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Yujie Mao,1,2,3,6 Xiaohui Liu,4,5,6 Na Zhang,2 Zhi Wang,1,7,* and Maozhen Han2,*

SUMMARY

Antibiotic resistance genes (ARGs) are emerging pollutants present in various environments. Identifying
ARGshasbecomeagrowingconcern in recentyears. Severaldatabases, including theAntibioticResistance
Genes Database (ARDB), Comprehensive Antibiotic Resistance Database (CARD), and Structured Anti-
biotic Resistance Genes (SARG), have been applied to detect ARGs. However, these databases have limi-
tations, which hinder the comprehensive profiling of ARGs in environmental samples. To address these is-
sues, we constructed a non-redundant antibiotic resistance genes database (NRD) by consolidating
sequences fromARDB, CARD, and SARG.We identified the homologous proteins ofNRD fromNon-redun-
dant Protein Database (NR) and the Protein DataBank Database (PDB) and clustered them to establish a
non-redundant comprehensive antibiotic resistance genes database (NCRD) with similarities of 100%
(NCRD100) and 95% (NCRD95). To demonstrate the advantages of NCRD, we compared it with other da-
tabases by using metagenome datasets. Results revealed its strong ability in detecting potential ARGs.

INTRODUCTION

Since the discovery of penicillin and streptomycin, antibiotics have been widely applied to provide an effective treatment for prevalent dis-

eases.1 However, with the overuse and abuse of antibiotics, antibiotic resistance genes (ARGs) have been recognized as emerging pollutants

that are widely distributed and accumulated in most natural environment niches, including aquatic water ecosystems,2 soil,3 and human

feces.4 These environment niches are considered key hotspots for the spread of antimicrobial resistance.5 Additionally, with the increasing

popularity and scale of metagenomic experiments, the identification of ARGs inmetagenomic data with high accuracy and efficiency is essen-

tial to profile the composition of ARGs in microbial communities from different environmental niches and is indispensable in understanding

the ecology and dissemination of ARGs between environment- and human-related reservoirs.6 In the last few decades, many molecular bio-

logical methods, such as traditional polymerase chain reaction (PCR) and quantitative PCR (qPCR), have been developed and applied to

investigate ARGs in environmental samples.7 Compared with qPCR, themetagenomic approach is a popular tool to identify ARGs and detect

new types of ARGs because of its advantages. First, themetagenomic approach has a broad coveragebecause it can simultaneously identify a

large number of ARGs inmultiple samples. By contrast, qPCR typically requires specific primers and probes to detect specific ARGs.8 Second,

themetagenomic approach considerably improves detection efficiency, thereby saving time and reducing experimental costs. Metagenomic

methods do not require prior knowledge or a specific primer design and can directly extract all DNA sequence information from environ-

mental samples. This capability allows for the discovery of ARGs or unknown antibiotic resistance mechanisms. However, metagenomic anal-

ysis has specific limitations, including reduced sensitivity, need for complex data interpretation, and high costs. Therefore, the selection of the

appropriate method should be based on specific research requirements and available resources.

In recent years, the application of high-throughput sequencing technology has made the analysis of ARG sequences simple and easy,

and metagenomic analysis has attracted extensive attention in the identification of ARGs.9,10 It allows access to genomic data in environ-

mental samples and does not require the isolation and culture of microorganisms before analysis.11 To date, various bioinformatic tools for

metagenomic data have been developed and used to elucidate the ARGs in different environmental niches. Among the metagenomic

datasets for the detection of potential ARGs, the ARG database is the most critical and should be of concern. The ARG database enables

researchers to identify specific ARGs in samples and evaluate their potential contribution to the development of antibiotic resistance.

Furthermore, it promotes collaboration among researchers. Building and maintaining the ARG database typically involve open collabo-

ration, which accelerates the understanding of antibiotic resistance and facilitates the development of countermeasures. Regular updates

1Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese
Academy of Sciences, Wuhan 430077, China
2School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
3University of Chinese Academy of Sciences, Beijing 100049, China
4College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China
5Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266003, China
6These authors contributed equally
7Lead contact
*Correspondence: zwang@apm.ac.cn (Z.W.), hanmz@ahmu.edu.cn (M.H.)
https://doi.org/10.1016/j.isci.2023.108141

iScience 26, 108141, November 17, 2023 ª 2023 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:zwang@apm.ac.cn
mailto:hanmz@ahmu.edu.cn
https://doi.org/10.1016/j.isci.2023.108141
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2023.108141&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


and continuous database development should be conducted to provide up-to-date support for research on antibiotic resistance and

maintain database accuracy.

Several ARG databases have been designed, constructed, and applied to detect potential ARGs in metagenomic datasets collected from

various environmental niches. The first of these databases was established in 2009 and is called the Antibiotic Resistance Genes Database

(ARDB), which contains 13,293 sequences of ARGs affiliated to 257 antibiotics.12 ARGs research has been flourishing since the establishment

of ARDB. Subsequently, the Comprehensive Antibiotic Resistance Database (CARD) was rigorously constructed in 2013 and continues to be

updated with high frequency.13 In 2016, on the basis of the sequences of ARDB and CARD, another popular database, namely, Structured

Antibiotic Resistance Genes (SARG), was designed and constructed with a hierarchical structure by integrating ARG sequences, removing

the redundant ones, and re-selecting the representative query sequences.14 Similarly, on the basis of the sequences of ARDB, a total of

1,260,069 protein sequences and 1,164,479 nucleotide sequences are contained in the updated database Sequence Database of Antibiotic

Resistance Genes (SDARG), which consists of 448 types of ARGs and 18 categories of antibiotics. It is used as a built-in database of an online

pipeline-ARG analyzer (ARGA) to detect potential ARGs in environmental samples.7 Furthermore, DeepARG-DB, a companion database for

DeepARG, was designed and constructed to enhance the quality of the built-in model.15

Although these ARGs databases have been widely applied in ARGs studies to detect potential ARGs in various environmental niches, several

limitations still exist. For example, ARDB has not been updated since 2009, which means that ARGs discovered after 2009, such as NDM-116 and

mcr-1,17arenot included in it. Inaddition, theARDBdatabasedoesnotdistinguishbetween resistantgeneswithdeterministic resistance functions

and resistant genes predicted based on homology.18 CARD and SARG are recently established and updated databases, and they contain 2,498

and4,246 selected reference sequences, respectively. The twodatabases cover a limitednumberof high-quality sequences,which is conducive to

improving the annotation speed of ARG but not enough for primer evaluation.7 Moreover, some databases, such as the Lactamase Engineering

Database (LacED),19,20 LaheyDatabaseof b-lactamases,21 b-LactamaseAlleles Initiative, andComprehensive b-LactamaseMolecular Annotation

Resource (CBMAR),22only includespecificantibiotics.Thesedatabasesonly contain resistancegenes forb-lactams,23 and their comparison results

are likely to seriously underestimate the number of existing ARGs. Moreover, we found that the identification results of potential ARGs with

differentARGsdatabases for the samedataset present differences and inconsistencies.8Hence, an enhanced, restyledARGsdatabase is urgently

needed to detect potential ARGs andobtain a comprehensive profile of ARGs. Thus, in the present study, we collected the protein sequences of

ARGs from threepopularARGsdatabases, namely,ARDB,CARD,andSARG.Weeliminated the redundancyof these sequences toestablishnon-

redundant antibiotic resistance genes databases (NRD), identified the homologous proteins of NRD from the Non-redundant Protein Database

(NR)and theProteinDataBankDatabase (PDB),andclustered themtoestablishanon-redundantcomprehensiveantibiotic resistancegenesdata-

base (NCRD) with similarities of 100% (NCRD) and 95% (NCRD95).We also assessed the identified results of the potential ARGs in seven environ-

mental niches, and our results showed that our databases have a powerful ability to detect potential ARGs.

RESULTS

Characteristics and features of NCRD

To obtain an enhanced, restyled database for detecting potential ARGs from metagenomic data of different environmental niches, we

selected the protein sequences derived from ARDB, CARD, and SARG as fundamental sequences and removed the redundancy of these se-

quences to construct an initial database of ARGs, which was called NRD. The homologous proteins of NRD were identified from NR and PDB

databases. The union set of the protein sequences of NRD and its homologous proteins were merged, and the redundancy of these proteins

was removed to construct NCRD. Subsequently, a subdatabase calledNCRD95 was constructed based on the similarity of the proteins. Three

kinds of ARG databases, namely, NRD, NCRD, and NCRD95, were constructed (Figure 1). Then, the different characteristics and features of

these databases were assessed and compared with those of ARDB, CARD, and SARG.

First, the three redesigned databases had more protein sequences than ARDB, CARD, and SARG. Specifically, we found that 23,136, 4,750,

and 12,085 protein sequences were included in ARDB, CARD, and SARG, respectively, and 18,619, 710,231, and 34,008 protein sequences were

included in NRD, NCRD, and NCRD95, respectively (Figure 1). The large number of protein sequences in the ARG databases meant that

Figure 1. Flowchart for the construction of NCRD
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numerous potential ARGs, including false positive ARGs, were detected in the metagenomic dataset. The similarity and coverage of proteins

were set to 90% to avoid the appearance of false positive ARGs, and the sequence length was controlled to be greater than 52 amino acids

(AA) to screen reliable homologous sequences. Thus, the protein sequences of ARGs of NRD, NCRD, and NCRD95 were highly credible.

Second, the three restyled databases had abundant valuable information for exploring the profiles of ARGs frommultiple perspectives.

ARGs studies have focused on the gene name (subtype of ARG), antibiotic resistant type, and mechanism of resistance. ARDB, CARD, and

SARG databases address only some or all of these concerns, but they still have limitations. For example, ARDB provides information from

these aspects, but it is no longer updated andhas been abandoned.Our three databases provided the gene name, antibiotic resistant type,

andmechanism. Specifically, we observed that the numbers of subtypes of ARGs inARDB, SARG, andCARDwere 180, 225, and 338, respec-

tively. By contrast, our databases contained amuch larger number of subtypes ofARGs, which can reach 444 (Figure 1). This vast difference in

numbers can be attributed to the standardization of gene names in our database. First, we retained the original names of ARGs from the

three databases while standardizing their case. Second, we established a unified name based on the information provided by CARD. For

instance, we retained the original names of OXA-19, OXA-20, and OXA-21, and we categorized them as OXA beta-lactamase. As a result,

our databases provide two choices for users: OXA-19 and OXA beta-lactamase. Figure 2A shows that certain subtypes of ARGs found in

ARDBandSARGare absent in our database, but subtypes ofARGs fromCARDare included. This discrepancy is due to ourmergingprocess,

where data fromCARD are prioritized and placed ahead. This prioritization ensures that the sequence information fromCARD is preserved

when removing redundancies, resulting in the loss of some subtypes of ARGs in ARDB and SARG.

Third, the three databases havemore antibiotic-resistant types than the other databases.We found that the same antibiotic-resistant types

(categories) are present in NRD, NCRD, and NCRD95. Hence, we chose NRD as an example and conducted a comparison with ARDB, CARD,

and SARG (Figure 2B). The results showed that 14, 23, and 17 antibiotic-resistant types are present in ARDB, CARD, and SARG, respectively,

and 29 antibiotic resistant types are included in NRD (Figure 2B). Among these antibiotic resistant types, 14 are present in all databases; 12 are

common to CARD and NRD; 2 are common to SARG, CARD and NCRD; and 1 is common to SARG and NRD (Figure 2B). In the process of

unifying the antibiotic resistant types, the small class was classified into a large class by performing searches. For instance, carbapenem, ceph-

alosporin, and cephamycin belong to the beta-lactam class. In the annotation information, we retained the broad class and the specific sub-

class, such as |beta-lactam|carbapenem; cephalosporin; cephamycin|. Additional information on the comparison of the six database subtypes

is given in Figure 3. Given that multidrug and beta-lactam contain a larger number of sequences, we singled them out for comparison (Fig-

ure 3). Overall, our databases contain the most information numerically and categorically.

With regard to the potential mechanism of ARGs, on the basis of the information on themechanism of ARGs in CARD, including antibiotic

target alternation, antibiotic target protection, antibiotic target replacement, antibiotic efflux, antibiotic inactivation, antibiotic efflux, and

reduced permeability to antibiotics, we provided the mechanism information of ARGs in the three enhanced databases.

The protein sequenceswith highly credible and valuable information, including the subtypes of ARGs, antibiotic resistant types, andmech-

anisms, were found in our three redesigned ARGs databases.

Profiles of the ARGs of various environmental niches annotated with NCRD were estimated and compared with those

annotated with other ARGs databases

Themetagenomic datasets from seven environmental niches were assembled, the potential genes were predicted, and the ARGs candidates

in ARDB, CARD, SARG, NRD, and NCRDwere identified and compared to further verify the universality and application of NCRD. The results

A B

Figure 2. Characteristics and features of NRD in comparison with ARDB, CARD, SARG, and NCRD95

(A) Venn plot showing the subtypes of ARGs existing in different databases.

(B) Venn plot showing the antibiotic-resistant types in different databases.
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showed that the numbers of ARGs identifiedwere in the order of NCRD>NRD>CARD> SARG>ARDBwith the same filtered parameters for

the same sample (Figure S1). Overall, the number of ARGs identified by ARDB, CARD, SARG, NRD, NCRD95, and NCRD was 20,198, 41,935,

28,787, 53,008, 66,519, and 66,067, respectively. Then, the average number of ARGs in each sample identified by each database was calcu-

lated, and the numbers were 288.5, 599.1, 411.2, 757.3, 950.3, and 943.8 for ARDB, CARD, SARG, NRD, NCRD95, andNCRD, respectively. The

results of the databases were about 1.26–3.29 times those of the previously established databases. In addition, the average numbers of ARGs

identified by NCRD95 and NCRD were compared with those identified by the other databases. The results also showed that the number of

ARGs detected by NCRD95 was 3.29, 1.59, and 2.31 times that detected by ARDB, CARD, and SARG, respectively, indicating that our data-

bases have great potential in detecting potential ARGs. At the same time, paired sample t-tests were performed to compare the differences in

the alignment results of NRD, NCRD, and NCRD95 for all samples (Figure S2). The results showed considerable differences among NRD,

NCRD, and NCRD95 in terms of the total number of identified ARGs and the subtypes of ARGs. However, no remarkable difference in the

number of ARGs by type was observed between NCRD and NCRD95.

We selected an urban drinking water source (Chaohu Lake) as an example to visualize and provide a brief explanation (Figure 4A). The

number of potential ARGs, the subtypes of ARGs, and the antibiotic-resistant types identified with NCRD, NCRD95, and NRD were higher

than those identified with ARDB, CARD, and SARG (Figure 4A). In particular, the profiles of ARGs identified by NCRD andNCRD95 were rela-

tively similar (Figure 4A). These results suggest that comprehensive profiles of ARGs in various environmental niches can be obtained by align-

ing sequences to NCRD, NCRD95, and NRD; among them, NCRD95 is the most suitable for detecting potential ARGs from the perspective

of time.

Selection of sequence aligners to rapidly detect potential ARGs

The ARG profiles in 10 Chaohu Lake samples (CH01–CH10) identified by BLAST and DIAMOND against the six databases were

compared to rapidly detect the profiles of ARGs and ensure the consistency of ARGs. The results were visualized in a boxplot, and

the same connection was applied to the same sample (Figure 4B). The resulting connections were almost parallel regardless of the total

number of identifications, number of gene names, or number of classifications, indicating that the results of DIAMOND and BLAST were

similar.

The time required to detect the potential ARGs by DIAMONDand BLAST was summarized and compared (Figure 4C). The results showed

that BLAST was much slower than DIAMOND in ARG identification. The time required by NRD and NCRD95 did not differ considerably from

that required by ARDB, SARG, and CARD databases regardless of whether BLAST or DIAMOND was used (Figure 4C). Considering that the

results of potential ARGs identified by BLAST andDIAMONDshowed no notable differences, we recommendDIAMONDas the first choice in

profiling the composition of ARGs because it can greatly decrease the time required. Furthermore, we found that the time required to identify

potential ARGs against NCRDwasmuch greater than that for NCRD95 (Figure 4C). Given that the results profiled byNCRDandNCRD95 were

similar, NCRD95 was recommended as the database for detecting ARGs in metagenomic datasets.

A

B C

Figure 3. Detailed information on antibiotic-resistant types in six databases

(A) Comparison of 27 antibiotic-resistant types in the six databases. From left to right are ARDB, SARG, CARD, NRD, NCRD95, and NCRD.

(B) Comparison of the number of beta-lactams in the six databases.

(C) Comparison of the number of multidrugs in the six databases.
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Web server

The related files of the databases are provided in the GitHub of our laboratory (https://github.com/LabHanmz/NCRD) to broaden the applica-

tion our ARG databases. A web server (http://ncrd.single-cell.cn/index/) for the identification of potential ARGs was constructed to provide a

user-friendly graphical interface for accessing theNCRDdatabases. The primary use case supportedby theweb interface is described as follows.

A

B

C

Figure 4. Benchmark of the ARGs databases and sequence alignment tools for rapidly detecting potential ARGs in metagenomic datasets of various

environmental niches

(A) Benchmark of the number of potential ARGs, subtypes of ARGs, and number of antibiotic-resistant types identified in Chaohu Lake by using ARDB, CARD,

SARG, NRD, NCRD95, and NCRD.

(B) Total number of potential ARGs, number of subtypes of potential ARGs, and number of antibiotic-resistant types in the 10 samples from Chaohu Lake

identified by BLAST and DIAMOND against the six databases.

(C) Time required to profile the composition of ARGs for several samples from Chaohu Lake by using BLAST and DIAMOND. The tests were performed on an

Ubuntu server with 43Intel(R) Xeon(R) CPU E5-2680 v3 at 2.50GHz and with 64 GB of memory.
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(1) Users can upload their protein or nucleotide sequences in the FASTA format in the Analyze section (Figure 5), choose an analysis tool

and database, and obtain the potential ARGs. The potential ARGs are filtered with similarity R80% and coverage R70%, and the

filtered results can be downloaded after the completion of analysis (Figure 5C).

(2) The default align sequence tool is BLAST, and the default database is NCRD95.

(3) Users can obtain the download links of the databases, including ARDB, CARD, SARG, NCRD95, and NCRD.

(4) The analysis result is shown in a bubble diagram (Figure 5D).

DISCUSSION

The existence of ARGs has attracted increasing attention and concern, and the identification of ARGs in current environmental microbiome

studies is a key step in exploring the distribution and migration of ARGs.24,25 Although several ARG databases have been constructed, limita-

tions still exist in these databases because of their preferences. A comprehensive ARGs database and two associated ARGs databases (NRD,

NCRD, and NCRD95, respectively) were constructed to facilitate the detection and understanding of antibiotic resistance. The protein se-

quences of NRD were merged with those from ARDB, CARD, and SARG, and the subtypes of ARGs, antibiotic-resistant types, andmechanism

of antibiotic resistancewere re-unified.Next, the homologous proteins ofNRDwere identified fromNRandPDBdatabases to constructNCRD,

which contained too many protein sequences. Thus, we removed the redundancy of the protein sequences of NCRD to construct NCRD95.

Theconstituentof the threedatabaseswas summarizedandcomparedwithARDB,CARD, andSARG.We foundthat the three redesignedARG

databases hadmore protein sequenceswith high credibility andmore valuable information onARGs, including subtypesofARGs, antibiotic-resis-

tant types, andmechanisms, compared with ARDB, CARD, and SARG. Afterward, we applied the ARGs databases to profile the ARGs composi-

tions indifferent environmental samples. The results showed that the universality ofNCRD,NCRD95, andNRDand their identification resultswere

better than those of other databases, indicating that our databases demonstrate superiority in different ecological environments.

In consideration of the identification results and the time required, we recommend the use of NRD and NCRD95 databases to detect the

profiles of ARGs. Specifically, we recommend NRD, the smallest database, because of its remarkable advantages in accuracy and speed. Its

results are based on protein sequences that have been identified as ARGs because it is the combination of three existing databases. Further-

more, additional categories andmechanisms have been appended to this database, and abundant useful information can be obtained when

it is used to identify ARGs. Meanwhile, NCRD95 was generated from NCRD on the basis of the similarities of proteins to reduce the time

required for detecting potential ARGs. Many ARGs candidates can be rapidly detected when NCRD95 is used with DIAMOND.

A

B

C

D

Figure 5. Representative screenshot of the web interface

(A) Analysis interface introduction.

(B) Sample data analysis selection.

(C) Analysis results page.

(D) Bubble diagram showing the analysis results.
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In conclusion, despite the progress made in establishing comprehensive ARGs databases, the potential of these databases is limited due

to infrequent updates. Our databasewill be updated in sync with the CARDdatabase to address this issue.We have uploaded corresponding

data to our website (http://ncrd.single-cell.cn/index/).

Limitations of the study

Our databases still have limitations. For instance, although we used stringent screening parameters to filter out homologous ARG sequences,

all ARGs identified as other genes in microbiome studies should still undergo experimental verification. Moreover, although our databases

contain information on the mechanisms of a series of ARGs, numerous mechanisms in the annotation information remain unidentified and

require further supplementation.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the lead contact Zhi Wang (zwang@apm.ac.cn).

Materials availability

This study did not generate new unique data.

Data and code availability

� The accession number of the samples used in the analysis are listed in the key resources table. All metagenome datasets used in this

work are available from public sources as cited in the manuscript. NCRD is a one-stop and user-friendly interface and freely available at

http://ncrd.single-cell.cn/index/, and the workflow can be downloaded from https://github.com/LabHanmz/NCRD.
� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon reasonable

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study is a computational science research and does not use experimental models in the life sciences.

METHOD DETAILS

Data processing and establishment of NCRD

To establish a comprehensive and complete database, we collected and cleaned resistance gene sequences from three published ARG da-

tabases, namely, ARDB (v1.1),12 CARD (v3.2.6),13 and SARG (v2.2).14 First, we downloadedARDB from thewebsite http://ardb.cbcb.umd.edu/,

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Chaohu Lake Han et al.26 GenBank: PRJNA593890

Freshwater lake sediments Wang et al.27 N/A

Wastewater Martı́nez Arbas et al.28 GenBank: PRJNA230567

Seawater N/A GenBank: PRJEB1787

and PRJNA398459

Mouse feces Mitchell et al.29 GenBank: PRJEB40312

Feces of patients with RA Tisza and Buck30 GenBank: PRJEB6997

Feces of patients with CRC Gupta et al.31 GenBank: PRJNA531273

Software and algorithms

CD-HIT Fu et al.32 v4.8.1

Trimmomatic Bolger et al.33 v0.32

MEGAHIT Li et al.34 v1.2.9

Prodigal Hyatt et al.35 v2.6.3

BLAST Boratyn et al.36 v2.5.0+

DIAMOND Buchfink et al.37 v2.1.8

Other

NCRD This Paper v1.2; http://ncrd.single-cell.cn/index/

ARDB Liu and Pop12 v1.1

CARD McArthur et al.13 v3.2.6

SARG Yin et al.14 v2.2
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selected the document named arbg.tab to extract the accession number of ARGs, and downloaded 23,136 protein sequences with the down-

loading protein sequence function in ‘‘ape’’ and ‘‘rentrez’’ packages on the R platform (v4.0.2). Second, the protein sequences contained in the

document (named protein_fasta_protein_homolog_model.fasta) of the CARD database (https://card.mcmaster.ca/) were downloaded. A to-

tal of 4,750 protein sequences belonging to 23 ARG types were obtained from CARD. Last, we chose the protein sequences of SARG, which

included 12,085 protein sequences belonging to 17 ARG types (Figure 1). The NR and PDB databases were downloaded onMay 6, 2023, and

May 29, 2023, respectively.

Before integrating the three databases, ARDB, CARD, and SARGdatabases were compared, and we found that CARD contained themost

complete information, including gene name, category, andmechanismof a certain ARG.Hence, on the basis of the strategy used inCARD, we

unified the gene names of ARGs for ARDB and SARG. Given that the gene name of ARG was not given in CARD, we named it based on the

gene name of SARG. Additionally, because the gene name of ARG did not appear in CARD and SARG, we renamed it based on the gene

name of ARDB. We added valuable information, such as categories and mechanisms, to ARGs that lacked essential information on the basis

of the types of ARGs. With these strategies, the information of each ARG gene, including initial gene name, unified gene names, ARG types,

ARG categories, and mechanisms, was updated and implemented, and three formal databases with unified gene names were obtained.

Notably, several problems were still encountered in this step. For instance, we had to manually check and calibrate the information of

each ARG. Specifically, several genes that only had accession numbers (no gene names) were called N/A in CARD. We searched their

gene names and ARG types in the National Center for Biotechnology Information (NCBI) depending on their accession numbers and added

the information to our unified database.

After obtaining unified ARDB, CARD, and SARG databases, we reduced the redundancy of the protein sequences in the three da-

tabases by using CD-HIT (v4.8.1)32 with the following parameters: -c 1, -aL 1, -aS 1, and -M 0. We retained 6,828, 4,750, and 12,085 pro-

tein sequences for a downstream analysis. Then, we merged these protein sequences, removed their redundancy, and chose represen-

tative protein sequences. During the removal of redundancy, the order of retention was CARD > SARG > ARDB, and sequences with

abundant information were preferentially retained. A total of 18,619 protein sequences were obtained, and the protein set of these se-

quences was called the nonredundant antibiotic resistance genes database (NRD), which contained 29 ARG types (Figure 1). In this

database, the entries from ARDB, CARD, and SARG are divided into 3,461, 4,750, and 10,408. To determine the newest ARGs, the ho-

mologous proteins of the 18,619 proteins were identified from NR and PDB databases by using DIAMOND with the following param-

eters: E-value % 1310-5, qcovhsp R 90%, and ppos R 90%. The shortest sequence lengths of ARDB, CARD, and SARG databases were

determined to be 17, 53, and 19 AA, respectively. Only sequences that were longer than 52 AA were retained to enhance alignment

reliability. Subsequently, the screened homologous proteins and the 18,619 protein sequences were merged, and their redundancy

was eliminated using CD-HIT to create NCRD. In accordance with the conditions used in CD-HIT, a subset database, namely,

NCRD95 (CD-HIT: c = 0.95), was constructed. A total of 710,231 and 34,008 protein sequences belonged to 29 ARG types in NCRD

and NCRD95, respectively (Figure 1).

Acquisition and processing of metagenomic datasets

Seven different environments, namely, urban drinking water source (Chaohu Lake),26 freshwater lake sediments,27 wastewater of a waste-

water treatment plant,28 seawater, mouse feces,29 feces of patients with rheumatoid arthritis (RA),30 and feces of patients with colorectal

cancer (CRC),31 were selected to verify the application of NCRD in different environmental niches. The metagenomic datasets of seawater

(GenBank: PRJEB1787 and PRJNA398459), wastewater (GenBank: PRJNA230567), the RA patient’s feces (GenBank: PRJEB6997), the CRC

patient’s feces (GenBank: PRJNA531273), and mouse feces (GenBank: PRJEB40312) were downloaded from the sequence read archive of

NCBI. The Chaohu Lake samples were from our previous project.26 The lake sediment samples were from our ongoing research project. In

particular, 10 metagenomic datasets were collected for each of the seven types of environmental niches. The quality of the 70 metage-

nomic datasets was controlled with Trimmomatic (v0.32)33 by using the same parameters as those described in our previous study.8 Sub-

sequently, the high-quality reads were assembled by MEGAHIT (v1.2.9)34 with the following parameters: –meta-large and k-mer ranged

from 27 to 127 with a step of 10. The assembled contigs with length > 500 bp were retained, and the potential genes and their correspond-

ing proteins were predicted with Prodigal (v2.6.3)35 under default settings. Then, the ARG profiles of the 70 metagenomic datasets were

detected against ARDB, CARD, SARG, NRD, NCRD, and NCRD95 by DIAMOND, and the results were filtered based on the following set-

tings: E value % 1310-5, qcovhsp R 70%, and ppos R 80%.26 The numbers and types of ARGs in the different environmental niches and

different databases were estimated and compared.

In the analysis of ARG prediction, sequence alignment and searching against a reference database are key steps and consumemuch time.

At present, two popular tools, namely, BLAST (v2.5.0+)36 andDIAMOND (v2.1.8),37 are adopted as sequence aligners to predict and annotate

the function of genes and proteins. Several benchmark analyses of the speed and resource requirements of the two tools have been conduct-

ed, and they suggest that DIAMOND has better performance and sensitivity than BLAST.37 However, comparisons of ARGs predicted by

DIAMOND and BLAST remain lacking. In this study, 10 metagenomic datasets of Chaohu Lake were selected as input datasets to estimate

the profiles of ARGs alignedwithDIAMONDand BLAST and select a suitable tool for predicting ARGs in vastmicrobiome sequence data. The

profiles of ARGs detected by DIAMOND and BLAST were compared with those in different databases. The time required to detect the ARG

composition was estimated.
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QUANTIFICATION AND STATISTICAL ANALYSIS

In this study, the paired t-test of the ‘‘rstatix’’ package in R (v4.0.2) was used to detect the difference in the comparison results of NRD, NCRD

andNCRD95 for all samples.Moreover, we use the ‘add_significance’ function to convert the P value into a significant symbol. Specifically, ‘‘*’’:

p % 0.05; ‘‘**’’: p % 0.01; ‘‘***’’: p % 0.001; ‘‘****’’: p % 0.0001; ns: not significant.

ll
OPEN ACCESS

iScience 26, 108141, November 17, 2023 11

iScience
Article


	ISCI108141_proof_v26i11.pdf
	NCRD: A non-redundant comprehensive database for detecting antibiotic resistance genes
	Introduction
	Results
	Characteristics and features of NCRD
	Profiles of the ARGs of various environmental niches annotated with NCRD were estimated and compared with those annotated w ...
	Selection of sequence aligners to rapidly detect potential ARGs
	Web server

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Method details
	Data processing and establishment of NCRD
	Acquisition and processing of metagenomic datasets

	Quantification and statistical analysis




