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Abstract

The 2019-2020 pandemic of atypical pneumonia (COVID-19) caused by the virus SARS-

CoV-2 has spread globally and has the potential to infect large numbers of people in every

country. Estimating the country-specific basic reproductive ratio is a vital first step in pub-

lic-health planning. The basic reproductive ratio (R0) is determined by both the nature of

pathogen and the network of human contacts through which the disease can spread,

which is itself dependent on population age structure and household composition. Here we

introduce a transmission model combining age-stratified contact frequencies with age-

dependent susceptibility, probability of clinical symptoms, and transmission from asymp-

tomatic (or mild) cases, which we use to estimate the country-specific basic reproductive

ratio of COVID-19 for 152 countries. Using early outbreak data from China and a synthetic

contact matrix, we estimate an age-stratified transmission structure which can then be

extrapolated to 151 other countries for which synthetic contact matrices also exist. This

defines a set of country-specific transmission structures from which we can calculate the

basic reproductive ratio for each country. Our predicted R0 is critically sensitive to the

intensity of transmission from asymptomatic cases; with low asymptomatic transmission

the highest values are predicted across Eastern Europe and Japan and the lowest across

Africa, Central America and South-Western Asia. This pattern is largely driven by the ratio

of children to older adults in each country and the observed propensity of clinical cases in

the elderly. If asymptomatic cases have comparable transmission to detected cases, the

pattern is reversed. Our results demonstrate the importance of age-specific heterogene-

ities going beyond contact structure to the spread of COVID-19. These heterogeneities

give COVID-19 the capacity to spread particularly quickly in countries with older popula-

tions, and that intensive control measures are likely to be necessary to impede its progress

in these countries.
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Author summary

Over 100 countries have reported laboratory-confirmed cases of atypical pneumonia

caused by 2019 novel coronavirus (COVID-19). Cases are largely reported in older age

groups, suggesting a strong age-dependent component to either transmission or the prob-

ability of developing symptoms and thus being detected. We introduce a mathematical

model for COVID-19 transmission in which contact behaviour, susceptibility, detection

probability, and transmission from undetected cases all vary with age. We fit our model to

epidemiological data from the outbreak in China for the special case where asymptomatic

transmission is negligible, and compare it to a null model where only contact behaviour

varies with age. Our fitted model suggests that contacts involving older individuals are

particularly likely to generate new detected cases, intensifying the spread of infection in

countries with older populations. We estimate the basic reproductive ratio (a measure of a

pathogen’s capacity for spread) of COVID-19 in 152 countries under both models, and

find that estimates of the basic reproductive ratio are highly dependent on the assumed

underlying transmission structure; our more complex model predicts higher values in

Japan and much of Europe and lower values in much of Africa, in comparison to the con-

tact frequency-based model where this pattern is reversed.

Introduction

The ongoing epidemic of atpyical pneumonia (COVID-19) emerged in Wuhan, China in late

2019, with the novel coronavirus SARS-CoV-2 identified as its causative agent [1]. It exhibited

an early capacity for global spread [2], and, as of May 29th 2020, it is present on all inhabited

continents and has spread to 216 countries and territories [3]. A surprising feature of the out-

break in all countries is that the distribution of detected cases is characterised by large numbers

of cases in older individuals and fewer in younger individuals, with particularly low numbers

in under-15s [1, 4]. Unfortunately, it remains unclear what role these younger age-groups play

in onward transmission.

The basic reproductive ratio, commonly denoted R0, is a key epidemiological variable in

any outbreak. It is defined as the expected number of infectious cases generated by a single

average case in an entirely susceptible population [5, 6]. It is therefore an important measure

of an infection’s capacity to spread, with sustained transmission possible only when R0 > 1,

and can be used to calculate both the expected size of an outbreak and the threshold level of

vaccination necessary for eradication [5]. Early estimates of R0 for COVID-19 in China have

mostly clustered between 2 and 4 [1, 2, 7–11]. However, these estimated values of R0 may not

necessarily reflect the intensity of spread in countries other than China; this is because the

basic reproductive ratio is dependent on both pathogen and host population characteristics

[12].

Age-structured infectious disease models have been hugely successful in describing the

dynamics of a number of infectious diseases, including endemic infections and novel out-

breaks [13–17]. These models typically use a so-called “who acquires infection from whom”

paradigm, with transmission rates between individuals in different age classes encoded either

in a single matrix or in a set of matrices specific to transmission events in different locations

[5, 13]. It is often assumed that age-structured transmission rates are directly proportional to

the frequency and duration of age-structured contacts, measured from social contact studies

[15, 16, 18]. Such studies typically find that contact intensities are highest among younger

(school-)age groups [18–22], so that if age-structured transmission is determined entirely by
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contact frequency, we expect infection to be concentrated in these younger age groups. The

relatively low levels of clinically presenting COVID-19 cases in children and teenagers there-

fore suggests that transmission is driven by more complex age-stratified heterogeneities

beyond social contact patterns.

Although studies of social contacts are increasing in number [18, 20–27], they tend to be

time consuming to conduct and therefore have been limited to a number of exemplar coun-

tries. Prem et al. (2017) extrapolated these contact matrices to 152 countries based on a range

of social and demographic data [19]. This generates a publicly available set of country-specific

contact matrices whose entries correspond to the expected total number of age-stratified con-

tacts per day for individuals aggregated into 5-year age classes [19]. One study has already

used these estimated contact patterns to model COVID-19 in China, although the potential for

other age-specific heterogeneities was not addressed [28].

In this paper, we define a model of the early age-structured transmission dynamics in

China which incorporates the country-specific social contact matrix (estimated by Prem et al.
[19]) as well as components defining age-specific susceptibility profiles, probabilities of devel-

oping symptoms, and transmission rates from subclinical cases. Our model formulation is suf-

ficient flexible to account for a range of different assumptions relating to the drivers of the

observed age-structured heterogeneity; we estimate parameters to match age-structured data

from the outbreak in China based on two different sets of assumptions which significantly sim-

plify the model:

1. A null model where transmission is purely related to contact pattern. This would be the

default assumption for any novel pathogen, but for COVID-19 relates to when all infected

individuals are equally infectious independent of symptoms.

2. A model where there is negligible transmission from asymptomatic infections, such that

younger age-groups contribute less to overall transmission.

We then combine our fitted transmission parameters with Prem et al.’s estimates of the

contact matrices in the other 151 countries to generate an estimate of an age-structured trans-

mission structure for each of those countries. The basic reproductive ratio can then be esti-

mated from these transmission structures to give us an indication of the spreading potential of

a COVID-19 outbreak in each of these countries.

Materials and methods

We develop an age-structured transmission model based upon an age-structured contact

matrix and allowing for age-stratified variation in susceptibility, probability of clinical symp-

toms, and reduction in transmission by asymptomatic (and therefore undetected) cases rela-

tive to clinically symptomatic (and hence detectable) ones. Full details of the model structure

are given in S1 Appendix.

We parameterise the contact matrices for each country using the age-dependent contact

rates estimated by Prem et al. [19]. The age-stratified susceptibility, symptomatic probability

and asymptomatic transmission profiles need to be inferred from data. Given the large number

of parameters involved (three times the number of age classes), we only carry out fits for a few

specific assumptions, corresponding to different factors which can drive age-stratified hetero-

geneity. An important assumption throughout this work is that these age-stratified profiles are

the same from population to population; we feel this is justified since they are likely to be

driven by physiological mechanisms which are unlikely to be population-specific. In particu-

lar, we assume that detection is closely correlated with showing symptoms, so that the age-
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structured distribution of reported cases reflects the age-structured distribution of symptom-

atic cases.

For reference, we first consider a simple null model in which all age groups are equally sus-

ceptible and all infected individuals (both symptomatic and asymptomatic) transmit at the

same rate. That is, we assume that the next-generation matrix (which describes the number of

new infections in each age-group generated by a case in a given age-group [5]) is directly pro-

portional to the estimated contact matrix for China; such that contact patterns within the com-

munity are the only source of age-structured heterogeneity. The scaling of the contact matrix

is performed such that the next-generation matrix generates a basic reproductive ratio of 2.4,

in line with current literature. This scaling is applied to all country-specific contact matrices to

generate their corresponding transmission matrices and associated basic reproductive ratio.

(To match this model to the reported age-distribution of cases in China [4] the age-dependent

probability of symptoms can be modified, which in turn determines the pattern of detection

although leaves the epidemiology untouched).

We contrast the null model with one in which transmission from asymptomatic cases is

negligible, and observed age-structured hetereogeneity is driven by a combination of age-

dependent susceptibility and probability of symptoms. The latter has already been identified as

of particularly importance, with secondary attack rates for children potentially similar to those

among adults, despite the much smaller number of clinically presenting cases [29]. In this

model age-structured heterogeneity in susceptibility profile or in the symptomatic probability

have identical effects, and so we can fit a single set of parameters capturing both possible

effects. Again, we fit this simplified model using epidemiological data from China [4] and the

estimated China-level contact matrix [19], and scale the result such that the next-generation

matrix generates a basic reproductive ratio of 2.4. The age-dependent parameters and scaling

can then be combined with the estimated country-level contact matrices from the other coun-

tries in Prem et al.’s study [19] to produce age-stratified next-generation matrices for these

countries, and hence an estimate of the country-specific basic reproductive ratio. We explain

this calculation in detail in S1 Appendix.

All of the code used to implement our model and generate the results in the next section is

available at https://github.com/JBHilton/hilton-keeling-estimating-R0.

Results

In what follows we use an estimate of R0 = 2.4 for the basic reproductive ratio of COVID-19 in

China, consistent with values estimated in the literature so far (R0 = 2.2 [1], R0 = 2.3 − 2.6 [11],

R0 = 2 − 2.7, [10], R0 = 2.35 [7], R0 = 3.11 [9]), although we note that other estimates of R0 in

China can be accommodated by a linear rescaling of all the predicted values.

In Fig 1(a) we present the results of the null-model in which susceptibility is age-indepen-

dent and all infectious individuals (both symptomatic and asymptomatic) have the same trans-

mission rate(which can be matched to the age-structured case data from China by allowing the

probability of displaying symptoms and therefore being detected to vary with age). We plot the

estimated R0 for each of the 152 countries included in Prem et al.’s study on a map of the

world, with map colours grading from blue (low values of R0) through yellow (intermediate

values) to red (high values of R0). Fig 1(b) contrasts this with the estimated basic reproductive

ratios based on the age distribution of the first 44,672 confirmed cases in China, as reported by

China’s Novel Coronavirus Penumonia Emergency Response Epidemiology Team in China

CDC Weekly [4]. Our numerical estimates of the basic reproductive ratio for each of the 152

countries are given in S1 Appendix.
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To interpret these findings, in Fig 2(a) we plot the two sets of basic reproductive ratios

shown in Fig 1, contrasting the null-model (x-axis) with the model in which there is negligible

transmission from asymptomatic infections (y-axis). The assumptions underpinning the latter

model lead to an increase in the amount of variation in basic reproductive ratio by country,

and in particular can generate much larger basic reproductive ratios. For the null model (or

when both symptomatic and asymptomatic infections are equally infectious), the variation in

basic reproductive ratio is driven by the variation in average intensity of contacts by country.

In contrast, when infection is driven by the age-dependent pattern of symptomatic cases, con-

tact patterns involving members of highly symptomatic age classes becomes particularly

important—generating a core-group within the population. For COVID-19, this means that

we see higher basic reproductive ratios in countries with older populations, since this generally

leads to contacts involving older individuals being more common. In countries with compara-

tively younger populations, contacts involving older individuals are far less common and so

the capacity of the infection to spread is reduced relative to the null model.

This principle, that the underlying age-structure of the population drives the estimated

basic reproductive ratio, is illustrated in Fig 2(b). Here we compare population pyramids of

Niger (which is predicted to have the highest reproductive ratio under the null model) and

Fig 1. Basic reproductive ratio by country. (a) Estimated basic reproductive ratio for each country assuming contact structure only; (b) estimated

basic reproductive ratio for each country based on the China CDC case data [4]. Gray countries are those not included in Prem et al.’s study [19].

https://doi.org/10.1371/journal.pcbi.1008031.g001
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Fig 2. Effect of using age-specific susceptibility/symptomatic probability and underlying population pyramids. (a) Basic reproductive ratio estimates

based on age-specific susceptibility or symptomatic probability estimated from China CDC Weekly data versus estimates without age-dependent

susceptibility or symptomatic probability. (b) Population pyramids for Niger, China and Italy—China being our reference case (both R0 values equal to

2.4), Niger having the highest R0 in the null model, and Italy having the second highest R0 in the age-specific susceptibility model. The highest R0 attained

in the age-specific susceptibility/symptomatic probability model is in Monaco, but since Monaco’s small population is likely to make it an outlier we focus

on Italy as an extreme case in the main cluster of ratios. Germany is also labelled in Figure (a); although it has a comparatively small R0 under both sets of

assumptions, the proportional change from 1.22 in the null model to 1.99 based on the China CDC data is almost as dramatic as that seen for Italy (2.44 to

4.18). Data from [30].

https://doi.org/10.1371/journal.pcbi.1008031.g002
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Italy (which is predicted to have one of the highest reproductive ratios under the second

model) in comparison to China (which is the foundation of the parameter values). The popula-

tion pyramid of Niger is dominated by young children; China has a relatively stable age-struc-

ture although there are more individuals in 30-54 age classes than in younger age-groups; the

pyramid for Italy shows even fewer children and substantial proportions into older age-classes.

We therefore postulate that it is the interaction between the population pyramid and the age-

structured probability of symptoms (and hence significant transmission) that largely drives the

scaling of the basic reproductive ratio.

This relationship between the population pyramid and the basic reproductive ratio is seen

to hold for all countries investigated (Fig 1). In Fig 1(a), we observe that in the null model

transmission is generally low in many European countries as well as in South Korea and Japan,

and high in many African countries, consistent with the differences in daily number of con-

tacts predicted by Prem et al driven by the proportion of children. However, Fig 1(b) shows

that when age-specific susceptibility or symptomatic probability is taken into account, the pat-

tern of infectious potential by country is generally reversed. We then expect to see higher

transmission in Eastern Europe (including Italy which had the largest number of cases in

Europe in mid March 2020) and Japan, and reduced transmission across Africa, central Amer-

ica, the Middle East and India.

Discussion

Here we have developed a flexible model for age-dependent transmission of SARS-CoV-2 with

four forms of heterogeneity: an age-structured contact matrix dependent on the behaviour of

the host population; age-dependent susceptibility; age-dependent symptomatic probability;

and transmission profiles dependent on physiological response to infection (symptomatic vs

asymptomatic). By exploiting a previously-estimated synthetic contact matrix and age-strati-

fied data, and by focusing on the specific case where undetected transmission is negligible, we

were able to estimate these age-dependent profiles based on the first 44,672 cases in China [4].

We then combined these estimated profiles with estimates of age-stratified contacts in 151

other countries to generate transmission matrices for these countries from which we can also

estimate the scale of basic reproductive ratios in each country relative to China.

We explored two competing models. The null model is purely based on the frequency of

age-stratified contacts, and would be the default assumption for any novel pandemic. Given

the flexible way in which our model is constructed, allowing an age-dependent probability of

displaying symptoms yet symptom independent transmission (asymptomatic and symptom-

atic infections transmit equally) leads to the same basic reproductive ratio. The second model

assumes that detected cases represent a random sample of symptomatic infections and there-

fore provide an unbiased measure. It is also assumed that the only symptomatic infections are

responsible for the overwhelming majority of onward transmission. This allows us to reliably

match to the early outbreak data in China [4]. Moreover, the second model allows us to

account for age-structure either through age-dependent susceptibility or age-dependent prob-

ability of symptoms, or any mixture of the two. We demonstrated that taking such age-specific

factors into account results in substantially different predictions of transmission intensity by

country relative to a purely contact-based null model; countries with older populations are at

substantially higher risk than countries with younger populations.

There are two main limitations to our predictions. The first is the accuracy of the estimated

contact matrices; although there are known issues (as discussed in [19]) they remain our best

estimate of age-structured contacts to date across many regions of the world. Unfortunately,

not all countries have an associated mixing matrix, as many countries (predominantly in
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Africa) do not have the underlying demographic data recorded that supports the generation of

this matrix. This is clearly problematic since mortality from infectious disease is dispropor-

tionately concentrated in these countries [31]. Secondly, to estimate the basic reproductive

ratios mapped in Fig 1(b) we chose to focus specifically on the case where transmission from

undetected cases was negligible. This assumption makes it possible to analytically determine

age-structured parameters, and reduces the need to separate the effects of susceptibility and

probability of displaying symptoms. If asymptomatic infections transmit as strongly as symp-

tomatic cases, then the country-specific reproductive ratio is expected to be closer to Fig 1(a).

Finally, it is worth stressing that these projections only capture the early phase of the out-

break in the absence of controls. Non-pharmaceutical interventions (contact tracing, self isola-

tion and movement controls) can substantially reduce the infection’s reproductive ratio, with

their effectiveness heavily dependent on the pre-intervention basic reproductive ratio, the pro-

portion of contacts traced, and the timing of isolation and movement controls [8, 29, 32–34].

Supporting information

S1 Appendix. Model description, calculations, tables of R0 by country.

(PDF)
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