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Abstract
Purpose Precise segmentation of brain lesions is essential for neurological research. Specifically, resection volume estimates can aid
in the assessment of residual postoperative tissue, e.g. following surgery for glioma. Furthermore, behavioral lesion-symptom
mapping in epilepsy relies on accurate delineation of surgical lesions. We sought to determine whether semi- and fully automatic
segmentationmethods can be applied to resected brain areas andwhich approach provides themost accurate and cost-efficient results.
Methods We compared a semi-automatic (ITK-SNAP) with a fully automatic (lesion_GNB) method for segmentation of
resected brain areas in terms of accuracy with manual segmentation serving as reference. Additionally, we evaluated processing
times of all three methods. We used T1w, MRI-data of epilepsy patients (n = 27; 11 m; mean age 39 years, range 16–69) who
underwent temporal lobe resections (17 left).
Results The semi-automatic approach yielded superior accuracy (p < 0.001) with a median Dice similarity coefficient (mDSC) of
0.78 and a median average Hausdorff distance (maHD) of 0.44 compared with the fully automatic approach (mDSC 0.58, maHD
1.32). There was no significant difference between the median percent volume difference of the two approaches (p > 0.05).
Manual segmentation required more human input (30.41 min/subject) and therefore inferring significantly higher costs than
semi- (3.27 min/subject) or fully automatic approaches (labor and cost approaching zero).
Conclusion Semi-automatic segmentation offers the most accurate results in resected brain areas with a moderate amount of
human input, thus representing a viable alternative compared with manual segmentation, especially for studies with large patient
cohorts.
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Introduction

Studying associations between structural brain lesions and
observable functional deficits constitutes a well-established
approach in neuroscience research [1–3]. Quantitative analy-
sis techniques such as voxel-based lesion-symptom mapping
(VLSM) [1, 4] or overlap calculations between lesions and
critical structures [5–7] are employed to link structural alter-
ations to behavioral markers [8], hence detecting brain areas
critical for a specific behavior. Precise determination of le-
sioned tissue components in neuroimaging data therefore con-
stitutes a crucial step for these methods [5, 9, 10].

To date, slice-by-slice manual lesion tracing by expert
raters remains the gold standard [5, 11, 12]. This approach is
considered most precise [3], but also tedious and time-
consuming [13] and requires significant experience [14].
Therefore, lesion segmentation constitutes a significant cost
factor in neuroimaging research. Semi-automatic methods
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seek to overcome these limitations [15, 16]. Generally, their
approach is based on the assumption that alterations in tissue
homogeneity [17], composition, shape [18], or laterality [19]
represent lesioned tissue and their identification would only
require fine-tuning of parameters by a supervisor [20]. Despite
being less laborious than manual tracing, significant amounts
of user-interaction are nevertheless required [20].

Recently, several fully automatic methods for lesion seg-
mentation using machine learning (ML) [17, 21, 22] ap-
proaches have been proposed. Briefly, ML allows for the de-
sign of algorithms that can learn from training datasets and
make predictions on new data. ML approaches are usually
classified into two broad categories, namely supervised and
unsupervised learning [23]. In supervised learning, manually
labeled training data is fed to the algorithm to enable catego-
rization of new data—supervision is provided during training
[21]. Conversely, unsupervised approaches rely on the recog-
nition of latent patterns within the data to identify groups or
clusters [13, 24–28].

In temporal lobe epilepsy (TLE), precise lesion delineation
can inform surgical planning [29] and facilitate research on
cognitive outcomes [30, 31]. While VLSM constitutes a core
component of stroke research [1], its application in TLE has
been limited to date. However, with the introduction of selec-
tive procedures such as laser amygdalohippocampectomy
[32], VLSM in TLE now receives growing interest [7], spe-
cifically for the study of memory impairment [33, 34].
Additionally, assessment of lesion volume data can signifi-
cantly improve image registration and normalization to stereo-
taxic space [35, 36]. Furthermore, postoperative resection vol-
umes are particularly useful for the assessment of complete-
ness of resection [29] and seizure outcome prediction [37].
Clearly, there is a need to obtain accurate resection volumes
from imaging data in TLE. However, to date, no segmentation
algorithm specifically designed to investigate neurosurgical
resections has been proposed.

In the present study, we therefore sought to determine;
a) whether supervised semi- and fully automatic algorithms

each provide satisfying accuracy in resected brain areas com-
pared with manual segmentation;

b) which of the three methods is most time- and cost-
efficient and offers the best ratio between quality and cost.

Methods

Subjects and imaging data

This retrospective study was approved by the local institution-
al review board and individual informed consent was waived.
High-resolution, T1-weighted magnetization-prepared rapid
gradient echo datasets from 27 TLE patients after unilateral
anter ior temporal lobectomy (ATL) or select ive

amygdalohippocampectomy (sAHE) acquired with a standard
32-channel headcoil (MPRAGE; TR = 2200 ms; TE =
2.15 ms; flip angle = 12°; 160–176 sagittal slices, voxel size
1 × 1 × 1 mm3) on a 3-T TIM Trio clinical MRI scanner
(Siemens Healthineers AG, Erlangen, Germany) were re-
trieved from PACS (Picture Archiving and Communication
System). Postoperative imaging was performed during routine
follow-up median 3 months after epilepsy surgery (range 1–
22 months). Clinical and demographic data of the study group
are summarized in Table 1. All statistical analyses were per-
formed with SPSS version 23.0 (IBM, Chicago, IL).

Preprocessing

All imaging data preprocessing was performed with statistical
parametric mapping software (SPM version 12, fil.ion.ucl.ac.
uk) running in MATLAB R2016b (The Mathworks, Nattick,
USA). After visual inspection of image quality, all T1w
images with right hemispheric lesions were flipped to align
all pathology to the left.

Computational platform

Manual, semi-automatic, and fully automatic segmentation
was performed on a 3.2-GHz Intel Core i7-6600U platform
with 12-GB RAM under Windows 10. MATLAB R2016b
and SPM12 were used to run the GNB classifier.

Manual segmentation

Hand-drawn resection area maps served as ground truth [20].
Delineation was performed by an experienced rater (CS, neu-
roscience researcher with more than 5 years of experience in
manual lesion delineation) blinded to the results of other seg-
mentation methods. The boundaries of the resection areas
were hand-drawn on consecutive axial slices with MRIcron
(www.mricro.com) in patient space and then automatically
filled, resulting in a three-dimensional region of interest
(ROI).

User-guided, semi-automatic segmentation

Semi-automatic segmentation was performed with ITK-
SNAP toolbox version 3.6 (further referred to as SNAP)
[16]. The “region competition” segmentation approach as well
as the active contour evolution algorithm and their implemen-
tation in the ITK-SNAP has been previously described in de-
tail [16, 38]. Briefly, the rater defines a segmentation domain
to restrict the algorithm to a volumetric ROI. For pre-segmen-
tation, we used the soft-thresholding intensity-based mode
[39]: By manually applying a two-sided threshold depending
on the intensity range of the ROI (foreground), an intensity
grading vector “speed image” is generated to broadly define
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lesion boundaries. In this speed image, intensity values be-
tween the lower and upper thresholds are assigned positive
speed values and correspond to parts of the image that have
higher probability of representing the ROI rather than the
background. Values outside the thresholds map to negative
speed values. To initiate geometric active contour segmenta-
tion, the rater places at least one seedpoint randomly inside the
ROI, which will grow in a way that balances adherence to the
speed image with a geometric regularization term [40]. The
evolving contour is visualized in real time in 2D slices and
evolves either with a fixed step size or continuously until
manual termination by the user [41]. We chose to stop the
algorithm if there was no further visible propagation in the
image over 5 seconds or if the rater decided that the evolving
segmentation began to leak outside the boundaries of the ROI.

This is a common approach other studies described before
[42]. Finally, ROIs were inspected for quality and manually
edited in two cases (shown in Fig. 1f): Firstly, if active contour
segmentation bled into CSF space, manual editing was per-
formed using the paintbrush tool. Secondly, if parts of the
resected brain area, e.g., blood debris, were not identified as
part of the ROI, we used the paintbrush with the interpolation
module that allows to trace a structure in just a handful of
slices, with the algorithm filling in the intermediate slices
[43]. This segmentation method was used as it requires only
minimal user-interaction and reliable results can be obtained
from single-modality MRI. In this study, an expert rater
(NAF, neuroscience researcher with more than 10 years of
experience in lesion segmentation) performed the segmenta-
tion with ITK-SNAP blinded to the results of manual

Table 1 Demographic data

Patient Gender Age at
surgery

AoO (years) Duration (years) Side of
surgery

Type of surgery Pathology ILAE seizure
outcome—1 year

1 F 34 0.75 33.25 L ATL Dual (FCD) 3a

2 M 20 12 8 L ATL Dual (FCD) 2b

3 M 53 9 44 L ATL Dual (FCD) 3a

4 F 69 17 52 L ATL FCD 3b

5 F 32 7 25 L ATL FCD 1a

6 F 56 13 43 L ATL Dual (FCD) 1a

7 M 38 17 21 R ATL HC sclerosis 2b

8 M 50 14.0 36 L ATL Dual (FCD) 1b

9 F 16 0.5 15.5 L ATL Dual (FCD) 1a

10 M 53 39 14 R ATL HC sclerosis 2b

11 M 20 10 10 R ATL HC sclerosis 1a

12 F 28 7 21 L ATL HC sclerosis 1a

13 M 25 21 4 R ATL Dual (FCD) 1a

14 F 55 32 23 R sAHE HC sclerosis 1a

15 F 47 3 44 L sAHE HC sclerosis 3a

16 M 47 26 21 L sAHE HC sclerosis 1a

17 F 46 30 16 R sAHE HC sclerosis 2b

18 F 21 20 1 L sAHE Dual (ganglioglioma) 1a

19 F 42 32 10 L sAHE HC gliosis 1a

20 F 53 10 43 L sAHE HC sclerosis 1a

21 M 22 15 7 R sAHE HC sclerosis 1a

22 F 35 21 14 L sAHE HC sclerosis 1a

23 M 22 19 3 R sAHE HC sclerosis 1a

24 M 48 2.0 46 L sAHE HC sclerosis 1a

25 F 39 3 36 R sAHE HC sclerosis 1a

26 F 50 38 12 L sAHE HC sclerosis 4

27 F 35 33 2 R sAHE HC sclerosis 1a

Mean 16 F 39.1 16.7 22.4 17 L 63% = 1a; 37% > 1a

Std. dev ± 13.8 11.4 15.4

AoO, age of onset; F, female; M, male; L, left; R, right; Dual, dual pathology; FCD, focal cortical dysplasia

1639Neuroradiology (2020) 62:1637–1648



segmentation. Figure 1 illustrates individual steps of the semi-
automatic segmentation process.

Fully automatic segmentation

The lesion_GNB software package by Griffis and coworkers
[44] employs a supervised approach based on Gaussian Naïve
Bayes (GNB) classification for the delineation of chronic
stroke defect zones. To provide ground truth for classifier
training, manual segmentation of T1wMRI data of 30 patients
with chronic stroke defect zones was performed by the authors
[44]. Briefly lesion_GNB relies on probabilistic tissue seg-
mentation and image algebra to create feature maps encoding
information about missing or abnormal tissue classes. The
GNB classifier was trained on the ground-truth manually de-
lineated lesions and validated using a leave-one-out cross-
validation approach. It does not require a control group. By
using default SPM processing routines, transformation param-
eters for normalization to Montreal Neurological Institute
(MNI) space are created during analyses [44].

Spatial similarity analyses

Most automated segmentation routines operate in algorithm-
specific stereotaxic space, which may not correspond to MNI
space [45]. However, studies investigating larger patient co-
horts will ultimately require normalization to make group in-
ferences. To avoid potential bias by comparing inverse-
normalized (lesion_GNB) to native-space (manual, ITK-
snap) results, we chose to perform spatial similarity analysis
in common space. All ROIs were therefore normalized to
standard MNI space with normalization parameters obtained
during the lesion_GNB preprocessing of individual subjects.

Degrees of overlap between the different lesion segmentation
techniques referenced against manual tracing results were evalu-
ated voxel-by-voxel with the Dice similarity coefficient (DSC), a
robust metric of both overlap and reproducibility [46]. The DSC

is calculated according to DSC ¼ 2 X∩Yð Þ
XþYð Þ . In case of partially

overlapping image volumes, i.e., reference (X; manual tracing)
and predicted volume (Y; semi-/fully automatic approach), the
DSC ranges from 0 (no overlap) to 1 (total congruence), with

Fig. 1 ITK-SNAP segmentation workflow. a Region of interest definition. b Thresholding. c Placement of seedpoints. d Quality control. e Three-
dimensional polygonal lesion model (F = frontal; O = occipital; L = left; R = right; Cr = cranial; Ca = caudal). f Manual editing
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larger values indicating better performance [42]. DSCs ranging
above 0.6 are good, values above 0.7 are considered high, and
values exceeding 0.8 are excellent [13, 20, 44].

Although robust and straightforward to interpret, the DSC
does not weigh false-positive or negative results in any way.
This becomes particularly relevant in complex structures such
as surgical lesions, where boundary agreement between seg-
mentations might be of interest [47]. Therefore, we chose to
supplement the analysis with a measure of spatial distance,
i.e., the average Hausdorff distance (aHD). The aHD repre-
sents the maximum distance of all voxels in one dataset to
corresponding voxels in the test set [48], thus quantifying
similarity or discrepancy between two given structures [49].
The aHD between two point sets X and Y is defined as
aHD(X, Y) = max(d(X, Y), d(X, Y)) where d(X,Y) is the directed
aHD that is given by d X ; Yð Þ ¼ 1

N ∑
x∈X

min
y∈Y

x−yk k with refer-

ence (X; manual tracing) and predicted volume (Y; semi-/fully
automatic approach). All distances are calculated in voxel
with smaller values indicating better performance.

As the results were not normally distributed, they were
compared using non-parametrical Wilcoxon signed-rank test,
respectively. In order to assess the relation between perfor-
mance of the approaches and the resection area size, a median
split by lesion volume (based on manual segmentation) was
performed. With a Mann-WhitneyU test, the difference of the
metrics of the two groups (small/large lesions) within each
approach was assessed and a Wilcoxon signed-rank test was
used to compare the approaches within each group.
Correlations were assessed with the non-parametrical
Spearman’s rank correlation.

Volumetric analyses

Percent lesion volume differences (in ml) between manual and
(semi-)automated segmentation results were also evaluated.
Percent volume difference (PVD) was calculated according

to PVD ¼ Vreference−V semi−ð Þautomatic
Vreference

h i
� 100; with Vreference

and V(semi-)automatic representing volumes of manual and
(semi-)automatic resection maps, respectively. Since resection
volumes were not normally distributed, a Wilcoxon signed-
rank test was used for comparisons. We also assessed differ-
ences between large and small resections in the PVD within
each approach with the Mann-Whitney U test.

Effort and cost

The labor time (corresponding to human input) in minutes
required from the beginning of the segmentation to saving
the final ROI was recorded for each method. The time re-
quired for loading the image into each program was similar,
so we did not take this step into account. As in the fully

automatic approach no human input was necessary after load-
ing the images, labor time therefore resulted in 0.00 min/sub-
ject. For manual and semi-automatic segmentation, the labor
time was normally distributed, as assessed by the Shapiro-
Wilk test (p > 0.05). The difference in time expenditure be-
tween the manual and semi-automatic approaches was com-
pared with a paired-samples t test. To compare the labor time
of the manual and semi-automatic to the fully automatic ap-
proach (0.00 min/subject), a one-sample t test was used,
respectively.

Because we only used open-source software and the avail-
able computational infrastructure, the total method cost in this
study was mainly composed of personnel cost based on the
salary rates of the German Research Foundation for 2019
(available at www.dfg.de/formulare).

Results

Patient characteristic

Data were acquired from 27 patients (16 females, 11 males),
who underwent unilateral ATL (13 patients) or sAHE (14
patients) for pharmacoresistant TLE (17 left-sided, 10 right-
sided). The mean age at surgery was 39.1 years (range 16–69),
with a mean age at epilepsy onset of 16.7 years (range 0.5–39)
and a mean disease duration of 22.4 years (range 1–52).
Approximately 63% of the patients were seizure-free (Engel
IA) after surgery. The predominant pathology was hippocam-
pal sclerosis (16 patients) followed by dual pathology (i.e.,
hippocampal sclerosis combined with focal cortical dysplasia;
8 patients). Detailed demographical and clinical data are given
in Table 1.

Accuracy

Manual segmentation is the gold standard and serves as
ground truth for the other methods. Figure 2 illustrates 27
manually segmented resection areas, overlaid on the respec-
tive T1w image.

The median DSC for the semi-automatic approach relative
to the manual segmentation was 0.78 (range 0.53–0.94), indi-
cating a high overlap. For the fully automatic method, the
median DSC was 0.58 (range 0.05–0.76). At p < 0.001 (z =
− 4.332), the results of the semi-automatic approach were sig-
nificantly better than those of the fully automatic (Fig. 3).

As shown in the right panel in Fig. 3, the fully automatic
segmentation method performed worse in all cases except
three, with several false positive results as shown in Fig. 4.
The GNB classifier failed to identify one resection area (P16,
DSC 0.05) and performed poorly in another two cases (P21,
P22). Figure 5 shows the individual performance of all ap-
proaches in patient P16. Even if this case was excluded, there
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would still be a highly significant difference (p < 0.001, z = −
4.239) between the fully automatic (median DSC 0.60) and

the semi-automatic (median DSC 0.79) approach. In terms of
spatial distance, the semi-automatic approach (median aHD

Fig. 2 Representative axial slices of the resected brain areas with superimposed manual segmentations (ATL: patients 1–13; sAHE: patients 14–27)

Fig. 3 DSC for semi-automatic (light) and fully automatic (dark) approach (*signif. p < 0.001)
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0.44, range 0.14–1.85) similarly outperformed (p < 0.001) the
fully automatic approach (1.32, range 0.42–7.25; Fig. 6—left
panel).

To assess the impact of actual lesion size on accuracy, all
cases were dichotomized into groups by their median resec-
tion volume obtained from manual delineation (median =
17.920 ml), resulting in 14 large (mean volume 26.02 ±
8.06 ml, range 17.92–48.23 ml) and 13 small resection areas
(mean volume 7.39 ± 3.08 ml, range 2.22–12.36 ml).

As shown in Fig. 7 (left panel) and Table 2, larger resec-
tions were associated with significantly better DSCs than
smaller resections for both methods (p < 0.05). Additionally,
resection size was significantly correlated with the DSCs in
both semi- and fully automatic approaches (rs = 0.71, p =
0.001 vs. rs = 0.54, p = 0.004). Comparing spatial similarity
with aHD, we found no significant difference between the

performance in small and large resection areas in both ap-
proaches, respectively (Fig. 6, right panel and Table 3).

The accuracy of the semi-automatic approach however sig-
nificantly outperformed the fully automatic approach irrespec-
tive of the resection size (p < 0.001 for DSC, p < 0.05 for
aHD).

The median PVD with reference to manual segmentation
was 0.04 (SD ± 21.57; range − 67.18–35.11) for the semi-
automatic and − 3.13 (SD ± 61.75; range − 229.32–41.37)
for the fully automatic approaches. There was no significant
difference between the approaches (p > 0.05). In small resec-
tions, the PVD of the semi-automatic approach was signifi-
cantly better than the PVD of the fully automatic approach
(p < 0.05, z = − 2.691), whereas in large resections, there is
no significant difference (Table 4). The PVDs of the semi-
automatic approach did not reveal a significant difference

Fig. 4 Individual false-positive results in automatic processing. GNB classifier results (red) are superimposed ontomanual segmentation (blue). Areas of
congruence are purple. Asterisk (*) indicates areas of false-positive values

Fig. 5 Individual performance of
all approaches in patient 16 (axial
slices)

1643Neuroradiology (2020) 62:1637–1648



regarding small or large resections, while in the fully automat-
ic approach, the median PVDs significantly differed between
the groups (p < 0.05, z = − 3.057), with better performance in
large resections.

Effort and cost

The average time needed for manual segmentation was
30.41 min/subject (SD ± 6.43, range 17–50 min). User-
guided semi-automatic lesion segmentation took an average
of 3.27 min/subject (SD ± 0.96, range 1.33–5.53 min), includ-
ing manual correction for inaccuracies. The differences in ef-
fort between manual and semi-automatic as well as manual

and fully automatic or semi-automatic and fully automatic
approaches were highly significant at p < 0.001, respectively.

Importantly, it must be mentioned that the fully automatic
approach required a certain amount of processing time on our
computational environment, which was 13.41 min/subject
(SD ± 2.14, range 9–19). This was however irrelevant for cost
calculation, because this step did not require supervision and
the main financial burden stems from personnel cost.

Then, we made a digression into the cost factor of this
study. For manual segmentation, an expert rater was needed,
whereby at least a postdoctoral researcher is meant (standard
salary 6000€/month, 34.62€/h). Hence, the mean cost was
17.64€/per subject. To ensure an optimal outcome of the

Fig. 6 Averaged Hausdorff distance for semi-automatic (light) and fully automatic (dark) approaches (*signif. p < 0.001)

Fig. 7 DSC (left) and PVD (right) of each approach in large and small lesions
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manual corrections, an expert rater would be equally required
for the semi-automatic approach. For this approach, an aver-
age of 1.90€/subject had to be invested. The fully automatic
segmentation with GNB required no human input for the im-
age segmentation. In that case, mean cost was approaching
zero, if image loading steps are disregarded.

Discussion

This study compared manual to semi- and fully automatic
methods for segmentation of resected brain areas on high-
resolution T1w images. One of the most important questions
concerning medical image segmentation is accuracy.We inves-
tigated quality and validity of the applied methods using man-
ual segmentations as ground truth. Measures used were the
DSC as a global measure of overlap, the aHD as a metric of
spatial distance, and PVD for volume agreement, because our
intention was to focus on few but relevant parameters which are
straightforward to obtain and interpret. The DSC constitutes a
robust measure of overlap and has been widely used in the
validation of other methods for lesion segmentation [17, 42,
44]. It takes both false positives and false negatives into account
and therefore represents a robust performance indicator.

Analyses were completed by the aHD, which is especially
recommended when the accuracy of the boundary delineation
of the segmentation method is of importance, as it is the case
in TLE surgery [47]. However, conventional HD is sensitive
to and over-penalizes outliers, which are very likely in the
comparison with surgical segmentations [47]. Average HD
overcomes these limitations and is therefore particularly
well-suited for anatomical image analyses [50]. Irrespective
of the used metric, results must be still interpreted with
caution—despite generally favorable global aHD, there could
still be considerable local disagreement within a complex
structure [49].

The semi-automatic approach implemented in the ITK-
SNAP outperformed the fully automatic method independent
of lesion size and achieved excellent accuracy (median DSC
of 0.78, median aHD 0.44). The high signal intensity contrast
between the surgical defect zone and brain tissue as well as the
well-defined resection boundaries may have contributed pos-
itively to this good performance.

Corroborating previous studies, we found a strong influ-
ence of individual lesion size on the DSC [20]. Expectably,
the segmentation performance using either approaches was
significantly better in larger resections, as the DSC is sensitive
to the size of the segmented area [49]. Segmentation errors
were indeed mostly located at the boundary and could there-
fore bias the analysis towards larger segments. Results of the
spatial distance analysis support this hypothesis, because it is
independent of the size of the segmented area [51].

Focusing on the cases with limited performance of the semi-
automatic approach (7 patients with a DSC < 0.7), we found
interesting commonalities beside lesion size. In three patients
(P14, P16, P25) it was difficult to separate the resected area from
the enlarged inferior horn of the lateral ventricles. Three resection
cavities (P16, P17, P21) were inhomogeneous, and the resection
boundaries were not clearly apparent. Segmentation with the
ITK-SNAP is relatively robust and in these cases even turned
out to be significantly more reproducible than manual segmen-
tation [16]. It can be performed by any rater with experience in
manual segmentation [41]. Additionally, placement of the seeds
in theROI does not represent a crucial step per se, as the evolving
contour expands in all directions in regions where the speed
function is positive and contracts where the speed function is
negative. We decided to use the ITK-SNAP due to its simple
handling, the evolving visualization of the 3D volume in real
time, and the option to post-process the segmentation using inte-
grated 3D manipulation tools.

Theautomaticalgorithmdelivered lesssatisfactoryresults (me-
dianDSC0.58,median aHD1.32) anddidnot detect the resection

Table 2 Median DSCs of semi-
and fully automatic segmenta-
tions in small and large lesions

Method Lesion size Median DSC Sign.

Semi-automatic Large 0.89 (SD ± 0.11, range 0.60–0.94) p < 0.05,

z = − 2.962Small 0.72 (SD ± 0.10, range 0.53–0.84)

Fully automatic Large 0.65 (SD ± 0.09, range 0.43–0.76) p < 0.05,

z = − 3.039Small 0.43 (SD ± 0.18, range 0.05–0.69)

Table 3 Median aHDs of semi-
and fully automatic segmenta-
tions in small and large lesions

Method Lesion size Median aHD Sign.

Semi-automatic Large 0.38 (SD ± 0.45, range 0.14–1.85) p > 0.05
Small 0.47 (SD ± 0.47, range 0.22–1.69)

Fully automatic Large 1.29 (SD ± 1.22, range 0.42–5.15) p > 0.05
Small 1.49 (SD ± 2.21, range 0.67–7.25)
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in a single subject,where it detected only parts of the resected area
(Fig. 4). It should however be taken into consideration that the
resected area was difficult to segregate from surrounding tissue,
asitcontainedblooddebris[52].Thisisinlinewithpreviousstudies
which demonstrated reduced precisionwhen tissue signal intensi-
tieswere similar or the target structure itselfwas altered [15, 21].

This signifies a clear advantage of the semi-automatic ap-
proach, as the manual interaction described above ensures
satisfying results even in cases were other methods might fail.
It has however to be emphasized that the GNB classifier was
trained on stroke lesions, and while both surgical resection
cavities and resorbed lesioned tissue in chronic stroke will
ultimately contain CSF, there are still differences in signal
intensity. Nevertheless, no segmentation algorithm specifical-
ly designed for neurosurgical resections has been proposed to
date, necessitating use of established methods.

Notwithstanding expectable limitations, selection of the
lesion_GNB was driven by several potential advantages: It
operates on unimodal T1w data, requires no control population
or arbitrary thresholding, and integrates with SPM, utilizing de-
fault segmentation and normalization routines [44]. This preclud-
ed consideration of other algorithms from the ischemic stroke
lesion segmentation (ISLES) challenge [53], as they require ei-
ther multispectral data [41, 42] or healthy control groups [13],
which might not be readily available in all research environ-
ments. While our results revealed reduced accuracy, implemen-
tation of TLE-specific training datasets into the lesion_GNB
would clearly improve lesion detection. This was however be-
yond the scope of this study andwill be addressed in futurework.

As a second point, we assessed practical aspects of the
different segmentation methods. Regarding practical imple-
mentation in research environments, we relied on freely avail-
able software and standard computational hardware. As pre-
vious studies emphasized, manual segmentation is extremely
tedious and, depending on lesion complexity, very time-
consuming and thus expensive [13, 20, 54]. Manual segmen-
tation in our study required an average human input of
30.41 min/subject, mainly due to the uniformity of TLE re-
sections. Manual tracing furthermore requires sound anatom-
ical knowledge, at least at the level of postdoctoral research.
For larger cohorts, manual segmentation would therefore im-
plicate a tremendous amount of manual work and cost.

The semi-automatic method requires similar expertise; it was
howeversignificantlyfastercomparedtomanualtracing(3.27min/
subject), resulting in a cost reduction by 15.74Euro per subject. In

thisregard,fullyautomaticsegmentationmethodscouldoffereven
bettercost-effectiveness.Theyare less time-consuminganddonot
requireanexpert as theycanbeappliedby individualswith limited
experience[44].Interactionduringprocessingisminimal,resulting
in cost per subject approaching zero. The lesion_GNB algorithm
performedwellonstandardcomputers(13.41min/subject),where-
as availability of high-performance computational equipment
would further increase throughput.

Conclusion

Our findings suggest that semi-automatic methods are currently
most efficient for the segmentation of surgical resections. They
offer the best compromise between precision and effort, which is
particularly relevant for the evaluation of larger cohorts. Its su-
perior accuracy compared to the automatic method proved that
human input can further improve computerized segmentations.

Limitations

No formal assessment of inter-rater reliability in the manual or
semi-automatic approacheswas attempted here as thiswas exten-
sively explored in previous studies [55]. Although the cohort was
small, the sample size was sufficient to demonstrate significant
differences between the approaches. Moreover, although intra-
class correlation coefficients (ICC) are often used to compare seg-
mentationtechniques,theICCstronglydependsonsamplesizeand
distribution of subjects, especially in smaller cohorts [56], thus
precluding use of ICCas ameasure of accuracy in our study.
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