role of SNPs with major effects
for Duroc-BFT, Yorkshire-ADG, and Landrace-LMD. Moreover,
BayesCπ was the least biased method for five scenarios including
Duroc-LMD, Landrace-BFT, Landrace-ADG, Yorkshire-BFT,
and Yorkshire-ADG. Based on the superiority of BayesCπ in
predictive ability for three scenarios and unbiasedness for five
scenarios, it could be concluded that BayesCπ could provide a
more dynamic and realistic assumption (Legarra et al., 2011b)
for genetic architecture of aforementioned traits, although its
long computational time might be a nonpersuasive factor for
implementation to the pig industry.

CONCLUSION

The accuracies of traditional BLUP, GBLUP, BayesC, ssGBLUP,
and BayesCπ methods in a moderate genotyped size of
Canadian swine populations were evaluated to compare their
predictive abilities. In most scenarios, ssGBLUP and BayesCπ

methods demonstrated the highest prediction accuracies and
unbiasedness, respectively, although there were no significant
differences (P > 0.05) among prediction accuracies obtained
from these genomic methods in each scenario. These results can
be beneficial for implementing the suggested genomic prediction
methods for improvement of BFT, LMD, and ADG in swine
breeding companies.
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Supplementary Figure 1 | Heatmap plot of (A) scaled genomic and (B) pedigree
relationship matrices for Duroc group. The means of genomic relationships among
reference-validation and validation-validation groups were −0.0047
(range = −0.3065 to 0.6399) and 0.0348 (range = −0.2140 to 0.8164),
respectively. The means of pedigree relationships among reference-validation and
validation-validation groups were 0.3934 (range = 0.0877 to 0.9339) and 0.4676
(range = 0.4229 to 0.9219), respectively.

Supplementary Figure 2 | Heatmap plot of (A) scaled genomic and (B) pedigree
relationship matrices for Landrace group. The means of genomic relationships

among reference-validation and validation-validation groups were −0.0037
(range = −0.2064 to 0.6296) and 0.0364 (range = −0.1740 to 0.6711),
respectively. The means of pedigree relationships among reference-validation and
validation-validation groups were 0.3026 (range = 0.0738 to 0.8396) and 0.3298
(range = 0.1944 to 0.8369), respectively.

Supplementary Figure 3 | Heatmap plot of (A) scaled genomic and (B) pedigree
relationship matrices for Yorkshire group. The means of genomic relationships
among reference-validation and validation-validation groups were −0.0041
(range = −0.2601 to 0.6921) and 0.0468 (range = −0.1707 to 0.7612),
respectively. The means of pedigree relationships among reference-validation and
validation-validation groups were 0.2100 (range = 0.0353 to 0.7457) and 0.2553
(range = 0.1160 to 0.7445), respectively.

Supplementary Table 1 | The average number of phenotyped boars and gilts per
litter for Duroc, Landrace, and Yorkshire groups.

Supplementary Table 2 | Estimated variance components (standard errors) to
use in best linear unbiased prediction (BLUP), single-step genomic BLUP
(ssGBLUP), and genomic BLUP (GBLUP).

Supplementary Table 3 | Computational time (h) of genomic BLUP (GBLUP),
single-step genomic BLUP (ssGBLUP), BayesC, and BayesCπ methods for
back-fat thickness (BFT), average daily gain (ADG), and loin muscle depth (LMD)
for Duroc, Landrace, and Yorkshire breeds.

Supplementary Table 4 | The results of Tukey tests using Model 5
(yij = µ+Mi + Bj + eij ). y is the accuracy of prediction for the trait, µ is the overall
mean, M is the fixed effect of genomic evaluation method, B is the fixed effect of
breed, and e is the random residual effect.
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