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A periodic mathematical model of cancer treatment by radiotherapy is presented and studied in this paper. Conditions on the
coexistence of the healthy and cancer cells are obtained. Furthermore, sufficient conditions on the existence and globally asymptotic
stability of the positive periodic solution, the cancer eradication periodic solution, and the cancer win periodic solution are
established. Some numerical examples are shown to verify the validity of the results. A discussion is presented for further study.

1. Introduction

Cancer is a well-known killer of humans worldwide, and
its treatments are varied and sporadically successful. There
are four main types of cancer treatments, which are surgery,
chemotherapy, radiotherapy, and immunotherapy. In this
paper, we only consider cancer treatment by radiotherapy.

Radiotherapy, as a primary treatment strategy, has been
proven to be an effective tool in combating with cancer
[1, 2]. Radiation therapy is a treatment procedure that uses
radiation to killmalignant cells.This treatment targets rapidly
reproducing cells such as those in cancer [3].Therefore, when
cancer cells are irradiated, there is a lesser effect on more
slowly reproducing surrounding healthy cells. As such, the
intent of this paper is to model the dynamics and interactions
of healthy and cancer cells under radiation therapy.

It is an important and effective way to deeply under-
stand the real-world problems by establishing mathematical
models and analyzing their dynamical behaviors (see [4–9]
and reference cited therein). Recently, some mathematical
models that focus on cancer treatment by radiotherapy have
been presented and studied ([10–13]). Liu et al. in [10]
focused on dynamical behaviors of normal cells that affected
periodic radiation and established some conditions on the
permanence and extinction of the normal and radiated cells.

Moreover, they obtained criteria on the existence and global
asymptotic stability of unique positive periodic solutions
of the system. Belostotski in [11] presented a mathematical
model to represent the interactions between healthy and can-
cer cells subject to radiation, where the interactions between
healthy and cancer cells were viewed as competition for bod-
ily resources. He featured four different control mechanisms
of radiation delivery. They included continuous constant
radiation, continuous radiation that is proportional to the
instantaneous cancer concentration, continuous radiation
that is proportional to the ratio of cancer to healthy cell
concentration, and periodic administration of radiation. He
supposed that the effect of radiation on healthy cells ideally
is zero and obtained some sufficient conditions on each case
that guarantee the cancer to be cure or treatment. In paper
[12], Belostotski and Freedman developed and analyzed a
mathematical model of cancer treatment by radiotherapy
using control theory, where the radioactivity only affected
the cancer cells. Later, considering the fact that the radiation
also may affect the healthy cells to some extent during the
radiotherapy, Freedman and Belostotski in [13] extended
the previous study by perturbing the previous models. They
considered four types of treatment delivery: constant, linear,
feedback, and perturbed periodic deliveries. For each case,
they established some sufficient conditions on the cure state
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and treatment state. However, paper [13] only considered the
perturbed periodic radiation, although paper [12] investi-
gated the periodic radiation, it supposed that the effect of
radiation on healthy cells is zero. Hence, the study of periodic
radiation under conditions that both cancer and healthy cells
are affected by radiation is of major importance.

This paper is organized as follows. In Section 2, we
present our model and give a basic theorem. Conditions
for the coexistence of the healthy cells and cancer cells
of the system are obtained in Section 3. In Section 4, we
establish some sufficient conditions on the existence and
globally asymptotic stability of positive periodic solution,
cancer eradication periodic solution, and cancer win periodic
solution. Numerical simulations are shown to verify the
validity of the theorems in Section 5. Finally, we discuss our
results and present some interesting problems.

2. The Model

To simplify the model, we assume that the concentrations
of cancer and healthy cells exist in the same region of the
organism; the administration of radiation removes a large
amount of cancer cells and a small amount of healthy cells
from the system. Here, the terms “large” and “small” are used
as a relation to the appropriate cell population at a particular
location in the organism. Radiotherapy is in fact a control
mechanism on the rates of change of the concentrations of
cancer and healthy cells by harvesting them.

In a given tissue, let 𝑥
1
(𝑡) be the concentration of healthy

cells, and let 𝑥
2
(𝑡) be the concentration of cancer cells; then

our model takes the form
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(1)

where �̇� = d𝑥/d𝑡 and𝐷(𝑡) is the strategy of the radiotherapy.
We assume that 𝐷(𝑡) ≡ 𝛾 > 0 when 𝑡 ∈ [𝑛𝜔, 𝑛𝜔 + 𝐿)

(treatment stage) and𝐷(𝑡) ≡ 0when 𝑡 ∈ [𝑛𝜔+𝐿, (𝑛+1)𝜔) (no
treatment stage) for all 𝑛 = 0, 1, 2, . . ., where 𝜔 is the periodic
of treatment and 0 < 𝐿 < 𝜔 is the radiation treatment
time. Further, in the absence of treatment (𝐷(𝑡) ≡ 0 for all
𝑡 ⩾ 0), the interactions between cancer and healthy cells were
viewed as competition for bodily resources and the model
was taken Lotka-Volterra competition type [14–16]. During
the process of cancer radiation treatment, the healthy cells
are also affected. The proportion of the radiation is 𝜀𝐷(𝑡),
𝜀 > 0 (𝜀 = 0 is the ideal, but impossible to achieve in
a practical scenario). 𝛼

𝑖
> 0 (𝑖 = 1, 2) are the respective

proliferation coefficients, 𝐾
𝑖
(𝑖 = 1, 2) are the respective

carrying capacities, and 𝛽
𝑖
(𝑖 = 1, 2) are the respective

competition coefficients.
In the absence of radiation, cancer (i.e., 𝑥

2
) wins resulting

in the following conditions [14]:
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2
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𝛼
1
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1

. (2)

This yields one globally stable equilibrium at (𝑥
1
, 𝑥
2
) =

(0, 𝐾
2
) for positive initial values [14]. The following discus-

sion of this paper will also base on the condition (2).
According to biological interpretation, we only consider

the nonnegative solutions. Hence, we suppose that 𝑥
1
(0) ⩾

0 and 𝑥
2
(0) ⩾ 0; then the following assertion is of major

importance.

Theorem 1. (i) Nonnegative quadrant of R2 is invariant for
system (1). (ii) System (1) is ultimately bounded.

Proof. Let 𝑥
1
(𝑡) and 𝑥

2
(𝑡) be solutions of system (1). Here, we

only analyze the healthy cells, the cancer cells can be analyzed
similarly.
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⩾ 0, from the first equation of

system (1),
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(3)
for all 𝑡 ⩾ 0. Hence, 𝑥

1
(𝑡) ⩾ 0 for any nonnegative initial

values.
(ii) From the first equation of system (1)
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for all 𝑡 ⩾ 0. According to the comparison theorem, there is
a 𝑇
1

⩾ 0 such that 𝑥
1
(𝑡) ⩽ 𝐾

1
+ 1 for all 𝑡 ⩾ 𝑇

1
. 𝑥
1
(𝑡) is

ultimately bounded. This completes the proof.

3. Coexistence

In this section, we will investigate the coexistence of the
healthy and cancer cells. We will find that when the radiation
dosage 𝛾 is chosen from a given interval, the cancer cells will
neither grow unrestricted nor tend to zero.

To understand the model more clearly, we rewrite system
(1) as follows:
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𝑡 ∈ [𝑛𝜔 + 𝐿, (𝑛 + 1) 𝜔) (no treatment stage) ,

𝑛 = 0, 1, 2 . . . .

(5)
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Before giving the main result of this section, we firstly
consider the following two-specie Lotka-Volterra competitive
system:

�̇� (𝑡) = 𝑢 (𝑡) [𝑏
1
− 𝑎
11
𝑢 (𝑡) − 𝑎

12
V (𝑡)]

V̇ (𝑡) = V (𝑡) [𝑏
2
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21
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22
V (𝑡)] ,

(6)

where 𝑏
𝑖
> 0, 𝑎

𝑖𝑗
> 0, 𝑖, 𝑗 = 1, 2. We have the following useful

Lemma.

Lemma 2. System (6) has a unique positive equilibrium point
(𝑢
∗
, V∗) if inequality
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(8)

is satisfied.Moreover, if inequality (7) is satisfied, then the equi-
librium point (𝑢

∗
, V∗) of system (6) is globally asymptotically

stable and if inequality (8) is satisfied, (𝑢∗, V∗) is unstable.

System (6) is a well-known Lotka-Volterra competitive
system.The existence and stability of the positive equilibrium
point have been studied in many articles and books, for
example, [17]. Here we omit the proof of it.

On the coexistence of the healthy cells and cancer cells,
we have the following theorem.

Theorem 3. Assume that the following conditions
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hold. Then the healthy cells and cancer cells are coexistent.

Proof. From system (5) we have
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for all 𝑡 ⩾ 0. Using the comparison theorem (see [18, 19])
we have 𝑥

1
(𝑡) ⩾ 𝑢(𝑡) and 𝑥

2
(𝑡) ⩾ V(𝑡) for all 𝑡 ⩾ 0, where

(𝑢(𝑡), V(𝑡)) is the solution of the following auxiliary system:
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with the initial values 𝑢(0) = 𝑥
1
(0) and V(0) = 𝑥

2
(0). By

condition (9) and Lemma 2, we know that system (11) has a
unique positive equilibrium point (𝑢

∗
, V∗) which is globally

asymptotically stable. Hence, there is a 𝑇
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> 0 such that
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2
, which imply that system (1) is permanent; that is, the

healthy cells and cancer cells are coexistent. This completes
the proof.

Remark 4. Condition (9) implies the range of radiation
dosage 𝛾. In fact, from condition (9), on the one handwe have
𝛾 < 𝛼
1
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Combine the above two inequalities; there is

[(𝛼
1
− 𝐾
2
𝛽
1
) + 𝜀 (𝛼

2
− 𝐾
1
𝛽
2
)] 𝛾

< 𝛼
2
(𝛼
1
− 𝐾
2
𝛽
1
) + 𝛼
1
(𝛼
2
− 𝐾
1
𝛽
2
) .

(13)

However, we cannot judge the sign of the coefficient of 𝛾 in
inequality (13) only by the conditions (2) and (9). This leads
to three cases.
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Remark 5. Condition (9) guarantees that the comparison
system (11) has a globally asymptotically stable equilibrium
point. Therefore, we can obtain that system (1) has a positive
lower bound. However, if the condition
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(16)

is satisfied, that is, the positive equilibrium point of the
comparison system (11) is a saddle point. How to choose the
radiation dosage 𝛾 andwhat dynamical behavior of system (1)
are still open problems.
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Remark 6. Under conditions of Theorem 3, system (1) has
a positive 𝜔-periodic solution. The biological meanings can
be understood as follows. If there is no treatment, from
condition (2) we know that system (1) has a globally stable
equilibrium point (0, 𝐾

2
) for any positive initial values.

However, if we treat it all the time, by condition (9) and
Lemma 2, we know that system (11) has a unique globally
asymptotically stable positive equilibrium point (𝑢

∗
, V∗).

Hence, if the treatment is periodic, the solution of system (1)
will tend to the positive equilibrium point (𝑢∗, V∗) during the
treatment stage, and it will tend to the cancer win state (0, 𝐾

2
)

during the no treatment stage.Thiswill lead to the appearance
of a periodic solution.

4. Periodic Solutions

The existence of a positive 𝜔-periodic solution is guaranteed
byRemark 6. In the following,wewill firstly give some criteria
on the existence of cancer eradication periodic solution and
cancer win periodic solution of system (1). Whereafter, we
will establish some conditions under which each periodic
solution is globally asymptotically stable.

Firstly, let us investigate the existence of cancer eradica-
tion periodic solution of the system. Consider the following
subsystem of system (1) under the case that 𝑥
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1
− 𝜀𝛾)

−

1

𝐾
1

+ (

1

𝑥
1
(0)

−

𝛼
1

𝐾
1
(𝛼
1
− 𝜀𝛾)

)

× exp {− (𝛼1 − 𝜀𝛾) 𝐿} ]

× exp {−𝛼
1
(𝜔 − 𝐿)} }

−1

.

(21)

If system (17) has a positive𝜔-periodic solution, thenwe need
𝑥
1
(𝜔) = 𝑥

1
(0), which leads to

𝑥
1
(0) = (1 − exp {𝜀𝛾𝐿 − 𝛼

1
𝜔})

× (

1

𝐾
1

+ (

𝛼
1

𝐾
1
(𝛼
1
− 𝜀𝛾)

−

1

𝐾
1

) exp {−𝛼
1
(𝜔 − 𝐿)}

−

𝛼
1

𝐾
1
(𝛼
1
− 𝜀𝛾)

exp {𝜀𝛾𝐿 − 𝛼
1
𝜔})

−1

.

(22)

From expression (22) we can calculate that 𝑥
1
(0) > 0 is

equivalent to 𝜀𝛾𝐿 < 𝛼
1
𝜔. Then we get the following result.

Theorem 7. System (1) has a cancer eradication periodic
solution (𝑥

∗

1
(𝑡), 0) if the inequality 𝜀𝛾𝐿 < 𝛼

1
𝜔 is satisfied.

The existence of the cancer win periodic solution of
system (1) can be analyzed similarly. Here we only show the
result.

Theorem 8. System (1) has a cancer win periodic solution
(0, 𝑥
∗

2
(𝑡)) if the inequality 𝛾𝐿 < 𝛼

2
𝜔 is satisfied.

Up to now, we have completed the studies on the exis-
tences of the positive periodic solution, the cancer eradication
periodic solution, and the cancer win periodic solution of
system (1). In the following of this section, we will mainly
study the global stability on each periodic solution.

Let (𝑥∗
1
(𝑡), 𝑥
∗

2
(𝑡)) be a positive periodic solution of system

(1). Choose

𝑉 (𝑡) =




ln𝑥
1
(𝑡) − ln𝑥

∗

1
(𝑡)





+





ln𝑥
2
(𝑡) − ln𝑥

∗

2
(𝑡)





, (23)

where (𝑥
1
(𝑡), 𝑥
2
(𝑡)) is any solution of system (1). Calculating

the derivative of𝑉(𝑡) along system (5), when 𝑡 ∈ [𝑛𝜔, 𝑛𝜔+𝐿),
we have

�̇� (𝑡) = sgn (𝑥
1
− 𝑥
∗

1
)

× [(𝛼
1
− 𝜀𝛾 −

𝛼
1

𝐾
1

𝑥
1
− 𝛽
1
𝑥
2
)

−(𝛼
1
− 𝜀𝛾 −

𝛼
1

𝐾
1

𝑥
∗

1
− 𝛽
1
𝑥
∗

2
)]
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+ sgn (𝑥
2
− 𝑥
∗

2
)

× [(𝛼
2
− 𝛾 −

𝛼
2

𝐾
2

𝑥
2
− 𝛽
2
𝑥
1
)

−(𝛼
2
− 𝛾 −

𝛼
2

𝐾
2

𝑥
∗

2
− 𝛽
2
𝑥
∗

1
)]

= −

𝛼
1

𝐾
1





𝑥
1
− 𝑥
∗

1





−

𝛼
2

𝐾
2





𝑥
2
− 𝑥
∗

2






+ sgn (𝑥
1
− 𝑥
∗

1
) (−𝛽
1
) (𝑥
2
− 𝑥
∗

2
)

+ sgn (𝑥
2
− 𝑥
∗

2
) (−𝛽
2
) (𝑥
1
− 𝑥
∗

1
)

⩽ −(

𝛼
1

𝐾
1

− 𝛽
2
)





𝑥
1
− 𝑥
∗

1





− (

𝛼
2

𝐾
2

− 𝛽
1
)





𝑥
2
− 𝑥
∗

2





.

(24)

When 𝑡 ∈ [𝑛𝜔 + 𝐿, (𝑛 + 1)𝜔), we get

�̇� (𝑡) = sgn (𝑥
1
− 𝑥
∗

1
)

× [(𝛼
1
−

𝛼
1

𝐾
1

𝑥
1
− 𝛽
1
𝑥
2
) − (𝛼

1
−

𝛼
1

𝐾
1

𝑥
∗

1
− 𝛽
1
𝑥
∗

2
)]

+ sgn (𝑥
2
− 𝑥
∗

2
)

× [(𝛼
2
−

𝛼
2

𝐾
2

𝑥
2
− 𝛽
2
𝑥
1
) − (𝛼

2
−

𝛼
2

𝐾
2

𝑥
∗

2
− 𝛽
2
𝑥
∗

1
)]

⩽ −(

𝛼
1

𝐾
1

− 𝛽
2
)





𝑥
1
− 𝑥
∗

1





− (

𝛼
2

𝐾
2

− 𝛽
1
)





𝑥
2
− 𝑥
∗

2





.

(25)

Consequently, if 𝛼
1

> 𝐾
1
𝛽
2
and 𝛼

2
> 𝐾
2
𝛽
1
, from (24) and

(25), we have �̇�(𝑡) < 0 for all 𝑡 ⩾ 0. By Lyapunov stability
theory (see [18, 19]), the following theorem is obtained
immediately.

Theorem 9. The positive periodic solution (𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡)) of

system (1) is unique and globally asymptotically stable if the
conditions 𝛼

1
> 𝐾
1
𝛽
2
and 𝛼

2
> 𝐾
2
𝛽
1
are satisfied.

On the uniqueness and global stabilities of the cancer
eradication periodic solution and cancer win periodic solu-
tion, we have the following results.

Theorem 10. Assume that condition 𝜀𝛾𝐿 < 𝛼
1
𝜔 holds.

Further, if

𝛽
1
< 𝛽
2
, 𝛼

1
− 𝜀𝛾 −

𝛼
1

𝐾
1

𝜎
1
< 0,

𝛼
2
− 𝛾 < 0, 𝛾 (𝜔 − 𝐿) < 𝜂𝜔

(26)

are satisfied, where 𝜎
1
= min

𝑡∈[0,𝜔]
{𝑥
∗

1
(𝑡)} and −𝜂 = max{𝛼

1
−

𝜀𝛾 − 𝛼
1
𝜎
1
/𝐾
1
, 𝛼
2
− 𝛾}, then system (1) has a unique globally

asymptotically stable cancer eradication periodic solution.

Proof. The existence of the cancer eradication periodic solu-
tion has been established by Theorem 7; then we will mainly
prove its uniqueness and global stability.

Let (𝑥
1
(𝑡), 𝑥
2
(𝑡)) be any solution of system (1). Choose

𝑉 (𝑡) =




𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡)





+ 𝑥
2
(𝑡) . (27)

When 𝑡 ∈ [𝑛𝜔, 𝑛𝜔 + 𝐿), by condition (26) and calculating the
derivative of 𝑉(𝑡) along system (5), we have

�̇� (𝑡) = sgn (𝑥
1
− 𝑥
∗

1
)

× [(𝛼
1
𝑥
1
− 𝜀𝛾𝑥

1
−

𝛼
1

𝐾
1

𝑥
2

1
− 𝛽
1
𝑥
1
𝑥
2
)

−(𝛼
1
𝑥
∗

1
− 𝜀𝛾𝑥

∗

1
−

𝛼
1

𝐾
1

𝑥
∗

1

2

)]

+ 𝛼
2
𝑥
2
− 𝛾𝑥
2
−

𝛼
2

𝐾
2

𝑥
2

2
− 𝛽
2
𝑥
1
𝑥
2

⩽ (𝛼
1
− 𝜀𝛾)





𝑥
1
− 𝑥
∗

1





−

𝛼
1

𝐾
1

(𝑥
1
+ 𝑥
∗

1
)




𝑥
1
− 𝑥
∗

1






+ (𝛽
1
− 𝛽
2
) 𝑥
1
𝑥
2
+ (𝛼
2
− 𝛾) 𝑥

2

⩽ (𝛼
1
− 𝜀𝛾 −

𝛼
1

𝐾
1

𝜎
1
)





𝑥
1
− 𝑥
∗

1





+ (𝛼
2
− 𝛾) 𝑥

2

⩽ −𝜂𝑉 (𝑡) .

(28)

Hence, 𝑉(𝑡) ⩽ 𝑉(𝑛𝜔) exp{−𝜂(𝑡 − 𝑛𝜔)} ⩽ 𝑉(𝑛𝜔) for all
𝑡 ∈ [𝑛𝜔, 𝑛𝜔 + 𝐿). According to the continuity of the solution,
especially, we have 𝑉(𝑛𝜔 + 𝐿) ⩽ 𝑉(𝑛𝜔).

However, when 𝑡 ∈ [𝑛𝜔 + 𝐿, (𝑛 + 1)𝜔), by condition (26)
and calculating the derivative of 𝑉(𝑡) along system (5), we
have

�̇� (𝑡) = sgn (𝑥
1
− 𝑥
∗

1
)

× [(𝛼
1
𝑥
1
−

𝛼
1

𝐾
1

𝑥
2

1
− 𝛽
1
𝑥
1
𝑥
2
) − (𝛼

1
𝑥
∗

1
−

𝛼
1

𝐾
1

𝑥
∗

1

2

)]

+ 𝛼
2
𝑥
2
−

𝛼
2

𝐾
2

𝑥
2

2
− 𝛽
2
𝑥
1
𝑥
2

⩽ (𝛼
1
−

𝛼
1

𝐾
1

𝜎
1
)





𝑥
1
− 𝑥
∗

1





+ 𝛼
2
𝑥
2
⩽ (𝛾 − 𝜂)𝑉 (𝑡) .

(29)

Consequently, 𝑉(𝑡) ⩽ 𝑉(𝑛𝜔 + 𝐿) exp{(𝛾 − 𝜂)(𝑡 − 𝑛𝜔 − 𝐿)} ⩽

𝑀𝑉(𝑛𝜔) for all 𝑡 ∈ [𝑛𝜔 + 𝐿, (𝑛 + 1)𝜔), where 𝑀 = exp{|𝛾 −

𝜂|(𝜔 − 𝐿)} ⩾ 1 and 𝑀 is bounded. From the above analysis,
we know that

𝑉 (𝑡) ⩽ 𝑀𝑉 (𝑛𝜔) (30)

for all 𝑡 ∈ [𝑛𝜔, (𝑛 + 1)𝜔).
By a simple calculation and from the last inequal-

ity of condition (26), it can be obtained that 𝑉(𝑛𝜔) ⩽

𝑉(0) exp{𝑛[𝛾(𝜔 − 𝐿) − 𝜂𝜔]} → 0 as 𝑛 → ∞. Together
with (30), we finally have 𝑉(𝑡) → 0 as 𝑡 → ∞. Hence,
𝑥
1
(𝑡) → 𝑥

∗

1
(𝑡) and 𝑥

2
(𝑡) → 0 as 𝑡 → ∞. The cancer

eradication periodic solution is unique and global stable.This
completes the proof.
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Theorem 11. Assume that condition 𝛾𝐿 < 𝛼
2
𝜔 holds. Further,

if

𝛼
1
> 𝐾
1
𝛽
2
, 𝛼

2
> 𝐾
2
𝛽
1
, 𝛼

1
+ 𝛽
2
− 𝛽
1
𝜎
2
< 0 (31)

are satisfied, where 𝜎
2

= min
𝑡∈[0,𝜔]

{𝑥
∗

2
(𝑡)}. Then system (1)

has a unique globally asymptotically stable cancer win periodic
solution.

Proof. Let (𝑥
1
(𝑡), 𝑥
2
(𝑡)) be any solution of system (1). Choose

𝑉 (𝑡) = 𝑥
1
(𝑡) +





ln𝑥
2
(𝑡) − ln𝑥

∗

2
(𝑡)





. (32)

Proceed the similar analysis asTheorem 10; condition (31) can
be obtained easily. Here we omit the proof of it.

Remark 12. In the discussion of the existence and global sta-
bility of the positive periodic solution, we need the conditions
that 𝛾 < 𝛼

1
/𝜀 and 𝛾 < 𝛼

2
. However, from the fact 𝐿 < 𝜔

we realize that 𝛾 > 𝛼
1
/𝜀 is allowed in the existence and

global stability of the cancer eradication periodic solution by
Theorems 7 and 10 and 𝛾 > 𝛼

2
is also allowed in the existence

and global stability of the cancer win periodic solution by
Theorems 8 and 11. These show that a high radiation dosage
may kill the cancer cells all (Theorem 10) and it may also kill
the healthy cells all (Theorem 11).

5. Numerical Illustrations

In this section, we give three groups of numerical examples
to verify the validity of the three cases of periodic solutions,
respectively. We consider system (1) with the following
coefficients in Theorem 9: 𝛼

1
= 0.1, 𝛼

2
= 0.45, 𝛽

1
= 0.11,

𝛽
2
= 0.15, 𝐾

1
= 0.65, and 𝐾

2
= 1. Obviously, condition (2) is

satisfied. If the rate to the healthy cells from the radiation is
chosen as 𝜀 = 0.05, then we have 𝜇

1
= (𝛼
1
− 𝐾
2
𝛽
1
) + 𝜀(𝛼

2
−

𝐾
1
𝛽
2
) = 0.007625 > 0 and 𝜇

2
= 𝛼
2
(𝛼
1
− 𝐾
2
𝛽
1
) + 𝛼
1
(𝛼
2
−

𝐾
1
𝛽
2
) = 0.03075 > 0.The range of 𝛾 is determined by case (a)

in Remark 4. Calculating it simply, we get that 0 < 𝛾 < 0.45.
We choose 𝛾 = 0.35 here. It is easy to verity that all the
conditions of Theorems 3 and 9 are satisfied. Hence, when
we consider 50 hours as a treatment period, system (1) has
a unique globally asymptotically stable positive 50-periodic
solution. See Figures 1–3. The treatment time is chosen as
𝐿 = 15 hours (Figure 1), 𝐿 = 30 hours (Figure 2), and 𝐿 = 45

hours (Figure 3), respectively.
From Figures 1–3, it is interesting to observe that as the

increasing of the treatment time in a periodic treatment,
the concentration of the healthy cells will increase and the
concentration of the cancer cells will decrease. But we cannot
eradicate the cancer cells no matter how to choose the
treatment time 𝐿 in this situation.

To show the existence and global stability of the cancer
eradication periodic solution, we illustrate Theorem 10 with
the coefficients in system (1) as 𝛼

1
= 0.2, 𝛼

2
= 0.5, 𝛽

1
=

0.5, 𝛽
2

= 0.55, 𝐾
1

= 0.65, 𝐾
2

= 1. Then, 𝛼
2
/𝛽
2
− 𝐾
1

=

0.2591 > 0 and 𝛼
1
/𝛽
1
− 𝐾
2

= −0.6000 < 0, condition (2)
is satisfied. We choose 𝛾 = 0.65 and 𝜀 = 0.3. Obviously, if we
choose the periodic of treatment 𝜔 = 10 hours, by the fact
𝐿 < 𝜔, we have 𝜀𝛾𝐿 < 𝛼

1
𝜔. The cancer eradication periodic

solution (𝑥
∗

1
(𝑡), 0) exists byTheorem 7. See Figure 4(a) (𝐿 = 8

hours) and Figure 4(b) (𝐿 = 9 hours). From Figure 4(a),
we can obtain that 𝜎

1
= min

𝑡∈[0,𝜔]
{𝑥
∗

1
(𝑡)} ⩾ 0.44, and,

Figure 4(b), 𝜎
1
⩾ 0.44. It is easy to verify that condition (26)

is satisfied. According toTheorem 10, system (1) has a unique
globally asymptotically stable cancer eradication 10-periodic
solution. See Figures 5(a) and 5(b) (𝐿 = 8 hours) and Figures
6(a) and 6(b) (𝐿 = 9 hours).

It can be seen from Figures 5(a) and 5(b) and Figures 6(a)
and 6(b) that if all the other conditions are not changed, the
increase of the treatment time in a periodic treatment will
quicken the extinction of the cancer cells and decrease the
concentration of the healthy cells at the same time.

As we all know, larger dosage radiation can kill cancer
cells more effectively, but it also may increase the rate to the
healthy cells from the radiation. We now investigate effects
of the variance of the parameter 𝛾 to the cancer eradication
periodic solution with 𝜔 = 10 hours and 𝐿 = 8 hours.
Here, we also choose 𝜀 = 0.3. For the sake of getting a
cancer eradication periodic solution, we need the condition
𝜀𝛾𝐿 < 𝛼

1
𝜔. Then we have 𝛾 < 𝛼

1
𝜔/(𝜀𝐿) = 0.83. However, the

true Theorem 10 needs condition (26), which includes that
𝛾(𝜔 − 𝐿) + (−𝜂)𝜔 < 0. From the fact that −𝜂 = max{𝛼

1
−

𝜀𝛾 − 𝛼
1
𝜎
1
/𝐾
1
, 𝛼
2
− 𝛾}, then we have 𝛾(𝜔 − 𝐿) + (𝛼

2
− 𝛾)𝜔 <

𝛾(𝜔 − 𝐿) + (−𝜂)𝜔 < 0, which implies 𝛾 > 0.625. Hence, here
we choose 𝛾 = 0.65, 0.75 and 0.8 separately to investigate the
influence of the variance of the 𝛾 to the cancer eradication
periodic solution.The dynamical behavior of the system with
𝛾 = 0.65 can be seen in Figures 5(a) and 5(b).

If we take 𝛾 = 0.75, it is easy to verify that 𝜀𝛾𝐿 <

𝛼
1
𝜔 and system (1) has a cancer eradication periodic solu-

tion. See Figure 7(a). From Figure 7(a) we obtain 𝜎
1

=

min
𝑡∈[0,𝜔]

{𝑥
∗

1
(𝑡)} ⩾ 0.43; then condition (26) is satisfied.

According to Theorem 10, system (1) has a unique globally
asymptotically stable cancer eradication 10-periodic solution.
See Figures 8(a) and 8(b). If 𝛾 is taken as 0.8, condition 𝜀𝛾𝐿 <

𝛼
1
𝜔 is also satisfied, then system (1) has a cancer eradication

periodic solution. See Figure 7(b). FromFigure 7(b)we obtain
𝜎
1

= min
𝑡∈[0,𝜔]

{𝑥
∗

1
(𝑡)} ⩾ 0.42, then it is easy to verify

that condition (26) is satisfied. According to Theorem 10,
system (1) has a unique globally asymptotically stable cancer
eradication 10-periodic solution. See Figures 9(a) and 9(b).
It can be seen from Figures 5(a) and 5(b) (𝛾 = 0.65), Figures
8(a) and 8(b) (𝛾 = 0.75), and Figures 9(a) and 9(b) (𝛾 = 0.8)
that under the circumstance that the system has a cancer
eradication periodic solution and all the other conditions are
not changed, the increase of the radiation dosage will quicken
the extinction of the cancer cells but will also decrease the
concentration of the healthy cells at the same time. One can
refer to the three figures; in Figure 5 with 𝛾 = 0.65, 0.1 ⩽ 𝑥

1
,

in Figure 8 with 𝛾 = 0.75, 0.05 ⩽ 𝑥
1

⩽ 0.1, and in Figure 9
with 𝛾 = 0.8, 𝑥

1
⩽ 0.05.

It is also a helpful suggestion for doctors that under what
situation the cancer will win the competition. Theorem 11
gives us a useful result. Let us illustrate the theorem more
clearly applying the following numerical examples. Choose
the coefficients 𝛼

1
= 0.2, 𝛼

2
= 0.5, 𝛽

1
= 0.48, 𝛽

2
= 0.05,

𝐾
1
= 0.65, and𝐾

2
= 1. It is easy to verify that condition (2) is

satisfied. We choose the periodic of treatment 𝜔 = 10 hours
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Figure 1: The dynamics of system (1) with 𝐿 = 15. (a)The time series for healthy cells 𝑥
1
and cancer cells 𝑥

2
. (b)The phase of healthy cells 𝑥

1

and cancer cells 𝑥
2
. Obviously, system (1) has a globally stable positive 50-periodic solution.
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Figure 2: The dynamics of system (1) with 𝐿 = 30. (a) The time series for healthy cells 𝑥
1
and cancer cells 𝑥

2
. (b) The phase of healthy cells

𝑥
1
and cancer cells 𝑥

2
. Obviously, system (1) has a globally stable positive 50-periodic solution.
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Figure 11: The dynamics of system (1) with 𝛾 = 0.4 and 𝐿 = 2. (a) The time series for healthy cells 𝑥
1
and cancer cells 𝑥

2
. (b) The phase of

healthy cells 𝑥
1
and cancer cells 𝑥

2
. Obviously, system (1) has a globally stable cancer win 10-periodic solution.

and the rate to the healthy cells from the radiation is 𝜀 = 0.3.
Firstly, we let the radiation dosage 𝛾 = 0.4 < 𝛼

2
. From the

fact that 𝐿 < 𝜔 we know that 𝛾𝐿 < 𝛼
2
𝜔, then system (1) has

a cancer win periodic solution (0, 𝑥
∗

2
(𝑡)) by Theorem 8. See

Figure 10(a), where the treatment time 𝐿 = 2 hours. From
Figure 10(a), we can obtain that 𝜎

2
= min

𝑡∈[0,𝜔]
{𝑥
∗

2
(𝑡)} ⩾ 0.55.

It is easy to verify that condition (31) is satisfied. According to
Theorem 11, system (1) has a unique globally asymptotically
stable cancer win 10-periodic solution. See Figures 11(a) and
11(b). However, by Remark 12, we know that the radiation
dosage 𝛾 > 𝛼

2
is also permitted. Hence, we choose 𝛾 =

0.6 > 𝛼
2
in Figure 12. Then we have 𝛾𝐿 < 𝛼

2
𝜔, system (1)

has a cancer win periodic solution (0, 𝑥
∗

2
(𝑡)) by Theorem 8.

See Figure 10(b), where the treatment time 𝐿 = 1 hour. From
Figure 10(b), we can obtain that 𝜎

2
= min

𝑡∈[0,𝜔]
{𝑥
∗

2
(𝑡)} ⩾ 0.6.

It is easy to verify that condition (31) is satisfied. According to
Theorem 11, system (1) has a unique globally asymptotically
stable cancer win 10-periodic solution. See Figures 12(a) and
2(b). It can be seen from Figures 11(a) and 11(b) and Figures

12(a) and 12(b) that the cancer treatment is affected by both
the radiation dosage and the treatment time, if we increase
the radiation dosage 𝛾 and decrease the treatment time 𝐿 at
the same time, the cancer will also win the competition.

Throughout Figures 1–12, we choose the initial values
𝑥
1
(0) = 0.5 ⩽ 𝐾

1
and 𝑥

2
(0) = 0.8 ⩽ 𝐾

2
. Also note that the

choice of the values in the theorems are based on the range
determined by [3], but they do not come from any real cell
populations.

6. Conclusion and Discussion

In this paper, we employed a pair of ordinary differential
equations to model the dynamics between the healthy cells
and cancer cells for the cancer treatment by radiotherapy.We
separated the treatment into two stages: treatment stage and
recovery stage (no treatment stage). During the treatment
stage, the radiation harvesting amount is 𝛾𝑥

2
to the cancer

cells and 𝜀𝛾𝑥
1
to the healthy cells. However, during the
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Figure 12: The dynamics of system (1) with 𝛾 = 0.6 and 𝐿 = 1. (a) The time series for healthy cells 𝑥
1
and cancer cells 𝑥

2
. (b) The phase of

healthy cells 𝑥
1
and cancer cells 𝑥

2
. Obviously, system (1) has a globally stable cancer win 10-periodic solution.

recovery stage, the model has taken the most basic Lotka-
Volterra competition type. We gave the range of radiation
dosage 𝛾 under the following three results: the healthy cells
and cancer cells are coexist, the cancer eradication periodic
solution is globally stable, and the cancer win periodic
solution is globally stable. Note that, in the discussion on the
global stability of the cancer eradication periodic solution, we
showed the relationship between the radiation dosage 𝛾 and
the treatment time 𝐿; that is, 𝜀𝛾𝐿 < 𝛼

1
𝜔 and 𝛾(𝜔 − 𝐿) < 𝜂𝜔,

which are also given during the discussion on the cancer win
periodic solution (𝛾𝐿 < 𝛼

2
𝜔).However, during the discussion

on the coexistence of the healthy cells and cancer cells, we
only give the range of the radiation dosage 𝛾, which shows
that it fits all the treatment time 𝐿 ∈ (0, 𝜔). This is a flaw,
which is caused by the analysis methods in this paper.Wewill
improve our analysis techniques and make a further study in
the future.

The cancer treatment model discussed in this paper
is only based on one treatment measure. It may be more
effective for the cancer treatment if we add a medication
during the recovery stage, which is still an open problem and
we will carry out the research in the further work.
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