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Abstract: The limitations in the therapeutic options for foodborne pathogens lead to treatments
failure, especially for multidrug-resistant (MDR) Salmonella sp., worldwide. Therefore, we aimed to
find alternative and complementary therapies against these resistant foodborne pathogens. Out of
100 meat products samples, the prevalence rate of salmonella was 6%, serotyped only as S. Ty-
phimurium and S. Enteritidis. According to the antibiotic susceptibility assays, the majority of our
isolates were MDR and susceptible to cefotaxime. Out of the 13 tested plant extracts, five only showed
an inhibition zone in the range of 8–50 mm against both serotypes. Based on their promising activity,
the oily extract of cinnamon and aqueous extract of paprika represented the highest potency. Surpris-
ingly, a significant synergistic effect was detected between cinnamon oil and cefotaxime. Depending
on Gas Chromatography/Mass Spectrometry (GC-MS), the antimicrobial activity of cinnamon oil
was attributed to four components including linalool, camphor, (Z)-3-Phenylacrylaldehyde and its
stereoisomer 2-Propenal-3-phenyl. The anti-virulence activities of these compounds were confirmed
on the basis of computational molecular docking studies. Accordingly, we recommended the use
of cinnamon oil as a food additive to fight the resistant foodborne pathogens. Additionally, we
confirmed its therapeutic uses, especially when co-administrated with other antimicrobial agents.

Keywords: Salmonella; foodborne; cinnamon; paprika; cefotaxime

1. Introduction

Meat and meat products are the most popular foods, and they provide an excellent
source of human nutrition and a good source of high-class protein. On the contrary, they
are the worst offenders when it comes to food poisoning, especially salmonellosis infection.
Salmonella may also cause food poisoning, typhoid fever, gastroenteritis, enteric fever,
and other illnesses [1]. Several antimicrobial preservatives are usually added to food to
avoid infections with Salmonella sp. Unfortunately, there is evidence that these synthetic,
preserved foods are also carcinogenic and toxic [2]. Additionally, there is a great incidence
of Salmonella resistance to conventional antibiotics, which demands the addition of a high
concentration of antibiotic preservatives on meat products to achieve the best biological
activities [3,4].
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Recently, the use of preservatives from natural sources has gained attention as an
alternative to synthetic chemicals, due to their safety [5–8]. An unpleasant taste and
other interactions of chemical preservatives prompted an increased interest in natural
alternatives [9]. Aside from the lower toxicity and side effects of herbal extracts, they have
strong antimicrobial activities. Therefore, there is a trend to replace chemical preservatives
with other natural compounds [10]. Interestingly, the development of microbial resistance
to plant extracts is more difficult than any commonly used chemical preservatives and
antibiotics as the plant extracts have several antimicrobial components, which in turn have
different target sites [11]. In the same context, it was announced that the antimicrobial
activities of plant extracts were attributed to the leakage of essential cell components as a
result of an increase in plasma membrane permeability and the inhibition of various cellular
processes [12,13]. Of interest, essential oils are the safest and most effective natural food
preservatives originating from plants. Therefore, essential oils may serve as an excellent
antimicrobial agents due to several considerations: (i) they contain diverse groups of
phytochemicals with multimodal actions; (ii) they penetrate microbial cells and cause
alterations in their structure and function because of their hydrophobic nature; (iii) their
functional diversity and diverse mechanisms of action hinder microbial resistance; (iv) some
essential oils have strong antioxidant phenolic and γ-terpinene compounds [14]. Moreover,
chemical preservatives are the main causes of hypersensitivity reactions when used in
food and pharmaceutical preparation, even if they are added in small concentrations [15].
Increasingly, there is an urgent need for foods and pharmaceutical preparation to be free
from chemical preservatives, especially for the allergic individuals. Therefore, essential oils
can successfully be used instead of other chemical preservatives.

Importantly, the bioactive components of essential oils and other plant extracts must
be identified to determine the best antimicrobial compounds. A bioautography assay is
used to determine the active principles with a chromatogram. It combines a bioassay in situ
with thin layer chromatography (TLC). It has many advantages such as a high efficiency
for the separation of antimicrobial compounds [16].

Despite all the discussed therapeutic benefits of essential oils and other plant extracts,
a high concentration of essential oils is required to achieve the desired in vivo antimicrobial
activities [4]. Unfortunately, this concentration may cause negative organoleptic character-
istics in meat, e.g., altering the texture, color, odor, and taste [17]. Successfully maintain
the color of the meat is the major challenge for the use of these types of natural preserva-
tives. We can overcome this problem via combination therapies, which have proven their
potency in recent years and, especially, through the organoleptic impact of combination
therapies, which allow essential oils to be incorporated in a wide range of food products.
Additionally, new nanoencapsulated formulations may aid the wider applications of these
compounds [18]. The cost/benefit ratios of using natural preservatives are considered in
food industries. The high cost of natural preservatives can limit their use compared to
synthetic preservatives. The increase in cost is the main issue with the complete replace-
ment of synthetic preservatives by natural preservatives. Thus, the combination between
different classes of natural preservatives, or with other chemical antibiotics, and the use of
nanotechnology can reduce this issue [19].

The extraction methods are the critical point in the maintenance of the bioactive con-
stituents from plant materials. Therefore, the antimicrobial activities of natural compounds
are greatly affected by the extraction methods. Of note, there are no universal extraction
methods that provide the maximum antimicrobial activates for the natural compounds.
For each plant and target compounds, there is a unique extraction method. Essentially, the
selection of the extraction method is very important and must be evaluated [20]. Therefore,
our study was designed to measure the effectiveness of several herbal extractions alone or
in combination with other antimicrobial agents, as well as the evaluation of the bioactive
principles against multidrug-resistant (MDR) Salmonella sp. Additionally, the strengths and
weaknesses of different extraction techniques were tested.
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2. Results
2.1. The Prevalence Rate of Salmonella

Out of one hundred food samples, six isolates were identified as Salmonella via
standard microbiological techniques and other genotypic methods. The serotyping of
the Salmonella species revealed that only S. Typhimurium and S. Enteritidis (N = 3, each)
were detected.

2.2. Initial Evaluation of Different Solvent Extracts

Regarding the aqueous extract, among the thirteen plants tested, five plants (pa-
prika, cinnamon, thyme, bay leaf, and rosemary) recorded a significant antibacterial
activity until the concentration reached 12.5% (Supplementary Table S1). The highest
inhibition zone was detected with paprika. Meanwhile, the alcoholic extract of cinna-
mon showed the highest activity among the nine tested extracts against both Salmonella
serotypes (Supplementary Table S2). Even among the seven tested oily extracts, cinna-
mon oil was also the only effective extract with an inhibition zone that reached 60 mm
(Supplementary Table S3).

2.3. Antimicrobial Susceptibility

A disk diffusion assay revealed that all isolates were susceptible to cefotaxime,
amoxicillin/clavulanic acid, and ciprofloxacin; a moderate susceptibility to gentamicin
was also observed. A complete resistance to rifamycin was detected, and most isolates
were multi-drug resistant (Figure 1). These results were confirmed depending on the
MIC values (Supplementary Table S4). Cefotaxime was a highly effective antibiotic
(MICs of 0.25–4 µg/mL) and MBC values ranged from (0.5–8 µg/mL) against the tested
Salmonella isolates.

Figure 1. Percentage of the resistant Salmonella isolates to each antimicrobial agent. In contrast
to rifampicin, the cefotaxime, ciprofloxacin, and amoxicillin+ clavulanic acid showed a maximum
antimicrobial activity against all Salmonella isolates.

The comparative efficacy of all the tested extracts with antibiotics revealed that the
oily extract of cinnamon and aqueous extract of paprika had highly significant antibacterial
activities compared to cefotaxime. Additionally, the synergistic interactions among the
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most effective combinations of two plants and cefotaxime were evaluated in vitro, as shown
in Figures 2 and 3, where a remarkable synergistic effect was detected between cinnamon
oil and cefotaxime.

Figure 2. Heat map supported by hierarchical clustering (dendrogram). This figure shows the effect of different treatments
against the two species of Salmonella. The color key indicates the inhibition zone measured as mm. The analyses were
conducted using R program (packagepheatmap). The type refers to the category of the treatment.

Figure 3. Non-metric multidimensional scaling. The overlap among various treatments against the two Salmonella serotypes
was visualized. Each dot refers to treatment of one biological replicate. This analysis was conducted using the PC-ORD
software. Cefo: cefotaxime, pa: paprika, pa1: aqueous extract of paprika, pa2: alcoholic extract of paprika, pa3: oily extract
of paprika, C.oil: cinnamon oil.
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2.4. Characterization of Cinnamon Oil Active Principal Compounds by Using TLC

The separation of compounds using TLC revealed the presence of different compounds
in the cinnamon oil. The different compounds separated in TLC were collected by scraping
the band from TLC, and the evaluation of their antibacterial potential was carried out
against cinnamon oil. The promising compounds present in the Rf values (0.8 and 0.9)
were further characterized (Supplementary Table S5 and Figure 4).

Figure 4. TLC-bioautography of cinnamon oil extract.

According to the TLC-bioautography, ten bands were observed. One of the ten
bands showed a maximum density, which was extracted for further investigation by Gas
Chromatography/Mass Spectrometry (GC-MS).

2.5. Characterization of Compounds Present in the Oily Extract (Cinnamon Oil) by Using GC-MS

The characterization of compounds that are present in the effective extract revealed
the presence of four antimicrobial compounds (Supplementary Table S5). The majority
of compounds identified in the present study had an antimicrobial activity. Some of the
compounds identified possessed anti-inflammatory, antidiabetic, antifungal, antioxidant,
and antiprotozoal characteristics.

These are the chemical structures of the four bioactive components of cinnamon oil:
linalool, camphor, (Z)-3-Phenylacrylaldehyde, and its stereoisomer 2-Propenal,3-phenyl,
which were detected by Gas Chromatography/Mass Spectrometry (GC-MS).

2.6. Anti-Virulence Activities of Cinnamon Oil

Based on the obtained molecular docking results (Figure 5), N321 and R41 are highly
significant for the interaction between small molecules and important salmonella virulence
factors, such as cell invasion protein (SipD), since they are involved in both types of inter-
actions (either through hydrogen bond formation (HB) or hydrophobic interactions). The
co-crystallized ligand as well as Z-3-Phenylacrylaldehyde and its stereoisomer 2-Propenal,3-
phenyl, (compound 6428995) demonstrated HB formation with an N321 amino acid residue,
while camphor (compound 2537) showed a relatively strong hydrophobic interaction with
it. Only linalool (compound 6549) showed potential HB with R41, while the other three
studied compounds showed hydrophobic interactions. The following amino acid residues
of salmonella’s SipD protein: I45, A108, and L322 were involved in hydrophobic inter-
actions with at least three out of four compounds. Both the co-crystallized ligand and
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camphor showed hydrophobic interactions with V325 and K338, while the co-crystallized
ligand and linalool had a similar hydrophobic interaction with N104. Camphor, as well
as Phenylacrylaldehyde and its stereoisomer, 2-Propenal,3-phenyl, showed hydrophobic
interactions with G42. The co-crystallized ligand showed a unique hydrophobic interaction
with F340 and L318 amino acid residues, while linalool demonstrated a unique interaction
with S107. The linalool also demonstrated a hydrogen bond formation with E39, while
camphor, in its docked conformation, did not show hydrogen bonding formation with any
of the amino acid residues of the SipD protein.

Figure 5. Docking poses and 2D interaction diagrams of selected compounds for Salmonella’s SipD protein (PDB ID 3O01).
Crystal conformation of co-crystallized ligand is colored in yellow and docked conformation is colored in blue. Green
shading in 2D interaction diagrams represents hydrophobic interactions, grey areas, broken thick lines around ligand shape
indicates accessible surface, and arrows represent hydrogen bonds.

Based on both scoring functions of the ICM-PRO software, the co-crystallized ligand
demonstrated relatively lower (better) scores than the studied ligands (Table 1). Pheny-
lacrylaldehyde and its stereoisomer, 2-Propenal,3-phenyl, demonstrated the closest value
to the co-crystallized ligand docking score from the three selected compounds.

Table 1. Molecular docking scores and basic chemical properties of selected and studied ligands.

PubChem CID Score Molecular
Weight logP Heavy

Atoms
HB

Donor
HB Ac-
ceptor

Rotatable
Bonds

Co-crystallized ligand (deoxycholate) −17.02 392.571 4.51 28 3 4 4
Z-3-Phenylacrylaldehyde and its stereoisomer,

2-Propenal,3-phenyl −14.16 132.16 1.91 10 0 1 2

Camphor −11.15 152.23 2.4 11 0 1 0
Linalool −13.19 154.25 2.67 11 1 1 4

3. Discussion

The infections with MDR bacteria [20–22] and fungi [23], especially foodborne resistant
pathogens such as Salmonella typhimurium, Salmonella enteritidis, Staphylococcus aureus,
Campylobacter jejuni, and Listeria monocytogenes, are considered as one of the most significant
and severe health threats worldwide [24–29]. This is due to the high morbidity and
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mortality rates among the infected cases. The therapeutic options for these strains are
limited, which results in the failure of treatments [30]. Nowadays, plant extracts and
essential oils, in addition to drug repurposing, provide unlimited opportunities to manage
these highly resistant pathogens [31–33].

The incidence of Salmonella sp. in this study was higher in contrast to other reports [34,35].
This difference might be attributed to differences in the hygienic and sanitary measures
practiced in the respective abattoirs, especially municipal abattoirs. These types of abattoirs
may have poor sanitation and hygienic standards in comparison with export abattoirs.

In recent decades, antimicrobial resistance (AMR) has become widely disseminated
amongst food-borne Salmonella pathogens. Herein, a great resistance to rifamycin and sul-
famethoxazole/trimethoprim was detected; this finding was most likely due to the careless
use of antimicrobials in chicken feed or other environmental factors [36]. The therapeutic
options for infections with the resistant pathogens, especially foodborne salmonellosis, are
currently limited. Therefore, the surveillance of new strategies to manage this pathogen is
an urgent need [37,38].

Nowadays, there is a renewed interest in the use of natural compounds in the treat-
ment of MDR foodborne pathogens [8]. Numerous studies certified the antimicrobial
activities of plant extracts. Of interest, almost all of the tested herbals in our research
inhibited the growth of all Salmonella isolates and the most effective methodology of ex-
traction was the use of essential oils, especially cinnamon oil. Several studies reported the
antimicrobial activities of essential oils, such as the Juniperus species oil extract [39]. These
activities were attributed to their ability to penetrate microbial cells and cause alterations
in their structure and function due to their hydrophobic nature. Additionally, their func-
tional diversity and diverse mechanisms of action increased microbial sensitivity [4,14].
Cinnamon oil had high antimicrobial activities, in contrast to other tested plant extracts.
Therefore, we recommended the use of cinnamon oil as a food additive to replace other
chemical preservatives due to its relatively lower toxicity and side effects [11].

For treating infections with resistant pathogens, a high concentration of cinnamon
oil is required [4]; therefore, there is a limitation in its medical uses. This forced us to
test the synergistic effect of antibiotics with the best choice of plant extract (cinnamon oil).
Our results proved that (i) the usage of this combination overcame the drug resistance;
(ii) it decreased the required doses, reducing both adverse/toxic side effects and cost, and
(iii) increased the spectrum of activity [4,40].

Without a doubt, the antimicrobial activity of the essential oils is dependent on
their chemical composition, which can vary due to many factors which affect the plant’s
environment (e.g., geographical location, soil type, weather conditions, etc.) [41]. Therefore,
it is important to determine the chemical composition of the essential oils for a correlation
with their antimicrobial activities. The chemical profiling of cinnamon oil was performed
using GC/MS. The analysis of cinnamon essential oil indicated the presence of four active
antimicrobial components: linalool, camphor, (Z)-3-Phenylacrylaldehyde, and 3-phenyl-
2-Propenal. In another study, the gas chromatography and mass spectrometry of the
essential oil of Cinnamomum Verum showed that trans-cinnamaldehyde, benzyl alcohol,
and eugenol were the major components, which reflected their antimicrobial activities [42].

In another context, the anti-virulence activities of the essential oils were discussed in
several studies, and were considered as next generation therapies [43,44]. The computa-
tional molecular docking in this study confirms the anti-virulence activities of the pure
components of cinnamon oil. The phenylacrylaldehyde and its stereoisomer 2-Propenal,3-
phenyl showed the highest binding capacity with the salmonella invasion protein D (SIP-D),
which was essential for the internalization of salmonella through modulating the secretion
of SipA, SipB, and SipC [45].
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4. Materials and Methods
4.1. Sampling

A total of 100 random samples of meat, chicken, and their products were collected
from different markets and butcher shops with different sanitation levels in El-Sharkia and
Port Said governorate.

4.2. Isolation and Identification

The samples were prepared and Salmonella was identified according to the standard
bacteriological methods and serotyping techniques, including both tube and slide agglu-
tination techniques [46], and genotypically identified depending on the PCR analysis of
16SrRNA [47]. Salmonella isolates were serotyped according to the manufacturer’s instruc-
tions using commercial antisera (Difco, Detroit, MI, USA) in the Serology Unit, AHRI,
Dokki, Giza, Egypt.

4.3. Extraction of Herbals
4.3.1. Oily Extraction

The essential oils were extracted by hydrodistillation in a Clevenger-type apparatus [48].
The essential oils were stored at 4 ◦C in the dark with the presence of anhydrous sodium
sulfate. The essential oils were dissolved in 0.5% DMSO with Tween 80.

4.3.2. Aqueous Extraction

The crude extract was prepared using the method illustrated by [49]. The removal
of the extra debris and mud was carried out by washing the fresh plant under tap water
2–3 times. The fine pieces was obtained from the fresh plant and again washed with the
distilled water. Pestle and mortar were used to crush these fine pieces to form a fine paste.
Whatman filter paper no. 1 was used in the filtration process; the filtered solution was cen-
trifuged at 10,000 rpm for 10 min. The antimicrobial activity of supernatant was evaluated.

4.3.3. Alcoholic Extraction

The 70% methanol was used in the extraction of the dried herbal (20 g) followed by
3 filtration processes. A rotary evaporator was used to concentrate the filtrate at 45 ◦C for
methanol evaporation according to [50] with little modification.

4.4. Agar Well Diffusion Assay for the evaluation of Antibacterial Activities

A loopful of bacterial isolates was inoculated into nutrient broth then incubated at
37 ◦C for 18 h. The bacterial suspensions were normalized according to the standard
tube (McFarland number 0.5). A cotton swab was dipped and streaked onto the sur-
face of Mueller-Hinton agar plates, and the plates were left for 5–15 min to dry at room
temperature [51]. In the case of the oily form, the oily extract was solubilized with an equal
volume of 5% dimethylsulphoxide (DMSO). Then, wells (5 mm diameter) were cut by the
cork borer, and then 20 µ of each extract was added. All plates of the tested pathogens
were incubated. The zones of inhibitions were measured after 24 h. for all isolates in
millimeters (mm).

4.5. Antibiotic Sensitivity Testing
4.5.1. Disc Diffusion Method

The antibacterial sensitivity test of the isolates was carried out by Kirby test [52];
each test isolate was swabbed onto the surface of Mueller-Hinton agar plates. Antimi-
crobial disks including streptomycin (S: 10), sulfamethoxazole-trimethoprim (SXT: 25),
gentamicin (CN: 10), cefotaxime (CTX: 30), chloramphenicol (C: 30), amoxicillin-clavulanic
acid (AMC: 20/10), doxycycline (DO: 30), ciprofloxacin (CIP: 5), rifamycin (RF: 15), and
amikacin (AK: 30) were then placed onto the surface plate of agar, and then incubated. The
zones of inhibition were determined in millimeters [53].
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4.5.2. Antibiotic Stock Solution Prepared for Effective Antibiotics

Standard powder forms of effective antibiotics were stored at 4 ◦C until use. The
stock solution of each antimicrobial was adjusted by solubilizing suitable amounts of the
antimicrobials in Mueller-Hinton broth to reach a concentration of 1024 µg/mL.

4.5.3. Determination of the Minimum Inhibitory Concentration (MIC) and the Minimum
Bactericidal Concentration (MBC)

Microdilution method could be used to determine the MIC values of antibiotics accord-
ing to [54]. The stock solution of antimicrobial agents (1024 µg/mL) was serially diluted in
96-well microtiter plates containing Mueller-Hinton broth (MHB, Oxoid, Basingstoke, UK)
medium. Each well was inoculated with an equal volume of overnight culture of Salmonella
(5 × 105 CFU/mL) then each plate was incubated. The MIC values were defined as the
lowest concentration of antimicrobial agents that completely inhibited microbial growth.
Meanwhile, the lowest concentration revealed no visible growth after sub-culturing on the
fresh medium was defined as MBC [55].

4.6. Measuring the Synergetic Effect of a Herbal–Antibiotic Combination

The best essential oils and plant extracts, combined with antibiotics, were used to study
their antibacterial effect on isolated microorganisms; these results were compared with the
same essential oils, plant extracts, and antibiotics when used as solo treatments [56].

4.7. Evaluation of Active Principle for Effective Extract
4.7.1. Thin Layer Chromatography and Bio-Autography

Active components of cinnamon essential oil (that showed the best result as an antibac-
terial agent against Salmonella) were characterized by thin-layer chromatography (TLC).
Silica gelGF254 plates (Merck KGaA, Darmstadt, Germany) were used in a system of
toluene:ethyl acetate at a ratio of 93:7 v/v in a pre-saturated glass chamber according to [16].
The stationary phase was TLC paper coated with silica gel, while the mobile phase was
a solvent system. The spots on the plate were inspected after they were air-dried under
UV light (254 nm) and also visualized by spraying with p-anisaldehyde–sulphuric acid
reagent then heating for 5 min at 110 ◦C. The retardation factor value (Rf value) of different
separated compounds was calculated by using the formula (Rf = distance traveled by
sample/distance traveled by the solvent).

Then, the active constituents were removed from the scrapped silica gel with
dichloromethane. The silica gel was removed by centrifugation (12,000× g, 15 min). The
0.22 µm filter was used to filtrate the supernatant. Then, 0.1 mL inoculum of Salmonella
(5 × 105 CFU/mL) was added for every 10 mL of melted nutrient agar. The 100 µL from the
supernatant was added to the well, then the plate was incubated. The zones of Inhibitions
were compared with the Rf of the spots on the reference TLC plate.

4.7.2. Characterization of the Isolated Compound Using GC-MS Analysis

GC-MS analyses were developed using Shimadzu Japan gas chromatography
QP2010PLUS, and the following conditions were applied: temperature programming
from 80–2000 ◦C at 80 ◦C for 1 min; rate 5 ◦C/min at 200 ◦C for 20 min; field ionization
detector (FID) temperature 300 ◦C; injection temperature 220 ◦C; carrier gas nitrogen at
a flow rate of 1 mL/min, and split ratio 1:75. Gas chromatography mass spectrum was
performed using GCMS –QP 2010 PlusShimadzu Japan with injector temperature of 220 ◦C
and carrier gas pressure of 116.9 kpa. The elutes were transported into a mass spectrome-
ter. The mass spectrum was programmed with a computer mass-spectra data bank. The
computer Wiley MS libraries was used to detect the chemical constituents of the extracts,
which were confirmed by comparing mass spectra of the peaks [57–60].
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4.8. Molecular Docking on Salmonella Virulence Factor

The crystal structure of the Salmonella Type III Secretion System Tip Protein SipD in
complex with deoxycholate (PDB ID: 3O01, RMSD = 1.9 Å) was used for the molecular
docking studies. Molecular docking of identified compounds with SipD proteins was
performed using ICM-PRO v. 3.9-2b software (MolSoft L.L.C., www.molsoft.com, accessed
on 29 October 2021) [61]. ICM-PRO software was also used for the preparation of the
structures of molecules and protein, visualization of docked complexes and 2D interaction
plots. Standard parameters, recommended by the developers, were used for the execution
of molecular docking runs. Docking effort was set to 10. Regular “Score” of ICM-PRO
software, which is a GBSA/MM type scoring function augmented with a directional
hydrogen bonding term, was used for evaluation of the interaction energy of the studied
compounds and protein [62].

4.9. Bioinformatics and Statistical Analysis

Statistical Package for Social Sciences software (SPSS; v. 25, IBM, Armonk, NY, USA)
was used for statistical analysis of data. Hierarchical clustering (dendrogram) was used
to show the overall effect of each treatment on the two serotypes of Salmonella. The
Heatmap package in R was carried out for the inhibition zones (mm) data for each treatment.
Regarding the association and overlap among various treatments and their effect on
Salmonella serotypes, a non-metric multidimensional scaling (nMDS) was generated and
visualized using the Euclidean distances among the points as the average of the three
replicates and as replicates for each treatment. This analysis was conducted using PC-ORD
Software v. 5 (MjM Software, Northampton, UK) [63].

5. Conclusions

The current findings indicate that the aqueous extract of paprika and oil extract from
cinnamon showed effective antimicrobial activities. For that, Salmonella sp. as foodborne
pathogens could potentially be managed using new therapeutic agents from natural sources.
Therefore, we approved the use of cinnamon oil instead of chemical preservatives, in
addition to its therapeutic use when co-administrated with other antibiotics. Hence, further
studies must be undertaken to find more promising alternatives and complementary
therapies from natural sources.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics10121453/s1, Table S1: Antimicrobial activity of aqueous herbal plants against
Salmonella sp.; Table S2: Antimicrobial activity of alcoholic herbal plants against salmonella; Table S3:
Antimicrobial activity of oil extracts against salmonella; Table S4: Minimum inhibitory and minimum
bactericidal concentrations (µg/mL) for drugs of choice against tested salmonella isolates; Table S5:
TLC & GC-MS Analysis of cinnamon oil extract.
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