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Abstract

Background: The NAM-BT1 gene in wheat has for almost three decades been extensively studied and utilized in
breeding programs because of its significant impact on grain protein and mineral content and pleiotropic effects
on senescence rate and grain size. First detected in wild emmer wheat, the wild-type allele of the gene has been
introgressed into durum and bread wheat. Later studies have, however, also found the presence of the wild-type
allele in some domesticated subspecies. In this study we trace the evolutionary history of the NAM-BT in tetraploid
wheat species and evaluate it as a putative domestication gene.

Results: Genotyping of wild and landrace tetraploid accessions showed presence of only null alleles in durum.
Domesticated emmer wheats contained both null alleles and the wild-type allele while wild emmers, with one exception,
only carried the wild-type allele. One of the null alleles consists of a deletion that covers several 100 kb. The other
null-allele, a one-basepair frame-shift insertion, likely arose among wild emmer. This allele was the target of a selective
sweep, extending over several 100 kb.

Conclusions: The NAM-BT gene fulfils some criteria for being a domestication gene by encoding a trait of
domestication relevance (seed size) and is here shown to have been under positive selection. The presence
of both wild-type and null alleles in domesticated emmer does, however, suggest the gene to be a diversification gene in
this species. Further studies of genotype-environment interactions are needed to find out under what conditions selection on

different NAM-B1 alleles have been beneficial.
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Background

The domestication of tetraploid wheats began more than
10,000 years ago [1, 2]. The process originated in the
Fertile Crescent, where stands of wild tetraploid emmer
(Triticum turgidum subsp. dicoccoides) can still be found
(reviewed in [3]). The circumstances surrounding the
domestication of the tetraploid wheats, resulting in do-
mesticated emmer (Triticum turgidum subsp. dicoccum)
and durum wheat (Triticum turgidum subsp. durum),
have long been debated. Some studies suggest a mono-
phyletic origin of domesticated wheat [4, 5], possibly
with gene flow between wild and domesticated popula-
tions [5], while others propose a polyphyletic origin [6, 7].
More recently it has been suggested that domesticated
tetraploid wheats arose from a mixed set of wild emmer
populations [8]. The hexaploid wheats, including bread
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wheat Triticum aestivum subsp. aestivum, arose as a result
of hybridization between free-threshing Triticum turgi-
dum and the wild diploid Aegilops tauschii [9, 10]. There
also appears to have been introgression of genetic material
from wild tetraploid populations into hexaploid wheat,
which could have happened either post-domestication or
via the tetraploid progenitor [10-12].

Domestication of wheat affected several traits, most
notably leading to the evolution of a non-brittle rachis
(under control of two major genes: Br-A2 and Br-A3
[13]). Other traits in the domestication syndrome are
free-threshing (influenced by the genes Q and Tg) [14, 15]
and increased seed size [16]. The latter is influenced by
the gene Gpc-B1, also known as NAM-B1, which has con-
sequently been suggested to be a domestication gene [17].
In order to be considered a domestication gene three cri-
teria should be fulfilled: it should underlie a trait associ-
ated with domestication, it should have experienced
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positive selection, and it should be at near or complete
fixation for the causative allele behind the trait [18].

The function of NAM-BI is well characterized as a
NAC transcription factor [19]. Three alleles have been
described of which only the wild-type (henceforth WT)
is functional. The other two, a one-basepair insertion
frameshift mutation (henceforth +1 bp) and a deletion
(henceforth del) of unknown size, are null alleles. The
WT allele accelerates senescence and facilitates remobili-
zation of nutrients from flag leaf into maturing grain
[20—24]. This results in grain that has higher concentra-
tions of protein and micronutrients [22, 25-28]. In
contrast, the null alleles delay senescence, which can
prolong the grain-filling period and thereby increase
seed size [26]. Whereas the WT allele has been found to
increase protein and mineral content throughout envi-
ronments, the effect on seed size is more dependent on
genetic background and environment [26]. Distelfeld, et
al. [22] suggested that the seed size enhancing effects of
the null alleles are more pronounced in cooler, wetter
climates that allows a longer grain-filling period.

In a study by Uauy, et al. [19] the WT allele of NAM-BI
was found to be present in all investigated wild emmers
and in most of the domesticated emmers, while it was ab-
sent in the bread or durum wheats. The +1 bp allele was
found in all durum wheats and a few of the domesticated
emmers and bread wheats, while most bread wheats ap-
peared to carry the deletion. Based on this screening the
authors concluded that the WT allele was lost during do-
mestication of the progenitors of bread wheat and durum
[19]. Asplund, et al. [29], however, could show that the
WT allele was present in four historical specimens of
hexaploid landrace wheats. This suggested that the ab-
sence of the WT allele in modern wheat varieties was at
least partly the result of more recent selection. The
presence of the WT allele was later confirmed in extant
hexaploid wheats where it was prominent among Fennos-
candian landrace spring wheats [30]. Based on their global
distribution, the null alleles could, however, arguably be
considered to be near fixation in bread wheat.

Although many genes in various crops, including
NAM-BI [17], have been proposed to be domestication
genes, only a few have been shown to have been targeted
by selection [31]. When exposed to selection not only
the favored genetic variant increases in frequency, but
also other, neutral, polymorphisms linked to it. The re-
sult is a genetic region with reduced genetic diversity
[32, 33], a so-called selective sweep. It has been sug-
gested that during domestication much, if not most,
selection will act on already existing genetic variants that
become beneficial when artificial selection is applied
[34]. The resulting soft sweeps, are expected to leave
more subtle traces in the genome than selection acting
on de novo mutations [18, 34] and classic tests for
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selective sweeps will have limited power to detect soft
sweeps. Evidence of selection is, however, needed to be
able to call a gene a domestication gene [18]. In order to
further investigate NAM-BI’s previously suggested status
as a domestication gene [17, 35-37], we therefore set
out to determine whether we could detect traces of
selection in the NAM-BI1 region of tetraploid wheat
with the +1 bp allele, and whether the strength of se-
lection acting on the gene could be estimated. In
addition we sought to determine the size of the deletion
allele.

Methods
Plant materials
Two different sets of plant materials were used
(Additional file 1). The first set was used to deter-
mine the size of the deletion. It consisted of six
hexaploid wheats with known NAM-BI genotypes;
‘Anza’ (del), ‘Glenlea’ (del), ‘Little club’ (del), ‘Chinese
spring’ (+1 bp), ‘Aurore’ (+1 bp) and PI 350731
(WT), with the nullisomic line N6BT6D used as a control
to exclude amplification of homologous regions on chro-
mosomes other than 6B.

The second set was used to investigate the presence of
a selective sweep in the NAM-BI region. In a first
screen, 94 tetraploid landrace wheats were genotyped for
the NAM-B1 gene. The materials primarily originated
from the Mediterranean and Near East, and comprised
of 18 wild emmers, 61 domesticated emmers and 15
durum wheats. From these, 40 wheats were chosen for
the second set of plant materials, which also included six
hexaploid wheats used in a previous study [30] and five
outgroup accessions of Aegilops speltoides, Aegilops
tauschii and Triticumm monococcum. The tetraploid ac-
cessions were chosen so that, whenever possible, differ-
ent genotypes were represented among the different
subspecies: ten domesticated emmers with WT and ten
with +1 bp allele, ten wild emmers with WT and one
with +1 bp, and nine durum wheats all of which carried
the +1 bp allele.

DNA was extracted from leaf tissue using either
DNeasy Plant Mini Kit (Qiagen) or E-Z 96 Plant DNA
kit (Omega bio-tek).

PCR amplification
Primers (Additional file 2) targeting regions within and
around NAM-B1 (Fig. 1) were used to determine
whether each particular region was deleted or not in the
first set of plant materials. Lack of amplification in ‘Anza;
‘Glenlea’ and ‘Little club’ but with successful amplifica-
tion in ‘Chinese spring, ‘Aurore’ and PI 350731 was inter-
preted as that region being deleted.

The 94 tetraploid wheats were genotyped for NAM-B1
according to Asplund, et al. [29]. The resulting PCR
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fragments were run on an ABI 3130xl Genetic Analyzer
with MegaBACE ET400-R Size Standard. Accessions
showing no amplification after multiple PCR attempts,
but where amplification outside the deleted region veri-
fied DNA quality, were considered to carry the deletion.

The second set of plant materials was used to look for
signs of a selective sweep. Nine fragments in NAM-BI
and the surrounding genomic region on chromosome
6B were amplified using PCR (Additional file 2). Four
reference genes; MdhA, Mp7A, GsplB, and 11B [4], be-
lieved to be unlinked to NAM-BI, were included for
comparison. PCR specificity to chromosome 6B was
verified by failure to amplify DNA from the nullisomic
line N6BT6D.

For PCR amplification in both sets each reaction
contained 0.05 U/ul of DreamTaq DNA polymerase
(Thermo Scientific), 1 x DreamTaq Buffer (Thermo
Scientific), 0.2 mM of each ANTP (Thermo Scientific),
0.1 uM each of forward and reverse primer, respectively,
and 1 pl of DNA template. PCR conditions were as given
in Additional file 2. Unincorporated nucleotides and
primers were removed from the PCR products using
0.014 U/ul Exonuclease I (Thermo Scientific) and
0.0071 U/l FastAP Thermosensitive Alkaline Phosphat-
ase (Thermo Scientific) incubated at 37 °C for 30 min
followed by 5 min at 95 °C. Sequencing was performed
by Eurofins MWG Operon, Germany, and Macrogen
Europe, The Netherlands.

DNA sequence analysis

Geneious (6.0.5) was used to edit and align the DNA se-
quences and for constructing neighbor-joining trees
(Tamura-Nei). DnaSP (ver 5.10.01) [38] was used to test
for selection by calculating Tajima’s D [39] and Fu and
Li’s D and F [40] statistics. Where outgroup data was not
available Fu and Li’s D" and F  statistics were calculated

instead. The strength of selection acting on NAM-BI was
estimated according to Olsen, et al. [33].

Results

The deletion allele

Of the three known alleles at NAM-BI one is a deletion.
By PCR-amplifying targets in the region surrounding the
gene (Fig. 1) in six hexaploid wheats with known NAM-
Bl genotypes we found that the deletion covered a
fragment located 25 kb away from NAM-BI on the telo-
meric side of the gene (henceforth t_25kb) but not the
t_75kb fragment. On the centromeric side of the gene
the deletion covered a fragment located 174 kb away
from NAM-BI (henceforth c¢_174kb). We did, however,
find amplification in one accession carrying the deletion
(‘Anza’) at Xucw70_b located between BAC DQ871219.1,
that contains NAM-BI, and the adjacent BAC EU835198
located less than 0.3 ¢cM away from NAM-BI. The two
other accessions with the deletion (‘Glenlea’ and ‘Little
club’) did not show any amplification until c_Yr36 + 3,
located within EU835198 but further away on the
centromeric side, suggesting that the region contains
multiple deletions. In conclusion, the deletion was
found to cover a region of more than 200 kb, stretch-
ing from approximately 25 kb on the telomeric side
and past a fragment located 174 kb into the centro-
meric side of NAM-BI.

Allele distribution in tetraploid wheats

We screened 94 accessions of wild and landrace tetra-
ploid wheats for NAM-BI alleles. All 18 wild emmer ac-
cessions carried the WT allele except PI 355459 that
carried the +1 bp allele and PI 233288 which was found
to be heterozygous and was hence excluded from further
study. In contrast, all the 15 durum wheats had the
+1 bp allele except TRI 14552, which carried the dele-
tion. Among the domesticated emmer accessions 25 out
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of the 61 genotyped carried the deletion, 17 had the
+1 bp allele and 19 carried the WT allele (Fig. 2).
Neither of the NAM-BI1 alleles appeared to be limited to
specific geographic areas. The WT allele was frequently
found in accessions from the Middle East, reflecting that
this is the most common allele among the wild emmers
that are native to this region.

Phylogenetic and diversity analyses in the region
surrounding NAM-B1

Fragments across the NAM-BI region were sequenced
in the second sample set to investigate the presence of a
selective sweep. Neighbor-joining trees showed that the
sequences formed two clusters; one consisting of WT ac-
cessions and another with accessions carrying the +1 bp
allele both within the gene as well as outside of it
(Fig. 3a-c) from t_76kb to c_141kb. The WT accessions
were fairly polymorphic and in NAM-BI the less variable
+1 bp accessions formed a subclade within a group of
WT wild emmers. In c¢_7kb (Additional file 3) and
t_76kb (Fig. 3a) the occasional WT accession clustered
among the +1 bp accessions. In c_157kb (Fig. 3d) acces-
sions no longer clustered according to allele type, in
concordance with the four reference genes.

The nucleotide diversity of the sequences from sample
set two was examined with sequences being grouped by
NAM-BI genotype as well as by domestication status
and subspecies (Fig. 4, Additional file 4 a—b). In all but
three fragments (NAM-BI, one linked and one reference
fragment) nucleotide diversity (m) was higher in wild
emmer than in the domesticated wheats combined
(three fragments for 0; NAM-B1, one linked and one ref-
erence). Inclusion of the +1 bp wild emmer had little
effect on the diversity measures. Nucleotide diversity (i)
was higher in WT accessions than in +1 bp accessions in
all fragments. When comparing only domesticated
wheats the WT nucleotide diversity (i) was higher than
+1 bp diversity in all but three fragments; two reference
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fragments and one linked to NAM-BI (three fragments
for 0; two linked and one reference).

Tests for selection

The sequences from sample set two were also analyzed
to see if any of the fragments showed significantly higher
frequencies of rare alleles than expected under neutral
theory, indicative of a selective sweep. Such an excess of
rare alleles would reveal itself as negative test statistics
when tested with Tajima’s D or Fu and Li’s D and F. For
the four reference fragments both wild emmers and do-
mesticated tetraploid wheats primarily produced nega-
tive test statistics (Fig. 5a-c, Additional file 5a—c). Wild
emmers likewise tended to produce negative test statis-
tics also in the fragments surrounding the NAM-BI at
least on the telomeric side and when tested with Tajima’s
D. For most fragments test statistics continued to be
negative after the inclusion of the +1 bp wild emmer.
Domesticated wheats, in contrast, had in general positive
test statistics throughout the NAM-BI region.

When separated according to genotype, both domesti-
cated wheats with WT and those with +1 bp had nega-
tive Tajima’s D values (Fig. 5a; Additional file 5a) for
three out of the four reference fragments. Fu and Li’s
test statistics were positive for the WT accessions in the
reference gene from which results were obtained, and
negative in two of the fragments for the +1 bp acces-
sions (Fig. 5b-c, Additional file 5b—c). For the fragments
in the NAM-BI region Tajima’s D values were in general
negative for the +1 bp accessions and positive for the
WT accessions. In NAM-BI itself this was the case for
all three test statistics, with significant positive values for
WT accessions, but the pattern was less clear for Fu and
Li’s D in the fragments surrounding NAM-BI1. In con-
clusion, selection test statistics tended to be negative
in all species and allele groups with the exception of
domesticated WT accessions for fragments in the
NAM-BI region.

In wheat, the markers Xucw?70 and Xucw?3, flanking
the NAM-BI region, are located 0.9 ¢cM apart, corre-
sponding to a 100 kb segment in rice [41]. Using these
values as an approximate estimate of the recombination
frequency in the region and 141 kb as an estimate of the
width of the selective sweep we followed Olsen, et al.
[33] and estimated the strength of selection acting on
NAM-BI to 0.13.

Discussion

Genetic effects of tetraploid wheat domestication
Domestication is expected to cause a genome-wide
bottleneck with a resultant loss of genetic diversity [31, 42].
Consequently, wild emmer is expected to contain higher
levels of genetic diversity than domesticated wheats
[43-45]. Overall, we found higher levels of diversity
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in wild emmer than in domesticated wheats, both for
the reference genes and to a higher extent in the
NAM-BI region, supporting the presence of a domes-
tication bottleneck. The levels of genetic diversity de-
tected in the reference fragments, although moderate,
were similar or higher to those previously reported
from the same genes also in wild emmer [4]. We
thus conclude that our sample of wild emmer well
describes the diversity currently available in gene-
bank holdings.

When comparing the two domesticated tetraploid wheat
species, emmer and durum, the former tended to have
higher diversity. This is in agreement with previous stud-
ies where low nucleotide diversity have been reported in

domesticated wheats, in particular durum wheat [4, 46].
In contrast, in a study of Mediterranean wheats, Oliveira,
et al. [12] found higher SNP diversity in the order: durum
> domesticated emmer > wild emmer wheat, but noted
that this may have been the consequence of ascertainment
bias as the markers used had been developed from a panel
of durum and rivet wheat.

For some of the fragments in this study, our unascer-
tained sequences from domesticated emmer showed
higher diversity than wild emmer, corroborating the
results of Oliveira, et al. [12]. A reticulated origin of do-
mesticated emmer wheats [8] or gene flow between wild
and domesticated species [5, 11] could have contributed
to increasing the nucleotide diversity in parts of the
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genome of domesticated wheat. It has been argued,
however, that the effect of introgression from wild
wheats may have been limited, in particular as it
would have posed a risk to losing recessive domesti-

Many tests for selection, such as the ones used here, are
also sensitive to population expansion and subdivision.
The negative (albeit rarely significant) test statistics de-
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statistics for wild emmer is less clear, but the results cor-
roborate those of previous studies [4, 12].

Null alleles at NAM-B1

There are two known null alleles at the NAM-BI locus,
one of which is a deletion (del) [19]. We report here, for
the first time, the presence of the del allele among
durum wheats, which suggests that both null alleles
occur in both durum and emmer landrace wheat. The
rarity of the del allele among durum wheats (a single ac-
cession — TRI 14552) could be the result of genetic drift
during a bottleneck during the formation of the species,
but neither our reference genes nor the results of other
studies have consistently suggested a strong bottleneck
during durum formation [12, 48]. Further genetic analysis
of the del carrying accession would be needed to rule out
recent gene flow from domesticated emmer.

We have found that the deletion allele stretches over a
region of at least 200 kb. Our data also suggest that
more deletions occur in the same genetic region. A large
proportion of the region surrounding NAM-BI consists
of repetitive sequence, facilitating repeated loss of DNA
[49]. This plasticity of the plant genomes, resulting from
both repetitive DNA introducing variation and motifs
involved in illegitimate recombination together with the
functional overlap among genes in polyploids, has been
suggested to be of major importance for crop evolution
[17, 50-52]. In the case of NAM-BI it has given rise to
one of the two null alleles.

Accessions with the +1 bp allele form a subclade to ac-
cessions with the WT allele (Fig. 3b). The subclade, how-
ever, falls under the wild emmers rather than WT
accessions of the domesticated subspecies. This strongly
suggests that the +1 bp mutation first arose in wild
emmer rather than in the domesticated forms. This is
further supported by the presence of the +1 bp allele in
a wild emmer accession. This accession, PI 355459, has
the spikelet morphology and smooth breakage scars con-
sistent with it being a true wild emmer, although we
cannot rule out that the presence of the +1 bp allele is
the result of gene flow from domesticated tetraploids
back into wild emmers.

A selective sweep at NAM-B1

Genetic diversity at linked sites is expected to share a
common genetic history, with alleles at different loci be-
ing non-randomly associated, in so-called linkage dis-
equilibrium [53]. Recombination will act to break up
such associations and gene trees at unlinked or loosely
linked parts of the genome are typically independent of
each other. Selective sweeps, such as those expected fol-
lowing selection on traits beneficial to domesticated
plants, will act to increase the extent of linkage
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disequilibrium and the amount of linkage disequilibrium
will depend both on the strength of the sweep and the
time since the sweep occurred [54].

We found that accessions cluster according to NAM-
B1 genotype up to at least 141 kb on the centromere
side and beyond 76 kb on the telomere side of NAM-BI,
indicative of a large sweep. A sweep affecting a region of
similar size (250 kb) has been reported to surround the
Waxy (Wx) gene, causing the absence of amylose in glu-
tinous rice [33], a primarily self-pollinating species like
wheat. In contrast, the sweep located just upstream of
teosinte branched 1 (tbl) in maize, a cross-pollinating
species, is much smaller at 65.6 kb [55-57]. In maize the
sweep appears to have been targeting the regulatory re-
gion where domesticated maize carries a transposon inser-
tion that alters the expression levels of th1 [57, 58]. This
affects several downstream targets of th1 [59] resulting in,
among other things, altered branching pattern. In the case
of Wx the strength of selection was estimated to be on the
order of 4.24—4.59 [33] while the inferred selection coeffi-
cient in maize was much weaker at no more than 0.08
[55, 56]. Our estimate of the strength of selection sug-
gests that the +1 bp allele has been more strongly se-
lected than tb1 but less strongly selected than Wa.

In addition to increasing the extent of linkage disequi-
librium, selective sweeps reduce the genetic diversity in
the targeted region and its surrounding region. Consistent
with this we found that the accessions of domesticated
wheats carrying the +1 bp allele had lower levels of nu-
cleotide diversity both in NAM-BI and in surrounding
fragments than both wild emmers and domesticated tetra-
ploid wheats carrying the WT allele (Fig. 4a). For the refer-
ence genes the diversity differences between the two
allele-groups were typically smaller.

In spite of the high level of linkage disequilibrium and
the low genetic diversity indicative of a selective sweep
at NAM-B1, neutrality tests mostly failed to detect the
sweep. This was in many cases due to the lack of genetic
diversity, itself an expected outcome of a selective sweep
(e.g. [60]), among the +1 bp accessions. Where genetic
diversity was present among the +1 bp accessions neu-
trality tests often produced the negative test statistics in-
dicative of a selective sweep (Fig. 5; Additional file 5)
although the tests were rarely significant. The lack of
significance is surprising, given not only the expected se-
lective history of the gene. The population expansion
suggested for domesticated tetraploid wheats by the ref-
erence fragments and, for emmer, by previous studies
[12] should have pushed also the fragments in the
NAM-BI region towards more negative test statistics.

Evolutionary history of the NAM-B1 region
It has been suggested that three criteria should be met
in order for a gene to be called a domestication gene
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[18]. The first criterion is that its function should be
characterized and it should code for a trait of interest
during domestication. Wheat carrying null alleles of
NAM-B1 has been shown to have slower senescence
rate, resulting in an increased grain weight [21, 23, 26]
and based on this we consider NAM-BI to fulfill the first
criterion. Secondly there should be evidence of positive
selection at the locus [18]. From the location of the
+1 bp accessions in the gene tree for NAM-B1 (Fig. 3b)
we can deduce that the +1 bp allele likely arose in wild
emmer, i.e. before domestication. The lack of genetic di-
versity in NAM-BI among accessions carrying the +1 bp
allele suggests that the insertion did not happen long be-
fore domestication and argues against a soft sweep at
NAM-BI1. The extensive linkage disequilibrium around
NAM-BI1 and the reduced genetic diversity strongly sug-
gests a hard selective sweep on the +1 bp allele even as
the region does not test significantly for selection. We
therefore consider the selection criterion to also be
fulfilled for NAM-BI1.

The final criterion posits that causative alleles should
be at or near fixation in all lineages from a single domes-
tication event [18]. In this and previous studies [19]
NAM-BI1 has been shown to be fixed for the null alleles
in durum. Bread wheat, could be argued to be nearly
fixed for the null alleles with the WT allele only persist-
ing in Fennoscandian spring wheat [30]. It can thus be
argued that in terms of durum and bread wheat NAM-
B1 is a bona fide domestication gene as has been sug-
gested [17, 35-37]. In contrast, for domesticated emmer
the WT allele was present in close to a third of the geno-
typed accessions, refuting the status of NAM-BI as a do-
mestication gene in the evolutionary lineage that gave
rise to domesticated emmer. Durum is generally believed
to have developed from emmer [4, 10, 12]. Under such a
scenario it is not clear whether NAM-BI can be called a
domestication gene for tetraploid wheats. In comparison,
the above-mentioned tbI can be classified as a domesti-
cation gene since the alleles differ between wild and do-
mesticated maize [57, 58]. In contrast, both wild-type
and null-alleles of Wx occurs in domesticated rice, sug-
gesting that Wx is instead a diversification gene [33].
Our finding of both functional and null alleles in domes-
ticated emmer wheat suggests that NAM-B1 should be
considered a diversification gene for tetraploid wheats.
Selection on NAM-BI1 null alleles would have begun
already in domesticated emmer, but intensified with the
development of durum where the null alleles finally be-
came fixed.

The strongly contrasting fates of the null alleles in
bread wheat and durum compared to emmer raise the
question of why the WT allele is still present in emmer.
Although NAM-BI null alleles increase grain weight, the
effect on overall yield is not necessarily clear [26]. This
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may be due to other factors effecting yield that under
some conditions compensate for the reduced grain size
in WT wheat [61]. Distelfeld, et al. [22] proposed that a
delayed senescence would only be beneficial in a mild
humid climate where a prolonged grain-filling would be
possible and result in larger grain. In a dry environment,
prolonged grain-filling would instead be restricted by
limited water availability and the yield effects of delayed
senescence would be small or negative. Carter, et al. [62]
did notice earlier senescence among wheat with the WT
allele grown under greenhouse conditions, but not in
plants grown in the field in an area with high mid-
season growing temperatures.

It is possible that the selection of genes affecting sen-
escence rate and grain size differ depending on climate.
That this may be the case for NAM-BI is supported by
the fact that in bread wheat the WT allele occurs only in
Fennoscandian spring wheats, where the benefits of a
fast maturation seem to have outweighed the yield
effects of the null alleles [30]. The case is much less
straightforward when it comes to the domesticated em-
mers in this study. The effects of genotype - environ-
ment interactions on seed size and yield have not yet
been tested in emmer wheat. However, we note that ac-
cessions carrying the WT allele originated from Spain in
the west to Iran in the east and from Ethiopia in the
south to Belarus in the north, while accessions with null
alleles originated from a similar area (Additional file 1).
Environmental selection pressures acting similarly over
this vast area to preserve the WT allele seem unlikely.

An alternative explanation could be gene flow between
wild and domesticated emmer. Many of the emmers car-
rying the WT allele originated from areas where wild em-
mers grow (Iran: N =5, Turkey: N =3, Additional file 1)
[5]. Gene flow is supported by the clustering of WT em-
mers among the wild emmers in the NAM-BI gene tree
(Fig. 3b). Gene flow between wild emmer and domesti-
cated emmer from central Europe or Africa, however,
seems less likely. Durum wheat has been shown to have
limited geographic structure in the Mediterranean area
[12], and a dynamic history of wheat farming has been
suggested [48]. If this is the case for emmer, long distance
seed trade could have spread WT emmer far from areas
where gene flow from wild emmer can occur. Limited se-
lection for seed size may have allowed genetic drift to pre-
serve the WT allele in some populations.

Conclusion

In this study we have shed light on the evolutionary his-
tory of NAM-B1. We have shown that the deletion allele
covers several 100 kb and that the +1 bp likely arose
among wild emmer. The +1 bp allele was then the target
of a selective sweep, also extending over several 100 kb,
and possibly stronger than the selection acting on the
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tbl locus in maize. Both null alleles occur in domesti-
cated emmer and durum and in the latter the null allele
seems to be fixed. The frequent occurrences of the WT
allele among domesticated emmer, however, raises ques-
tions as to whether the NAM-BI gene is a bona fide
tetraploid wheat domestication gene. Instead we propose
it to be a diversification gene in this species.
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