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Genome architecture plays a pivotal role in gene regulation. The use of high-
throughput methods for chromatin profiling and 3-D interaction mapping provide rich
experimental data sets describing genome organization and dynamics. These data
challenge development of new models and algorithms connecting genome architecture
with epigenetic marks. In this review, we describe how chromatin architecture could
be reconstructed from epigenetic data using biophysical or statistical approaches.
We discuss the applicability and limitations of these methods for understanding the
mechanisms of chromatin organization. We also highlight the emergence of new
predictive approaches for scoring effects of structural variations in human cells.
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STUDYING GENOME ARCHITECTURE: METHODS AND
MECHANISMS

The human genome has a three-dimensional structure, which folds in the nucleus, producing
specific chromatin interactions. These chromatin interactions can be experimentally assessed by
modern microscopy methods (reviewed in Boettiger and Murphy, 2020) or sequencing approaches,
such as genome-wide modifications of chromatin conformation capture (Hi-C) (Lieberman-Aiden
et al., 2009; Rao et al., 2014), split-pool recognition of interactions by tag extension (Quinodoz
et al., 2018), and genome architecture mapping (Beagrie et al., 2017). These methods are covered by
comprehensive reviews (Kempfer and Pombo, 2020) and comparative studies (Fiorillo et al., 2020).
Here, we focus mainly on the Hi-C technique and its results because this method was most widely
applied in various genomic studies during the last decade, allowing the accumulation of a huge
amount of experimental data. Both methodological aspects of the Hi-C technique (Fiorillo et al.,
2020) and biological principles revealed by applying this method to study genome architecture
(Szabo et al., 2019) are discussed in detail in several recent reviews. We refer readers to Box 1,
where we briefly discuss the main concepts of this field for the sake of completeness.

WHY MODELING 3-D GENOME FOLDING?

The models and algorithms predicting genome architecture can be used in different ways. First,
we can apply modeling to get new insights or test our hypotheses of molecular mechanisms
underlying 3-D genome folding. Polymer modeling is used more often for this purpose, but
convolutional neural networks, such as, for example, Akita (Fudenberg et al., 2020) and DeepC
(Schwessinger et al., 2020), also enable identifying the main chromosome features contributing
to genome architecture. Such approaches give remarkable results. During the last few years, we
gained a significant amount of data describing the main features of 3-D genome folding and
understanding the molecular mechanisms underlying these data, including loop extrusion and
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BOX 1 | Start of Box 1 Hi-C Technology Uncovers Principles of Genome Organization
Hi-C includes crosslinking and digestion of chromatin, followed by proximity ligation and sequencing of ligation products (Lieberman-Aiden et al., 2009; Rao et al.,
2014). During the proximity ligation step, only those genomic regions that spatially co-localize have a chance to be ligated. Thus, counting ligation products by
next-generation sequencing allows deciphering the spatial proximity of loci. Although several single-cell Hi-C methods are published (Flyamer et al., 2017), the
technique is most often applied to large cell populations, and ligation event frequency (also referred to as interaction or contact frequency throughout this review)
should be interpreted as the average frequency of loci co-localization among the studied cell population. This snapshot of averaged chromatin contacts in a
population, typically represented by a matrix of pairwise interaction frequencies, is known as a Hi-C map.
Using Hi-C and other methods, several important principles of genome architecture were recently discovered. At the largest scales, chromosomes occupy distinct
territories, showing only limited intermingling (Tavares-Cadete et al., 2020) and characterized by an exponential decay of contact frequencies with the genomic
distance between loci (Lieberman-Aiden et al., 2009). Within the territories, one can distinguish compartments that correspond to different chromatin types
(Lieberman-Aiden et al., 2009). Mechanisms underlying compartment formation are actively debated, and there is a growing body of theoretical and experimental
pieces of evidence suggesting the essential role of liquid–liquid phase separation in these processes (Kantidze and Razin, 2020; Razin and Gavrilov, 2020; Razin and
Ulianov, 2020). At a finer scale, specific loci may preferentially interact with each other, forming topologically associated domains (TADs) (Dixon et al., 2012), stripes
(Vian et al., 2018), cliques (Petrovic et al., 2019), and loops (Rao et al., 2014). Although the terminology is not well established in this field (de Wit, 2020), the current
mechanisms underlying the formation of these structures fall into two categories.
First is a recently proposed loop extrusion mechanism (Sanborn et al., 2015; Fudenberg et al., 2016). It is considered that ring-shaped cohesin and condensin
proteins bind chromatin and form and continuously extend loops in an ATP-dependent manner. Extrusion stops encountering another extrusion complex or, in the
case of cohesins, when reaching CTCF protein bound to DNA in a specific orientation. This results in increased interaction frequency between loci bound by cohesin,
displayed on Hi-C maps as loops (two-point interactions) (Rao et al., 2014) or stripes (one-to-many-points interactions) (Vian et al., 2018). The chromatin interaction
patterns arising from loop extrusion mechanisms could be qualitatively described by the landscape of CTCF binding and also depend on the loading and
processivity of cohesin (Fudenberg et al., 2016). Moreover, loop extrusion results in increased proximity of all loci located between convergently oriented CTCF sites,
which is captured by the formation of looping domains (Rao et al., 2014).
The second mechanism responsible for the formation of loops and cliques is mediated by the formation of regulatory protein complexes, for example, polycomb
complexes (Eagen et al., 2017), and certain transcription factors (Petrovic et al., 2019). This mechanism is at least partially independent of cohesin-mediated
extrusion because the subset of loops remains stable upon degradation of the cohesin complex (Rao et al., 2017).
It is important to note that profiles of chromatin interactions captured by the Hi-C experiment are formed by the joint action of different mechanisms. For example,
the formation of TADs, which represent self-interacting regions in the genome, is affected both by loop extrusion and compartmentalization processes (Szabo et al.,
2019; de Wit, 2020), which is consistent with both convergent CTCF sites and chromatin state transition enrichment at TAD boundaries (Dixon et al., 2012; Rao
et al., 2014; Huang et al., 2015).

phase separation, which was largely facilitated by biophysical
modeling and statistical analysis of chromatin properties. This
field of research is well described in reviews (Imakaev et al., 2015;
Lin et al., 2019). However, known mechanisms do not explain all
3-D chromatin features, which limits hypothesis-driven models
and further research is required to explain them.

Second, 3-D genome models can be used to predict functional
consequences caused by changes in 3-D genome folding. It is
shown that alterations of chromatin topology accompanying
genomic variations, especially large structural variations, can
cause changes of gene expression (Franke et al., 2016; Rodríguez-
Carballo et al., 2017; Kraft et al., 2019). One can find examples of
such gene expression changes and their underlying mechanisms
in the last part of this review. In these cases, modeling of 3-D
genome architecture is essential for accurate prediction of the
consequences of the genomic mutations.

Last, one can use modeling for predicting the 3-D genome
architecture of new data. It is possible to predict chromatin
interactions for different cell types lacking experimental Hi-C
data (Belokopytova et al., 2020). Machine learning methods often
gain applicability in this way.

WHICH 3-D GENOME STRUCTURES
CAN BE PREDICTED, AND WHY THEY
ARE RELEVANT?

Chromosome-capturing methods, such as Hi-C, allow
deciphering the main features of chromatin folding. Since the
first Hi-C experiments, chromatin structures as compartments,

TADs, and loops were revealed (see Box 1 for details of
mechanisms underlying these structures). In the following, we
describe the main Hi-C map features and algorithms used to
predict them. Also, it may be helpful for readers new to the field
to use the table of algorithms (Table 1) containing algorithms for
predicting different 3-D genome features.

Promoter–Enhancer Interactions
Interactions between promoters and enhancers are essential
for expression regulation. Pioneering attempts to find such
regulatory connections rely on either the correlation of epigenetic
marks of promoters and enhancers across different cell types
or evolutionary conservation of promoter–enhancer proximity
in the linear DNA molecule (Spicuglia and Vanhille, 2012;
Andersson and Sandelin, 2020). With the advent of genome-wide
3C-methods, we gain the ability to measure spatial proximity
between genomic segments. The question about the exact role
of spatial contacts between regulatory elements in the control
of gene expression is still under active debate; however, much
research defines “interacting” enhancers and promoters as pairs
of loci belonging to the anchors of one Hi-C loop. Although
we argue that using this loop-based definition of interacting
promoters and enhancers might be confusing (see Box 1 and
limitations section below for additional discussion), several
algorithms are designed to predict enhancer–promoter pairs
located within the anchors of one loop (Whalen et al., 2016).

Loops
Instead of predicting whether promoters and enhancers overlap
loop anchors, some algorithms, such as Lollipop (Kai et al., 2018),
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TABLE 1 | Tools for modeling and predicting chromatin interactions.

Tool name Input features Target features Method/algorithm

See review by Xu et al. (2018) Histone marks, TFs binding, DHS Promoter–enhancer
interactions

See review by Xu et al. (2018)

MacPherson et al. (2018) model HP1, H3K9me3 Compartments Polymer modeling

MichroM + MEGABASE (Di Pierro et al.) Histone marks, TFs binding Compartments NN classifier + polymer modeling

Huang et al. (2015) model Histone marks TADs BART

3Disease Browser (Li et al., 2016) Enhancers and TAD boundaries Rearranged TADs Linear model

Lollipop (Kai et al., 2018) Chip-seq data, CTCF directionality Loops ML ensemble classifier (random forest)

3DEpiloop (Al Bkhetan and Plewczynski, 2018) Histone marks, TFs binding Loops ML ensemble classifier (random forest)

CTCF-MP (Zhang et al., 2018) CTCF binding, DHS, nucleotide
sequence

Loops ML ensemble classifier/NN (Boosted
trees/word2vec)

EpiTensor (Zhu et al., 2016) Histone marks, TFs binding Loops Tensor modeling + PCA

DeepMILO (Trieu et al., 2020) Sequence of loop anchors Rearranged loops CNN and RNN

3D-GNOME (Sadowski et al., 2019) CTCF ChIA-PET Rearranged loops linear models

3DPredictor (Belokopytova et al., 2020) CTCF, RNA-seq Whole hi-c map ML ensemble regression (gradient boosting)

Hi-C Reg (Zhang et al., 2019) Histone marks, TFs binding, DHS Whole hi-c map ML ensemble regression (random forest)

Akita (Fudenberg et al., 2020) Sequence Whole hi-c map CNN

DeepC (Schwessinger et al., 2020) Sequence Whole hi-c map CNN

Yifeng Qi and Bin Zhang model (Qi and Zhang,
2019)

CTCF binding, Chromatin states Whole hi-c map Polymer modeling

HiP-HoP (Buckle et al., 2018) CTCF and cohesin binding, Histone
marks or DHS

Whole hi-c map Polymer modeling

Rowley et al. (2017) model GRO-seq + CTCF binding Whole hi-c map Explicit algebraic model

PRISMR (Bianco et al., 2018) Wild-type Hi-C data Whole hi-c map in mutated
cells

Polymer modeling

DHS, DNAse I hypersensitivity sites; TFs, transcription factors; TADs, topologically associated domains; ML, machine learning; NN, neural network; CNN, convolutional
neural network; RNN, recurrent neural network; BART, Bayesian additive regression trees; PCA, principle component analysis.

3DEpiloop (Al Bkhetan and Plewczynski, 2018), and EpiTensor
(Zhu et al., 2016), are designed to directly infer all loop
positions using epigenetic data. In mammals, most of the
looping interactions are formed due to the cohesin-mediated loop
extrusion process (see Box 1 for details). Thus, some algorithms,
such as CTCF-MP (Zhang et al., 2018) or Lollipop (Kai et al.,
2018), are focused exclusively on the prediction of CTCF-
mediated interactions or separately access quality of prediction
for CTCF-mediated and all other loops as in the DeepMILO
algorithm (Trieu et al., 2020).

TADs
TADs have the shape of triangles on Hi-C maps, which
indicates an increase of chromatin interaction frequency within
TADs and insulation at TAD borders. These structures are
largely dependent on the extrusion process and also influenced
by other mechanisms (see references provided in Box 1
for discussion of the TAD definition and current views on
mechanisms explaining TAD formation). TADs are also relevant
for promoter–enhancer interactions as the majority of the
functional interactions occur within the same TAD. It is known
that TAD boundaries are enriched by CTCF binding sites
(usually in convergent orientation) and different epigenetic
marks (Dixon et al., 2012). Based on these observations, Huang
et al. (2015) use ChIP-seq data for different proteins in a
computational model predicting TAD boundaries and chromatin
interaction hubs.

Compartments
Chromatin compartments are the main features of distant
contacts revealed by chromosome conformation capture. Hi-
C maps show that interactions occur more often within each
compartment rather than across compartments (Lieberman-
Aiden et al., 2009). The presence of compartments results in
a checkerboard-like (or “plaid-like”) pattern of contacts on Hi-
C maps. It is shown that compartments reflect the clustering
of different types of chromatin (see Box 1 for details). Seminal
work proposed binary division of the genome into eu- and
heterochromatin, which correspond to A- and B-compartments.
Subsequent research extends this view, suggesting that multiple
chromatin states exist, each described by a unique profile
of spatial interactions (Rao et al., 2014). In accord with
this, several models are proposed, allowing the prediction of
compartmental interactions based on epigenetic data (Di Pierro
et al., 2017; MacPherson et al., 2018). Most of these algorithms
utilize physical modeling to infer spatial chromatin interactions.
Machine learning methods are often used as a part of the
algorithm to attribute genomic loci to a certain compartment
based on its epigenetic signatures.

Hi-C Maps
Predictions of all aforementioned features require similar
epigenetic information. Thus, it should be possible to
develop an algorithm predicting all topological structures
simultaneously. Because it is widely assumed that biologically
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relevant interactions do not occur at a distance above several
megabases, most of the algorithms limit their prediction to these
distances, which reduces computational time and resources.
For instance, machine learning algorithms, such as 3Dpredictor
(Belokopytova et al., 2020), HiC-Reg (Zhang et al., 2019), Akita
(Fudenberg et al., 2020), and DeepC (Schwessinger et al., 2020),
predict all interactions within an ∼1–3 Mb window. In addition,
some polymer modeling approaches, such as Hip-Hop (Buckle
et al., 2018) and PRISMR (Bianco et al., 2018), could be used to
predict the whole Hi-C heat map.

From Contact Frequencies to 3-D
Models
Hi-C and other 3C-based methods provide a snapshot of
pairwise interactions between loci. Although we call this “3-
D” information, it cannot be trivially transformed into 3-D
structures. An approach known as restraint-based (RB) modeling
interprets the 3C-based data as a set of spatial restraints to
build a 3-D model of the chromatin fiber by satisfying the input
restraints. The chromatin fiber is represented as a polymer of
consecutive monomers, and several computational optimization
strategies can be employed to find 3-D models of chromatin
(Dekker et al., 2013; Serra et al., 2015). The challenge of predicting
3-D genomic structures from high-resolution chromosome
conformation capture data was recently taken by several groups,
and we refer the reader to the recent review by Kimberly MacKay
and Anthony Kusalik describing problems and solutions in this
field (MacKay and Kusalik, 2020) and to the articles collected in
the recently published book Modeling the 3D Conformation of
Genomes (Tiana and Luca, 2019).

HOW DO THE MODELING ALGORITHMS
WORK? PROBLEMS AND LIMITATIONS

All models and algorithms that are currently used to infer
chromatin contacts from epigenetic data could be divided
into two categories. First are the models derived from
the physical simulation of chromatin behavior, i.e., polymer
modeling. The second includes statistical algorithms searching
for interdependencies between genetic and epigenetic properties
and patterns of 3-D contacts. Here, we described the principles
and limitations of both approaches.

POLYMER MODELING

The physics of chromatin has been the subject of intense research
over many decades. Seminal studies by de Gennes and Witten
(1980) provide basic rules describing polymer behavior under
different conditions. Importantly, these studies show that, when
a polymer is large (i.e., its size increases the size of individual
monomers significantly), its physical properties do not depend
on the monomer’s chemical structure. Instead, the behavior
of a polymer depends on several physical parameters, such as
monomer concentration, solvent quality, and temperature. For
different combinations of these parameters, the polymer would

exist in one of the well-described equilibrium states, such as the
random coil, the swollen coil, the equilibrium globular state, and
others (Fudenberg and Mirny, 2012). Thus, knowing the key
parameters and using the laws of polymer physics would allow
the description (and prediction) of chromatin behavior within
the nucleus. These ideas gave rise to the first physical models of
chromatin architecture.

Development and validation of physical models during
recent decades are linked to the development of experimental
techniques measuring genome architecture (Figure 1). The
presence of chromosome territories as well as measures
of mean distances between defined loci by FISH disagree
with basic swollen coil or random coil polymer properties
(Hahnfeldt et al., 1993). There were multiple attempts to
improve these disagreements, of which the fractal globule
(Mirny, 2011) is currently the most accepted. This model,
originally proposed by Grosberg et al. (1988) suggests that
chromatin exists in a highly unknotted fractal-like non-
equilibrium state, and the predictions obtained using this model
fit well with the experimentally measured scaling of Hi-C contacts
(Lieberman-Aiden et al., 2009).

Although the fractal globule recapitulates the experimentally
observed scaling of chromatin contacts better than the
equilibrium globule state, it is still far from a complete
description of chromatin folding in a real cell. Not to mention
all disagreements (see Grosberg, 2016, for a detailed review), the
fractal globule represents a pictorial description of the chromatin
structures and does not include locus-specific features. Thus,
to build a more comprehensive description of chromatin
conformation and dynamics in a real cell, active (energy-
consuming) locus-specific mechanisms should be introduced
into the system.

One such mechanism, which maintains the structure of
chromatin, is a loop extrusion process (see Box 1 for details
on this mechanism). This process was recently introduced into
physical models of chromatin by Fudenberg et al. (2016) and
Sanborn et al. (2015), and later experimentally validated by Ganji
et al. (2018), Davidson et al. (2019), and Kim et al. (2019).
A recent preprint from Banigan et al. (2020) shows another
impressive application of polymer modeling in which it helps to
investigate if a one- or two-sided loop extrusion model works
in the cell and to identify a class of one-sided extrusion models
that can reproduce in vivo experiments. The models of loop
extrusion show good agreement with the experimental Hi-C data.
Importantly, loop extrusion models use epigenetic information
about CTCF binding to account for CTCF-mediated extrusion
barriers. This allows making the model locus-specific; moreover,
modifying CTCF anchors in silico results in different chromatin
packaging as revealed by the models (Sanborn et al., 2015). Thus,
such physical models allow predicting chromatin packaging and
its perturbations knowing CTCF-binding sites.

Another class of locus-specific models is designed to study
and predict the packaging of different chromatin types. Distinct
types of chromatin differentially interact with themselves and
surrounding proteins. This can be imagined as a polymer
composed of several distinct units or blocks. Such polymers are
called block copolymers, and their behavior could be modeled
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FIGURE 1 | Modeling and predicting the main features of the 3-D-genome organization using physical and statistical approaches. The features row contains a
schematic representation of the main features of 3-D-genome organization: scaling of contacts with genomic distance, compartments, TADs, loops, and inter-cell
variability of genome architecture (from left to right). The 3C methods row shows that contact scaling and compartments could be found using low-resolution Hi-C
data, whereas identification of loops and dissection of TAD structure requires high resolution. Studying inter-cell variability is challenging and could be done using
single-cell Hi-C approaches (scHi-C). Microscopy methods shown in the second row include conventional 3D-FISH (fluorescent in situ hybridization) to measure
spatial distances; electron microscopy, which is helpful to visualize segregation of eu- and heterochromatin; and modern super-resolution microscopy methods,
which, in combination with oligopaints, allow dissection of the internal structure of TADs in individual cells (Boettiger and Murphy, 2020; Szabo et al., 2020). Physical
description of chromatin interactions (fourth row) includes generic models such as the fractal globule as well as locus-specific models. For the latter, researchers
employ block-copolymer models and models with chromatin binders, such as strings and binders switch (SBS) and diffusive transcription factor (TF) models and
concepts of liquid–liquid phase separation (LLPS). All these physical models allow studying the dynamics and inter-cell variability of 3-D structures, providing
ensembles of possible chromatin conformations (this is schematically shown in the last cell of the physical models row). Statistical methods (the last row) could utilize
interconnections between epigenetic data and chromatin organization using different approaches. This includes approaches in which explicitly defined algebraic
expressions contain free parameters, which could be fit from the data, hidden Markov models (HMM), and various machine learning (ML) algorithms. TADs, loops,
and compartments were predicted using these methods. However, for single-cell data, these approaches are not applicable, mainly due to the large amount of data
required for the implementation of these algorithms.

knowing the interaction potential between blocks (Bates and
Fredrickson, 1990). Several attempts have been made to apply
this logic for modeling chromatin interactions in Drosophila
and Human (Jost et al., 2014; Di Pierro et al., 2016; Ulianov
et al., 2016). These models predict that specific preferences of
interactions between similar blocks of chromatin result in spatial
segregation of distinct chromatin domains in the process of
liquid–liquid phase separation (Nuebler et al., 2018).

Block copolymer models rely on the epigenetic information
about histone modifications and/or architectural factor binding
to assign DNA segments to specific chromatin types. Once
developed, these models could be used to predict chromatin
architecture if epigenetic data is available. Indeed, several studies
show that such prediction recapitulates Hi-C data very well (Di
Pierro et al., 2017), especially when accounting for the loop
extrusion process (Nuebler et al., 2018; Qi and Zhang, 2019).

To further extend block copolymer models, one should
consider the physical nature of interactions between blocks. In
a nucleus, these interactions are mediated by specific factors,
such as polycomb-group proteins (Plys et al., 2019; Eeftens et al.,
2020), BRD-domain containing proteins (Gibson et al., 2019),

HP1 (Larson et al., 2017; Sanulli et al., 2019), mediator and RNA
polymerase II (Cho et al., 2018), or interactions between DNA
and nuclear lamina proteins (Chiang et al., 2019; Ulianov et al.,
2019). The above-described block copolymer models account
for these interactions implicitly by setting specific interaction
potentials between different block types. Other models explicitly
introduce binder proteins that mediate interactions in the system.

There are multiple ligand-binding theories applied to model
DNA–protein interactions in chromatin, reviewed, for example,
in Teif and Rippe, 2010. Among recent models that aim to
explain genome-wide interaction profiles revealed by 3C-based
methods, several consider specific chromatin binders, such
as HP1 (Teif et al., 2015; MacPherson et al., 2018), lamina
proteins (Chiang et al., 2019; Ulianov et al., 2019), or generic
active and inactive complexes (Brackley et al., 2016b), whereas
others describe binders, such as abstract molecules with defined
physical properties but unknown biological nature (Nicodemi
and Prisco, 2009; Barbieri et al., 2012; Brackley et al., 2013, 2017;
Chiariello et al., 2016). Mechanistically, chromatin clustering
may be reproduced by these models either due to the affinity of
binders or because of multivalent interactions between binders
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and chromatin, which results in bridging-induced attraction
(Brackley et al., 2013, 2017; Johnson et al., 2015). In addition
to compartmentalization, these mechanisms could explain TAD
and loops formation (Brackley et al., 2016b). For more details on
these and other physical models, we refer the reader to a recently
published extensive review (Brackey et al., 2020) and a collection
of articles provided with the book (Tiana and Luca, 2019).

Here, it is pertinent to note that the binder positions are
inferred from epigenetic data even in those models that use
“abstract” binders. This allows predicting chromatin folding in
normal and mutated genomes, knowing epigenetic data with
high accuracy (Scialdone et al., 2011; Bianco et al., 2012,
2018; Brackley et al., 2016a,b; Barbieri et al., 2017; Chiariello
et al., 2017; Kragesteen et al., 2018). For example, the Hip-
Hop model (Buckle et al., 2018) infers binder positions based
on H3K27 acetylation data and/or chromatin accessibility, and
the authors show that this epigenetic information is sufficient
for prediction of chromatin interactions. In the PRISMR model
(Bianco et al., 2018), Hi-C data obtained from wild-type cells are
used to define the number of binder types and their affinities,
and this information can be further used to model chromatin
conformation after a deletion or duplication event occurs.

The examples mentioned above show that physical modeling
could be a powerful tool for both validation of proposed
molecular mechanisms underlying chromatin architecture and
predicting spatial interactions based on epigenetic data. In the
following, we discuss some limitations that should be addressed
to allow a comprehensive description of genome organization by
physical modeling.

Limitations of Physical Models
Physical Modeling Is Hypothesis-Driven
As was mentioned above, physical models rely on an explicitly
defined set of rules to describe polymer behavior. However, we
are still far from a complete understanding of all biophysical
processes involved in chromatin organization. Thus, it is clear
that none of the currently developed models can accurately
explain all details of genome architecture and dynamics.

For example, PRISMR and Hip-Hop models introduce specific
binders whose positions and affinity could be inferred from
experimental Hi-C or ChIP-seq data. The problem is not only
that we do not know the correspondence between the model’s
abstract binders and real proteins. The major concern is that
these abstract binders might not be given the same physical
properties as real proteins. Biochemical dissection of regulatory
complexes, such as PRC1 or Mediator, show the complexity
of their structural organization and regulation, which is not
described by current models. This limits modeling approaches
to qualitative predictions of trends rather than quantitative
comparison with contact maps.

Inferring Key Physical Parameters Might Be
Challenging
There are many biophysical parameters that are currently
unknown but essential for modeling. This includes affinity
constants and concentrations of chromatin binders, the position
of boundaries, and processivity of loop extruders and other

factors. One solution to this problem is extracting the missing
parameters from available ChIP-seq data. For example, in the
MEGABASE + MiChroM model developed by Di Pierro and
colleagues, chromatin states are first inferred from epigenetic
data using a machine learning approach and then used in a
block copolymer model optimized to fit Hi-C data (Di Pierro
et al., 2017). However, in many cases, available ChIP-seq data
is only indirectly connected to the affinity and concentration of
the key architectural factors, and the dependence between ChIP-
seq signals and biophysical properties of chromatin may vary in
different cell types. Thus, the model developed using one cell type
might not be well transferable to another.

There are also models that fit their parameters directly using
Hi-C data. This is, for example, the PRISMR model (Bianco
et al., 2018), which defines binder types and positions based on
Hi-C maps. The transferability of this model to other cell types
or loci without knowing corresponding experimental Hi-C data
could be problematic.

There are also several technical parameters of simulation
that could influence the results, including the finite volume
effect, polymer conformation used for model initialization,
equilibration time, sampling size, etc. We refer those readers
interested in this subject to a recent review describing potential
pitfalls and methods developed to overcome these limitations
(Gartner and Jayaraman, 2019).

Physical Modeling Is Computationally Intensive and
Often Requires Coarse-Graining
Using a polymer modeling approach is computationally
intensive. Technically, the vast majority of the physical models
describe chromatin as a string with beads. Ideally, each bead
should represent a single nucleosome as histone octamers are
monomers of chromatin organization. However, this leads to a
huge number of beads required to simulate chromosome-scaled
loci. The behavior of beads is typically simulated using LAMMPS
software, which is computationally intensive for such a large
number of objects. Great computational resources are needed
for every modeling attempt, and these are not always accessible.
Although it is possible to model only a particular chromosomal
region, whole chromosome or whole genome modeling is
computationally too expensive.

One solution could be to decrease the resolution and use more
coarse-grained models, with which several atoms or molecules
are grouped and represented by a single simple object. However,
this comes at a cost of the inability to resolve fine patterns
of interactions. There are multiple levels of chromatin coarse-
graining, starting from atomic resolution and up to hundreds of
thousands of base pairs, each suitable for the specific problem of
interest (see Table 1 in the recent review published by Brackey
et al., 2020). The choice of coarse-graining should be considered
carefully in order to find a balance between the detail of the model
and computational cost.

To sum up, physical modeling is essential for validating
hypotheses about mechanisms driving chromatin organization.
When using epigenetic data to infer properties of chromatin
monomers, it is easy to repurpose a physical model from
hypothesis validation to prediction of locus-specific chromatin
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organization. However, there are several limitations of these
predictions, and we next describe another class of approaches
based on machine learning techniques that have the potential to
overcome some of the aforementioned limitations.

STATISTICAL APPROACH

It is known that different epigenetic marks and transcriptional
factors correlate with various regulatory elements, chromatin
states, and other genomic features. For example, histone
modification H3K9me3 correlates well with constitutive
heterochromatin, which correlates with the B compartment
(Strom et al., 2017), TAD boundaries are enriched by CTCF
protein (Dixon et al., 2012; Rao et al., 2014), and open chromatin
regions are enriched by specific histone modification. Thus, one
can simply use regression to predict 3-D genome features based
on epigenetics data. For example, correlation-based methods are
used for the prediction of enhancer–promoter interactions using
histone modifications, CAGE, ChIP-seq, and other chromatin
features as input (Xu et al., 2020).

Although linear models could explain 3-D organization to
some extent, it is clear that certain dependencies between genetic
features and chromatin interactions are not linear. The most
prominent example of such non-linearity is the scaling of the
average chromatin contact frequency with genomic distance,
which could be well described as a power law. This dependence,
P(s) ∼ sˆx, has only one free parameter x, which could be
easily obtained by fitting experimental data. Of course, it is
not enough to account for distance dependence to obtain
accurate estimations of contact frequencies. One should also
describe locus-specific insulation, compartmentalization, and
other features of genome organization. This description should
be done in the form of algebraic expressions with some free
parameters that could be fit from the data. This was utilized
recently by Rowley et al. (2017), who proposed an algebraic
expression combining linear and exponential terms to predict
genomic contacts based on GRO-seq transcription data, CTCF
binding, and genomic distance. As a result, Rowley et al. simulate
Hi-C maps including main 3-D structures, such as TADs and
loops with high accuracy.

However, there might be multiple non-linear dependencies
between histone modifications, transcription factor binding, and
chromatin interactions, which cannot be defined analytically
as an algebraic expression, such as a power law. These
dependencies could be found by sophisticated machine learning
algorithms, such as logistic regression, gradient boosting, random
forest regression, neural networks, and others (Eraslan et al.,
2019; Figure 2).

Machine learning algorithms operate with a numerical
representation of input information (features): nucleotide
sequence; genomic distance or epigenetic marks; and
experimentally measured target feature values, such as contact
frequency between loci, positions of loop anchors, etc. The main
result of machine learning training is a function that transforms
input features into predictions of target values. The similarity
between predictions and experimental data is measured using a

user-defined loss function. During a training step, the portion of
available data called the training subsample is used to optimize
the transforming function so that the loss function is minimal;
this is how the algorithm finds interdependencies between
features and target values. These interdependencies might
represent general biological mechanisms or be subsampling
artifacts specific to the training subsample. Moreover, the
function transforming the input features into predictions of
target values typically has numerous adjustable parameters. This
could allow fitting the detail and noise in the training data to
the extent that it negatively impacts the performance of the
model on held-out data. In this case, the developed algorithm
is of no use even if prediction accuracy is high as it cannot
generalize over unseen samples. This problem is well known in
the machine learning field under the name of “overfitting.” To
verify that any increase in accuracy over the training subset is
generalizable, an evaluation of the algorithm using a portion of
unseen data (validation subset) should be done. It is essential
that the validation subset does not contain samples presented
in the training subset. However, during the design of training
and validation subsets, one should note that genomic objects
that are not equivalent from a mathematical point of view might
share a large amount of biological information. For example,
nested chromatin loops might share a large portion of epigenetic
information encoded by the window spanning loop anchors
although the anchors themselves do not overlap and formally
represent different pairs of genomic regions. Such indirect
overlapping results in the sharing of information between
training and validation data sets, leading to the overestimation
of prediction accuracy (Belokopytova et al., 2020). To overcome
this problem, one can use different chromosomes for training
and validation data sets.

It is considered that machine learning–based algorithms
can find complex non-linear patterns when fitting the model.
Machine learning is used for binary classifiers for regression-
based models, enabling the prediction of structures ranging from
two-point interactions to whole Hi-C maps. Several algorithms
employing these methods for promoter–enhancer interaction
prediction were recently developed, including TargetFinder
(Whalen et al., 2016), DeepTACT (Li et al., 2019), 3DPredictor
(Belokopytova et al., 2020), and HiC-Reg (Zhang et al., 2019).
We refer the reader to the informative review of Xu et al. (2020)
describing different algorithms for the prediction of enhancer-
promoter interactions. Other spatial chromatin structures, such
as loops (Zhu et al., 2016; Al Bkhetan and Plewczynski, 2018;
Kai et al., 2018; Zhang et al., 2018; Trieu et al., 2020) and
contact probabilities (Zhang et al., 2019; Belokopytova et al.,
2020; Fudenberg et al., 2020; Schwessinger et al., 2020) also
can be predicted by machine learning–based algorithms (see
the section above). Furthermore, a machine learning–based
approach enables revealing biological features underlying 3-D
genome folding, which improves our understanding of biological
mechanisms. For example, extracting matrix positional weights
from layers of convolution neural networks helps to find the main
features, in particular, sequences giving the main contribution to
the prediction and consequently to the 3-D chromatin structure.
Another example is the analysis of feature importance in a
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FIGURE 2 | In designing a machine learning–based algorithm, one should carefully choose the main “ingredients” required for good prediction.

gradient-boosting algorithm that gives the ranked list of features
that helps to find the best feature. Anyway, analysis of features
and algorithm parameters can inspire thoughts of biological
mechanisms underlying the studying process.

Challenges and Limitations
Defining Target Features and Their Properties
The development of a predictive algorithm should start from
a clear statement of biological features one wants to predict.
Clear definitions of the features are important for the selection
of positive and negative samples as well as for the choice of the
machine learning algorithm.

Let us consider the goal of the prediction of interacting
promoter–enhancer pairs. How would one define positive cases,
i.e., interacting pairs? Now, it is clear that the majority of
loops (see Box 1 for details of mechanisms underlying these
structures) observed on Hi-C maps are due to the synergetic
activity of cohesin and CTCF proteins. These complexes
form loops that might facilitate interactions of promoters and
enhancers located within the looping region by reducing the
spatial distance between them but do not necessarily directly

mediate contacts between these regulatory elements. In accord
with this, direct functional tests based on targeted enhancer
deletions or CRISPR-interference approaches (Gasperini et al.,
2019) indicate that the vast majority of interacting enhancer–
promoter pairs do not overlap with loop anchors although
they are often located within a reasonable distance from
them (Belokopytova et al., 2020). Thus, functionally interacting
enhancer–promoter pairs might show only a slight increase in
contact frequency. It is worth noting that the NG Capture-C
approach (Davies et al., 2015) provides more sensitive and robust
quantitation and enables detecting more significant interactions
than Hi-C; however, typical Hi-C data are more widespread
and available. At the same time, the majority of algorithms
predicting 3-D genome structures are classifiers, so they solve
the question of whether the promoter and enhancer interact,
answering yes or no. We argue that quantitative measurement
and prediction of spatial enhancer–promoter interactions are
more informative than qualitative attribution to the loop
anchors, and regression-based methods are more suited for
such predictions.

Another example of varying feature definition is loop
prediction. In this case, authors often use loops called by
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specific algorithms as positive samples. A large proportion of
loop calls varies between algorithms and visually assessed loops
(Belokopytova et al., 2020; Salameh et al., 2020). Methods for loop
detection, such as for TAD detection, are constantly improving.
For example, the last published method Peakachu for loop calling
can detect more loops than previous algorithms (Salameh et al.,
2020). The same applies to TAD calling: Zufferey et al. (2018)
compared 22 different TAD caller algorithms and found that
TAD sizes and numbers vary significantly among callers and
data resolutions.

To sum up, it is very important to consider the nature
and biological properties of target features and carefully design
positive and negative samples if using classifiers for prediction.

Predicting Single-Cell Data
The statistical approach is well applicable for 3-D genome
structure prediction and investigation, but it uses population
data. It allows getting a prediction that is actually a mean
value for a cell population, which does not provide information
about the 3-D genome organization of a single cell and
differences of spatial contacts between distinct cells. Conversely,
physical modeling always produces ensembles of single-cell
chromatin configurations. Nevertheless, it does not mean that
this prediction matches a real biological cell exactly even if
its average matches population Hi-C data. However, recently
Conte et al. (2020) show the consistent agreement between the
predicted structures and independent single-cell super-resolution
microscopy data, which provides evidence that, at least in the
studied loci, polymer physics approaches accurately capture
single-cell chromatin conformation. This issue is under active
debate, however.

Understanding Mechanisms Underlying Prediction
Another limitation is that one cannot extract a simple algebraic
formula transforming features into target feature values from
a trained machine learning model. Therefore, the statistical
dependencies found by machine learning algorithms are difficult
to interpret in biological terms. Nevertheless, it is possible
to evaluate the feature’s contribution to prediction. We have
already discussed several approaches for estimation of feature
importance above; in addition, modifying features in silico and
accessing how the modifications impact prediction could provide
insights about the role of biological features used for prediction
(Fudenberg et al., 2020).

Choosing Data Parameterization Function
To train a machine learning model, input data should be
represented in a specific format, typically as a numeric vector
of fixed length. The process of conversion of the input
data into the desired format is called parameterization, and
choosing the parameterization function might not be trivial.
For example, ChIP-seq data is often used for the prediction of
spatial chromatin contacts. There are several ways to submit
these data to the algorithm: as a sum of ChIP-seq signals
in the interval between two genome loci of interest, the
total number of peaks in this region, the signal value of the
nearest ChIP-seq peaks, or the p-values of peaks, etc. In our

experience, differences in parameterization could significantly
affect prediction accuracy. Thus, the most challenging part is
to choose the best way of parameterization to achieve the best
performance of the algorithm.

Input Data Quality
Another important issue is the quality of the training data. Some
machine learning algorithms are sensitive to outliers presented in
the data. In this case, data smoothing should be performed before
training the model. For example, for Hi-C and RNA-seq data, it
is often useful to log-transform values.

Recently, high-resolution Hi-C maps were published (Hsieh
et al., 2015, 2020; Krietenstein et al., 2020). They reveal chromatin
structures in more detail and thereby improve predictions.
Moreover, we noticed that the prediction of higher resolution
heat maps is more accurate than the prediction of the same
heat map but with a lower resolution (Belokopytova et al.,
2020). This aspect is explained by features used for prediction.
We gain lots of information from ChIP-seq data, in which the
protein-binding event is attributed to a small locus (usually
less than 200 base pairs). In this case, using an ultra-high
resolution of Hi-C maps provides a better correspondence
between protein-binding sites and interacting loci, allowing
the model to learn effects mediated by specific proteins in a
more direct way.

Overfitting
Another problem of machine learning approaches is overfitting.
In this case, the model performs well on the training data set
but does not perform well on a holdout sample, actually not
capturing real complex patterns underlying the 3-D genome
structure. Non-overlapping subsets for training and validation
help to detect overfitting. There are two main ways to minimize
overfitting: training the network on more examples and changing
the complexity of the network. However, in the case of biological
data, it is not always possible to have enough training samples. To
increase the number of samples, it may be necessary to combine
data from multiple sources. This leads to the next challenge: to
normalize data from different sources that require rigorous data
preprocessing (Xu and Jackson, 2019).

WHAT DO WE CONSIDER A GOOD
PREDICTION?

Any data type has its data specificities, and this is also
true for the Hi-C maps discussed below. It should be
remembered that, usually for 3-D chromatin architecture,
prediction binary classifiers or regression-based methods are
used. There are some common metrics to access the binary
classifier’s performance, such as f1-score, AUC, and others.
These metrics do not have any special characteristics related
to genomic data.

The performance estimation of regression-based methods is
more specific for Hi-C maps. How can we understand that one
heat map is similar to another? Actually, a Hi-C map is a matrix
of numbers, so we can apply any metrics for matrices comparison.
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FIGURE 3 | The choice of the baseline plays a key role in assessing the prediction accuracy. Experimental data are from Rao et al. (2014); predictions generated
using 3DPredictor (Belokopytova et al., 2020) supplemented with following data: genomic distance, CTCF, and RNA-seq (model 1); (Qi and Zhang, 2019) (model 2).

The basic metric is Pearson’s correlation. Let us consider,
for instance, a Pearson’s correlation equal to 0.8: Does this
correspond to a good or bad prediction? Intuitively, it seems

that a Pearson’s correlation equal to 0.8 indicates accurate
prediction. However, using absolute values is not a good idea.
As we discussed above, contact probability shows prominent

Frontiers in Genetics | www.frontiersin.org 10 January 2021 | Volume 11 | Article 617202

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-617202 January 18, 2021 Time: 17:35 # 11

Belokopytova and Fishman Predicting Genome Architecture: Challenges and Solutions

dependence from distance, and even very simple prediction
algorithms efficiently capture this dependence. Even when
the distance between loci is not directly provided, it could
be inferred from many epigenetic features. For example,
cumulative ChIP-seq signals scale with the length of the
genomic region, allowing prediction of contact probability. As
we show in Figure 3, using randomly shuffled ChIP-seq signals,
which have no biological meaning, allows the generation of
predictions highly correlating with experimental data. Also,
the whole-map correlation coefficient does not reflect the
prediction of specific topological structures, such as TADs, loops,
or compartments.

There are several workarounds allowing the comparison of
Hi-C maps using correlation coefficients. First, one can compare
the correlation between predicted and experimental data with
the correlation between experimental replicates. Ideally, the
prediction should be as similar to the experimental data as
replicates among themselves. However, replicates are not always
available; in addition, Tao Yang et al. show that Pearson’s
correlation between unrelated samples sometimes is equal to
differences between replicates (Figure 3 in Yang et al., 2017).

Another baseline could be obtained by scoring differences of
Hi-C maps between distinct cell types. Chromatin organization
is moderately conserved between different cell types (Dixon
et al., 2012; Battulin et al., 2015) and even between different
species (Fishman et al., 2019; Nuriddinov and Fishman, 2019),
thus predicting cell type–specific features might be more
challenging than an overall 3-D organization. For a high-quality
algorithm, one would expect the difference between prediction
and experimental data on the target cell type to be less than
between different cell types. Besides this, one should carefully
select data sets for comparison, accounting for their noise level.
The lower noise level in the experimental data on target cell type
results in higher measures of prediction accuracy, whereas a high
noise level in a cell type used for baseline results in low baseline
metrics, thus overestimating predictive power.

To overcome the limitations of standard correlations as
measurements of Hi-C map similarity, Tao Yang et al. propose
a framework that minimizes the effect of noise and biases
by smoothing the Hi-C matrix, and then it addresses the
distance-dependence effect by stratifying Hi-C data according
to their genomic distance (Yang et al., 2017). This SCC metric
distinguishes subtle differences between closely related cell lines,
biological replicates, and pseudoreplicates, which was shown in
the paper (Figure 3 in Yang et al., 2017).

Besides Pearson’s correlation and SCC standard metrics for
comparison of matrices, such as MAE, MRE and others can be
used for algorithm performance estimation. Similar to Pearson’s
correlation, understanding the values of these metrics requires
a comparison with the baseline. Overall, we recommend using
several metrics and several baselines for the optimal assessment
of prediction accuracy (Figure 3).

Nevertheless, it is useful to visualize the predicted Hi-C map
for empirical assessment to be confident that the chosen metric
correctly reflects the differences between heat maps. Another way
is to estimate the prediction of 3-D chromatin structures, such
as TADs and loops. For some statistics, one can call loops or

insulator boundaries at experimental and predicting maps and
then compare and overlap detected structures.

The selection of metrics for prediction accuracy estimation is
an important issue for every algorithm. It should correctly reflect
differences of 3-D chromatin features.

PREDICTION OF FUNCTIONAL
CONSEQUENCES OF
REARRANGEMENTS

Some rearrangements have been known to change the 3-D
chromatin structure, causing diseases. Several works show the
importance of chromatin folding in the gene regulation process
(Franke et al., 2016; Rodríguez-Carballo et al., 2017; Kraft
et al., 2019). Inversions, duplications, and other rearrangements
can lead to TAD disruption, changing of promoter–enhancer
interactions, and the emergence of new interactions between
regulatory elements and genes. These insights are significant
for medical genetics because the interpretation of chromosomal
rearrangements in non-coding regions remains a big challenge.
Zepeda-Mendoza et al. (2018) suggest detailed instructions on
how to run a computational pipeline that identifies relevant
candidates of non-coding balanced and apparently balanced
chromosomal abnormality position effects. This pipeline includes
analysis of TADs and the possibility of changing enhancer–
promoter interactions due to rearrangement. Hence, the analysis
of chromosomal rearrangement consequences in the context
of the 3-D genome structure becomes a routine assay.
The recently published machine learning algorithm TADA
(Hertzberg et al., 2020) can prioritize large chromosomal
alterations, such as copy number variants (CNVs) based on
their pathogenicity.

Besides the prediction of the overall rearrangement effect,
it is possible to predict changes in 3-D genome structures
as TADs and loops. The 3D-GNOME algorithm (Sadowski
et al., 2019; Wlasnowolski et al., 2020) generates chromatin 3-
D structures using a Monte Carlo approach based on chromatin
conformation capture (3C) data. It uses high-quality CTCF or
RNA polymerase II ChIA-PET data as a reference chromatin
interaction pattern. For rearrangement prediction, it applies a
series of simple rules to recover chromatin interaction patterns.
The 3D-GNOME algorithm can visualize alterations emerging
in genomic structures after the introduction of SVs1. Another
approach is to predict changes in chromatin loops by a machine
learning–based DeepMilo algorithm (Trieu et al., 2020). The
algorithm can extract features directly from DNA sequences of
loop anchors not using information about the presence and
orientation of CTCF motifs. It allows predicting true Hi-C loops
not having a CTCF signal at their anchors. DeepMILO can
predict effects even of small mutations, and authors identified
insulator loops predicted to change in multiple cancer patients
and genes affected by these loops.

The aforementioned algorithms predict the perturbation of
specific chromatin structures, such as loops and TADs. Other

1https://3dgnome.cent.uw.edu.pl/
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tools are capable of predicting a complete Hi-C map of the
mutated locus. Algorithms such as Akita (Fudenberg et al., 2020),
DeepC (Schwessinger et al., 2020), 3DPredictor (Belokopytova
et al., 2020), PRISMR (Bianco et al., 2018), and others can
predict alterations of 3-D chromatin architecture induced by
structural variants.

An area of increasing interest and active research is
the effect of small INDELs and single base pair variants
on chromatin architecture. It is known that even single
nucleotide replacement can lead to changes in 3-D genome
structure, for example, by modifying CTCF binding sites
(Schmiedel et al., 2016; Sun et al., 2020). A separate mission
of predictive algorithms is to foresee the consequences of
such mutations. Some algorithms, such as DeepMILO (Trieu
et al., 2020), Akita (Fudenberg et al., 2020), and DeepC
(Schwessinger et al., 2020) use a nucleotide sequence as the
main feature for prediction. These algorithms are very powerful
in predicting changes induced by small mutations because
the mutations directly affect input features. On the other
hand, training these algorithms requires knowledge of 3-D
chromatin organization in wild-type cells of the same type
because a nucleotide sequence does not provide cell type–specific
epigenetic information.

Other algorithms do not use nucleotide sequences for
prediction directly. In this case, it is important to model
changes in input features caused by SNP or small INDEL.
For instance, in the case of polymer modeling, it needs
to change binder position or to remove the part of the
polymer corresponding to the mutated DNA. All the same is
about statistical approaches not using nucleotides as features
for the prediction.

CONCLUSION

The mechanisms that underlie genome organization are
intensively studied. Multiple groups developed computational
algorithms to explain mechanisms underlying genome
architecture and predict chromatin folding in normal and
mutated cells. However, there is still no approach that is
able to completely describe the whole complexity of the

nuclear organization. Physical models are limited by incomplete
knowledge of mechanisms and relevant system parameters, such
as interaction affinities and concentrations. Statistical methods
do not allow understanding of the exact mechanisms underlying
captured dependencies. And for both methods, it is not clear
whether developed algorithms trained and validated using several
cell types could be broadly and efficiently transferred to other cell
types and conditions.

The latter question could be answered using the rapidly
growing number of high-resolution Hi-C data sets. There are
multiple published experimental data studying 3-D genome
structure in normal and rearranged genomes. Such experiments
provide detailed Hi-C maps of mutated regions that can
be used as validation data for predictive algorithms. We
believe that benchmarking and comparing existing predictive
algorithms using these data sets would help to describe their
power and limitations and to develop new, comprehensive
approaches for the prediction of chromatin organization and
dynamics in the future.
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