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Abstract: Most of the product patents claim a large number of compounds based on a Markush
structure. However, the identification and optimization of new principal active ingredients is
frequently driven by a simple Free Wilson approach, leading to a highly focused study only involving
the chemical space nearby a hit compound. This fact raises the question: do the tested compounds
described in patents really reflect the full molecular diversity described in the Markush structure?
In this study, we contrast the performance of rational selection to conventional approaches in seven
real-case patents, assessing their ability to describe the patent’s chemical space. Results demonstrate
that the integration of computer-aided library selection methods in the early stages of the drug
discovery process would boost the identification of new potential hits across the chemical space.

Keywords: chemical space; Markush; combinatorial library; drug discovery; rational selection;
drug-like molecules

1. Introduction

The pharmaceutical industry has always been challenged in improving the research
and development (R&D) efficiency [1,2]. Following the fail early strategy, having a wide
range of molecular structures in the initial stages is crucial to increase the chances of
finding a compound with biological activity against the target under study. In this sense,
the exploration of molecular diversity during the hit or lead discovery phases plays a
pivotal role. The description and exploration of the drug-like chemical space (the so-
called drugspace [3]) has always been of great concern given the overwhelming number of
molecules that can be obtained by fragment combination (which was barely estimated to
be 1060 small molecules) [4]. In light of this scenario, finding new molecules with optimal
drug-like properties becomes as difficult as finding a needle in a haystack, at least without
the support of computer-aided techniques.

Many cheminformatic tools have been developed for better mapping of the chemical
space by defining each molecule in a chemical library as a point in the molecular descriptor’s
space (or using principal component analysis): distance-based approaches [5–8], cluster-
based selections [9], cell-based selections [10,11] or optimization-based selections [12,13].
These techniques allow the rational navigation through the chemical space (a process known
as chemography [3,14–17]), contributing to hit discovery [18–21] and the identification of
unexplored regions that might hide biologically active compounds. Previously reported
results in our group [22,23] proved that rational selection methods did improve the hit
identification step when studying a library containing 125,396 analogs of HEPT, an inhibitor
of HIV-1 reverse transcriptase. The goodness of 11 available diversity selection methods
was assessed and the final selection of 25 compounds that covered 90% of the chemical
space showed a broad activity range (with EC50 between 0.05 µM and >90 µM), even better
than the reference compound (HEPT, EC50 = 3.3 µM).

Markush structures stated in the claims part of a product patent delimit the chemical
space covered by a patent. With the appearance of a combinatorial library, they describe the
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analogs of a certain drug by defining a molecular skeleton that contains one or more variable
substructures listed and represented by particular or generic fragments [24,25]. It is worth
noting that the description of a Markush structure does not imply the proven synthesis of all
the compounds derived from the combinatorial library. In fact, just a small representation
of it is commonly reported, and most of the compounds found in the literature are highly
similar to the original hit, evincing the application of a Free Wilson [26–29] approach during
the discovery process (which assumes an additive and independent contribution of specific
substituent groups on the biological activity of a molecule). This methodology, widely
used in drug discovery, leads to the exploration of a tiny space surrounding the initial
bioactive molecule, leaving a great part of the chemical space unexplored, which may
hide potential lead candidates that might surpass the activity or undesired side effects of
the original hit. In this sense, the integration of rational selection algorithms in the early
drug discovery pipeline could expand the exploration of the chemical space, allowing the
selection of more distant representative compounds [10,30–35] or guiding repurposing
campaigns [36]. This leads one to ask, what would have happened if the authors of a given
patent had applied rational selection algorithms to determine which compounds should
be synthesized and biologically tested? How much better could they have explored the
chemical space? To answer these questions, we have applied diversity selection methods to
combinatorial libraries of different sizes, derived from the Markush structure described on
the patent of seven new chemical entities approved by the FDA. We have compared the
representativeness between the compounds claimed in each patent with reported activity
found in the literature and subsets of compounds rationally selected using cluster analysis
and partition-based (or partitioning) methods.

2. Results and Discussion
2.1. Markush Combinatorial Library

To demonstrate that rational selection can improve the efficiency to describe a chemical
space, we have studied seven drug patents approved by the FDA (six of them in the last
12 years) referring to different therapeutic targets, with different sizes (in terms of the
number of analogs included in the Markush structure) and including on-patent (ONP) and
off-patent (OFP) drugs. OFP drugs have been included in the study to discuss whether the
exploration of the chemical space is limited due to the situation of their property rights.
Accordingly, Leflunomide (the oldest approved drug considered) has been added to the
study to verify that this exploratory deficiency is still present in an older patent (see Table 1).

Table 1. Information related to drugs under study. The year of approval (Year), the name of the
patent applicant (Applic), the name of the disease (Disease), the patent status (Status), the number of
analogs included in MCL (N), in Bibliographical Data (NBD) and in Bibliographical Combinatorial
Library (NBCL) and the root square of N.

Drug Year Applic Disease Status N NBD NBCL
√

N

Dacomitinib 2018 Pfizer Inc. Metastatic Non-Small-Cell
Lung Cancer ONP 16,530 60 798 129

Abemaciclib 2017 Eli Lilly Breast Cancer ONP 45,696 41 736 214

Tafenoquine 2018 GSK Malaria ONP 25,472 58 600 160

Ertugliflozin 2017 Merck Diabetes ONP 14,194 21 56 120

Rufinamide 2008 ESAI Lennox-Gastaut Syndrome OFP 8959 22 144 95

Azilsartan Medoxomil 2011 Takeda Hypertension ONP 1110 4 9 34

Leflunomide 1998 Sanofi Rheumatoid Arthritis OFP 5641 114 2844 76

Thus, we have tested the goodness of rational selection over the traditional approach
using seven different datasets obtained from the Markush structure stated in the patents of
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Dacomitinib, Abemaciclib, Tafenoquine, Ertugliflozin, Rufinamide, Azilsartan Medoxomil
and Leflunomide drugs [37–44], retrieved from the Orange Book [45]. Corresponding
Markush combinatorial libraries (MCL) have been developed from the Markush structure
stated in the patent of each drug (Figure 1). The complete list of substituents for each
dataset can be found in the Supporting Information (Tables S1–S7).
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As expected, some of the Markush structures use vague indeterminations tending to
protect vast chemical spaces. As an example, in the present cases of study, the enumeration
of Dacomitinib analogs would lead to a large library of more than 25 million compounds,
hampering the computational manageability of the dataset. Therefore, in this unique case,
the MCL database was reduced to the combination of its explicitly defined structures in the
patent (see Section 3).

2.2. Bibliographical Database and Bibliographic Combinatorial Library

Bibliographical databases (BD) refer to all the compounds derived from the Markush
structure that have been reported as synthesized and, in some cases, biologically tested. To
describe all the explored space known until the date for each patent, we have included not
only the individual molecules explicitly declared on the patent’s claims but also all ulterior
derivatives found in PubChem [46] (even if their declared current application differs from
the one described in the original patent). It is worth mentioning that in this study, we
have only used publicly available compounds. As an example, the set of 58 Tafenoquine
analogs found in PubChem includes the seven molecules claimed in patents [38,42] and
51 molecules reported in the literature (belonging to the same Markush structure) for
different applications (27 in the context of malaria [47–52], 5 for parasitic diseases [53], 13 as
inhibitors of monoamine oxidase A [54] and 6 with undefined biological activity).

The number of studied compounds in BD sets differs excessively from the size of the
MCL library. On the one hand, the low number of derivatives would evince the existence of
synthetical limitations that hamper the obtention of more compounds. On the other hand, it
would confirm the application of a highly focused exploratory methodology. For this reason,
we have studied a second combinatorial database (named Bibliographic Combinatorial
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Library, BCL) for each patent by combining only the substituents present in BD, aiming to
represent the real combinatorial space synthetically accessible until the date.

2.3. Clustering Methods for Chemical Space Exploration

Noting that the performance of clustering methods depends on dataset distribution [55,56],
eight clustering and two partitioning methods were applied to assess the chemical space
described in each patent of study.

Hierarchical agglomerative clustering (HRC) with a bottom-up approach with six
linkage methods (single, complete, median, average, centroid and Ward), K-Means (KMN)
and K-Medoids (KMED), binning and optimum variance binning (OV binning) were firstly
used to divide the chemical spaces into k-optimal clusters in order to see the grade of
homogeneity in the population distribution per cluster. The k-optimal value was firstly
calculated through the average silhouette criterion [57–59], using KMN as the standard
clustering methodology for all cases. However, no optimal cluster was obtained for all
cases as the average silhouette score measured showed a concave curve trend with large
maximum values (see Figure S4). This may be caused by the high correlation of the data
due to their combinatorial nature and the large size of the datasets, which commonly suffer
from the curse of dimensionality and a lack of efficiency. Given the first inconclusive
attempts, new standard values commonly used as a rule of thumb in clustering analysis
were considered (

√
N

2 ,
√

N and 10·
√

N) to find the most representative partitioning size to
be applied in further comparative discussions.

The case of Tafenoquine’s chemical space (Table 2) serves as an explanatory example
to discuss the population distribution using each different size. The aim of our approach
was to find the most balanced distribution of data, avoiding as many singletons and
hyper-populated clusters as possible, unveiled by high standard deviation values. Results
evidenced that the

√
N clusters seemed to be a good compromise. This size first shows

more balanced population frequencies per cluster than
√

N
2 , whose results show large values

in their standard deviations. Moreover, compared to 10·
√

N,
√

N clustering presented a
much lesser number of singletons.

Table 2. Population distribution per cluster (k) analysis in Tafenoquine’s analogs’ chemical space,
varying the clustering standard sizes. The mean value (x) of the population frequencies per cluster
and its subsequent standard deviation (σ), along with the ratio of singletons to number of clusters
(%s), are considered in discussion.

k =
√

N
2 = 80 k =

√
N = 160 k = 10·

√
N = 1600

¯
x±σ %s ¯

x±σ %s ¯
x±σ %s

HRC single 318 ± 2582 28.7 159 ± 1816 26.2 16 ± 63 18.1

HRC complete 318 ± 184 0.0 159 ± 93 0.0 16 ± 11 0.0

HRC median 318 ± 847 0.0 159 ± 333 0.0 16 ± 23 5.7

HRC average 322 ± 348 0.0 159 ± 151 0.0 16 ± 14 0.7

HRC centroid 322 ± 2294 7.6 159 ± 1436 6.9 16 ± 25 7.4

HRC Ward 318 ± 113 0.0 159 ± 54 0.0 16 ± 6 0.0

KMN 318 ± 72 0.0 159 ± 38 0.0 16 ± 5 0.0

KMED 318 ± 125 0.0 159 ± 64 0.0 16 ± 7 0.2

Binning 411 ± 269 0.0 209 ± 165 0.0 20 ± 25 10.8

OV binning 509 ± 555 0.0 173 ± 201 0.7 20 ± 25 9.8

After identifying
√

N as the best clustering size for our study, the population distribu-
tion was assessed for all the clustering methods. HRC single, median and centroid cluster-
ing methods were discarded as they tend to represent a unique or a few hyper-populated
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clusters and a high number of singletons, losing the homogeneous representativeness of
the chemical space (Figure S5 in Supporting Information). This distribution is the common
result of many hierarchical agglomerative clustering steps with a bottom-up approach.
Therefore, HRC average, HRC complete and Ward have been considered as hierarchical ag-
glomerative clustering methodologies, KMN and KMED as non-hierarchical relocation clus-
tering algorithms and OV binning as a representation of cell-based partitioning methods.

2.4. Bibliographical Representativeness in Its Chemical Space

To assess the degree of representativeness of BD in the chemical space claimed in a
patent (MCL), space and population coverage (SC and PC, respectively) values have been
calculated when dividing the MCL space into NBD partitions. Results show that a selection
of an equal-sized set using random sampling better represents the chemical space than BD
compounds (Tables 3 and 4).

Table 3. Comparison of SC and PC values obtained by random selection and BD compounds
when dividing the MCL of each patent in NBD clusters for Dacomitinib, Abemacilib and
Tafenoquine databases.

Dacomitinib Abemaciclib Tafenoquine
BD Random BD Random BD Random

HRC average SC 26.7 41.1 22.0 35.1 17.2 46.8
PC 74.2 80.1 66.2 85.9 12.8 78.4

HRC
Complete

SC 50.0 54.0 34.1 52.0 25.9 59.3
PC 69.0 72.8 44.9 74.0 19.3 67.6

HRC Ward
SC 41.7 53.5 34.1 58.6 17.2 61.8
PC 71.5 73.2 43.9 68.8 18.8 65.3

KMN
SC 48.3 57.6 34.1 60.3 22.4 62.5
PC 67.3 69.4 39.1 67.4 21.0 64.7

KMED
SC 55.0 57.6 34.1 59.1 24.1 61.4
PC 68.0 68.8 44.4 68.3 21.8 65.9

OV binning SC 25.0 42.9 28.1 51.8 24.0 49.2
PC 59.1 78.3 46.2 84.0 35.4 82.9

Table 4. Comparison of SC and PC values obtained by random selection and BD compounds when
dividing the MCL of each patent in NBD clusters for Ertugliflozin, Rufinamide, Azilsartan Medoxomil
and Leflunomide databases.

Ertugliflozin Rufinamide Azilsartan
Medoxomil Leflunomide

BD Random BD Random BD Random BD Random

HRC average SC 9.5 19.8 36.4 30.6 50.0 26.4 27.2 50.1
PC 83.8 88.4 6.4 86.2 1.3 98.7 11.6 76.4

HRC
Complete

SC 23.8 38.7 22.7 43.6 50.0 26.3 26.3 55.3
PC 59.4 78.8 4.0 79.7 1.3 98.7 17.9 71.5

HRC Ward
SC 19.0 57.7 13.6 70.8 50.0 41.0 15.8 60.6
PC 26.9 69.7 6.2 67.1 82.7 87.0 15.7 66.8

KMN
SC 23.8 58.7 18.2 58.9 50.0 52.1 15.8 60.8
PC 23.5 69.3 7.9 69.4 59.9 84.8 13.1 66.7

KMED
SC 19.0 57.7 27.3 61.6 50.0 68.3 18.4 59.8
PC 29.8 70.8 27.4 66.6 46.8 68.8 20.8 67.6

OV binning SC 13.3 65.6 28.6 50.3 25.0 56.6 26.4 53.0
PC 18.2 82.2 9.6 90.1 1.7 80.2 32.5 83.0

For example, the 58 molecules of Tafenoquine found in the literature are placed
in 10 HRC Ward clusters, leading to 17.2% SC (10 out 58 clusters), and they include
5339 analogs, resulting in 18.8% PC (4789 out 25,472 compounds). In these conditions,
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even a random selection is able to achieve 61.8% SC and 65.3% PC. This trend is observed
regardless of the clustering or partition-based method used and in all the seven cases. Only
the application of the HRC Complete cluster algorithm on Azilsartan Medoxomil leads to
better results than averaged random selections—although, in this case, results are clearly
determined by the low number of compounds to select (NBD = 4). These results evince that
the chemical space claimed in a drug patent is poorly described.

Needless to say, the use of rational selection would always cover 100% of the current
partitioned chemical space by selecting one molecule of each cluster. Then, following the
abovementioned example, a rational selection of 58 molecules would represent the 100%
SC and PC of Tafenoquine’s chemical space. However, this does not imply the synthetical
feasibility of the chosen compounds.

2.5. Comparing the Chemical Space Described by MCL, BD, and BCL

Quantifying the reduction of the MCL space that implies the use of BCL might be of key
importance since its compounds are the ones genuinely expected to be synthetically feasible.
This confirmation relies on the fact that BCL compounds include only the fragments coming
from real studied candidates, constituting a more legitimate representation of the drug
patent. For this purpose, the coverage of the MCL, BD and BCL libraries was compared by
assessing their distribution along with each principal component and their density plots
when projected on the space of the first three principal components (Figure 2). As expected,
BD and BCL progressively improve the description of MCL, although neither of them,
except for Dacomitinib and Leflunomide’s analogs (later discussed), significantly cover the
chemical space derived from the Markush structure.

To quantify this observation, cluster analysis was performed, setting the number of
clusters to a standard size of

√
N. Firstly, according to the results, aligned with the previous

study, random selection once again was shown to better represent the overall space rather
than compounds derived from the current R&D methodology (BD), even with a higher
number of clusters. For the sake of clarity, only results for Tafenoquine and Dacomitinib,
using HRC average clustering and OV binning, are shown (Tables 5 and 6). The results of
all the libraries can be found in the Supporting Information (Tables S8–S14).

Although having changed the number of partitions, results agree with the ones de-
scribed in the previous section: both SC and PC percentages obtained using a random
selection are better than those obtained with the bibliographic database, either BD or BCL.
Again, bibliographical databases only show better results in the HRC average method
applied to Azilsartan Medoxomil, due to its size (Table S13). Overall, contrasting the
obtained results with

√
N and NBD partitioned space, one may estimate an optimal and

synthetically manageable number of samples that could be chosen to be synthesized.
Although the BCL library includes a higher number of compounds, in many cases,

it is not able to represent the MCL space; hence, this result would serve as evidence that
the synthetically accessible chemical space for each dataset is still poorly known as the
rational R&D methodology has followed a mainly focused trend around some original hits.
In fact, the use of a rational selection of BD compounds would increase the efficiency of
both traditional and cherry-picking methodologies in terms of coverage. As an example,
when applying a rational selection of 58 Tafenoquine analogs, an optimal value of 36.3% of
SC could be achieved (58 out of 160 clusters).

In contrast to other libraries, Dacomitinib’s BD showed high SC and PC values and a
very centered distribution. This is explained by the reduction of the substituents considered
in library enumeration (only those in claim 5, see Materials and Methods). This affected
not only the MCL size (obtaining 16,530 compounds) but also the BCL (798 compounds).
Consequently, the BCL comprises a significant number of analogs of the used dataset
of 16,530 compounds. Thus, much lower SC and PC values would be expected when
considering the full combinatorial database with more than 25 million analogs.
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Additionally, Leflunomide is the unique example in which the number of molecules
found BD (NBD) was greater than

√
N, so the size of the corresponding BCL has better

representativeness in its chemical space, rather than a random choice of
√

N.
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Table 5. SC and PC results for a number of k =
√

N clusters for Tafenoquine analogs.

HRC Average HRC Complete OV Binning

Tafenoquine Selection Size SC PC SC PC SC PC

BD 58 8.8 6.4 11.9 9.7 13.6 17.0
Random BD 58 27.0 45.4 29.1 37.1 27.1 53.6

BCL 600 38.8 33.2 33.8 28.3 36.0 49.3
Random BCL 600 80.4 95.6 90.6 96.1 74.7 96.1
Random (

√
N) 160 50.9 74.8 57.7 69.1 48.2 79.8

Table 6. SC and PC results for a number of k =
√

N clusters for Dacomitinib analogs.

HRC Average HRC Complete OV Binning

Dacomitinib Selection size SC PC SC PC SC PC

BD 60 20.9 50.3 27.1 42.1 16.8 52.0
Random BD 60 31.2 54.8 34.4 46.4 30.2 70.6

BCL 798 79.1 92.1 86.8 90.9 64.3 92.3
Random BCL 798 86.9 98.4 95.9 98.8 81.9 98.1
Random (

√
N) 129 49.4 74.7 56.2 69.9 45.1 83.5

2.6. Towards a More Efficient Methodology

In light of the results of our study, enough evidence has been exposed to prove the
lack of chemical space exploration in the traditional R&D methodology. This is the result
of a procedure that relies on the hit-to-lead optimization step, which commonly aims
to find an optimal compound around the original hit, typically involving a Free Wilson
approach during the process (Figure 3). The synthesis and biological evaluation of these
analogs is performed, leading to a lead or directly a drug candidate and, accordingly, a
Markush structure is settled, defending that its involved analogs may present the same
biological behavior as the original hit. In fact, even the fragment combination of the
reported structures (BCL) does not represent properly the drug’s chemical space derived
from the Markush structure (MCL).
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This fact can be observed in the aforementioned example, considering the division of
Tafenoquine’s chemical space in 58 (NBD) HRC Ward clusters. BD compounds are located
in focused regions of the chemical space, while the rational selection is spread throughout
it (Figure 4), leading to a better representation of the whole space.
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Figure 4. t-SNE representation of Tafenoquine’s chemical space, depicting the MCL compounds
(grey), BD subset (orange), compounds selected by the rational selection of NBD analogs (green) and
the original hit (black triangle).

Hence, we defend an alternative or complementary approach that departs from the
combinatorial library obtained from a theoretical Markush structure or from the fragment
combination of and original scaffold explored in previous studies (which would ensure
the synthetical feasibility of its analogs). Secondly, a computational study, involving
space clustering or partitioning, is suggested to rationally choose a handleable number of
compounds to synthesize and test that may unveil a better lead in unexplored regions. Thus,
this methodology would better consider the chemical diversity of the original Markush set,
being the rational selected compounds a significant representation for the issue of study or
further repurposing approaches.

3. Materials and Methods
3.1. Enumeration of Combinatorial Libraries

Markush combinatorial libraries (MCL) were fully enumerated for all patents except
for Dacomitinib, which was reduced to a computationally handleable size by only com-
bining the fragments present in the 51 compounds described in claim 5 (including all
the positional substitutions in the aryl ring, reducing the more than 25 million original
compounds to 19 × 15 × 58 = 16,530). On the contrary, in the antimalarial Tafenoquine
case, the library of analogs was extended to the combination of the structures found in
several expired patents that included this drug. The BCL databases were further prepared
following the protocol described.

MarvinSketch was used for drawing, displaying and enumerating the Markush
analogs of the chemical libraries (Marvin 20.21, 2020, ChemAxon Ltd.) [60].

The PubChem search has been performed programmatically by using the PUG-
REST [61] Application Programming Interface (API). The whole procedure was integrated
into a Python script, which checked the presence of a given compound (entered as a
SMILES) on PubChem.
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3.2. Describing the Chemical Space

All databases were desalted, protonated at pH 7, and their partial charges were
calculated using the MMFF94x forcefield in MOE2020.09 software [62]. A total of 206 1D
and 2D molecular descriptors were calculated using MOE2020.09 (the complete list of
molecular descriptors is available in the Supporting Information, Table S15) to describe
the chemical space mathematically. For all combinatorial libraries derived from each
Markush structure (MCL libraries), the space dimensionality was reduced using Principal
Component Analysis (PCA), keeping 95% of the original variance. The PCA was performed
through Python scripting using Scikit-Learn [63].

3.3. Clustering and Partitioning Methodologies

The selection of diverse subsets was performed by comparing cluster analysis and
partition-based methods on the PCA chemical space. Hierarchical agglomerative clustering
with a bottom-up approach (HRC) was performed using the Scikit-Learn toolkit [63],
considering Euclidean metrics and assessing different linkage criteria (single, complete,
median, average, centroid and Ward). The K-means (KMN) and K-medioids (KMED) non-
hierarchical clustering relocation algorithms were performed using the Scikit-Learn [63]
and pyclust toolkits, respectively (pyclust PyPI. available online: https://pypi.python.org/
pypi/pyclust/0.2.0, accessed on 10 July 2021). To assess the goodness of partition-based
methods, binning and optimum variance binning (OV binning) were implemented in
Python, adapting the procedure reported by Pascual et al. [22] (see Supporting Information,
Figures S1–S3).

3.4. Space and Population Coverage

The molecular representativeness and space description of selected diverse subsets
were assessed using two standard parameters: the space coverage and the population
coverage [64,65].

On the one hand, space coverage (SC) represents the percentage of selected (occupied)
clusters or bins (koc) by a given number of selected compounds over the total number of
partitions, K (Equation (1)).

koc

K
·100 (1)

On the other hand, given a database of N compounds, population coverage (PC) mea-
sures the SC weighted by the occupancy in each cluster or bin, by dividing the population
of the occupied clusters (noc) among N (Equation (2)).

noc

N
·100 (2)

The procedure to calculate SC and PC is exemplified in Figure 5.

3.5. Number of Clusters

Different numbers of clusters have been studied in the present work to assess the
chemical space in terms of population and space coverage. Actually, the number of parti-
tions (whether they are clusters or bins) ultimately determines the number of compounds
to pick via rational selection, since they will correspond to the representative compound
from each partition.

Preliminary studies were carried out to assess the behavior of a k-optimal,
√

N
2 ,
√

N
and 10·

√
N space fragmentation, being N the total number of compounds in each dataset.

Finally,
√

N was taken as a reference in clustering to optimally represent large datasets.
Moreover, BD and BCL sizes (NBD and NBCL, correspondingly) were also used to discuss the
representativeness of the analogs known until the date, in contrast with a random selection
of the same size. Random selections were calculated as the mean value of the coverages
represented by NBD and NBCL random samples (with 5000 repetitions) as a contrasting
result with data found in the bibliography or other rational selections.

https://pypi.python.org/pypi/pyclust/0.2.0
https://pypi.python.org/pypi/pyclust/0.2.0
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Figure 5. Considering the selection of 9 compounds among a database consisting of 50 molecules
(N = 50, represented as dots). (A) After applying a clustering or partition-based method, the chemical
space is divided into 16 partitions (clusters or occupied bins, K = 16). (B) If the 9 selected compounds
(depicted as stars) are distributed in 7 clusters (koc = 7, in orange), this corresponds to 43.8% SC.
(C) Moreover, in these colored clusters are involved 28 samples of the database (noc). Hence, the
7 selected molecules are representative of 28 out of the 50 compounds included in the database, which
represents 56.0% PC.

4. Conclusions

The hit-to-lead process in drug discovery has been traditionally based on the applica-
tion of the Free Wilson approach, according to which, after hit identification, the structure of
the drug candidate is progressively modified, attempting to improve its biological activity.
Hence, the resulting procedure allows for exploring the surrounding chemical space of the
initial hit compound, but there could be regions that remain unexplored, compromising
the R&D efficiency.

We have assessed how well the chemical space claimed in a patent is actually explored,
using seven patents as examples. For all cases, the space explored in the literature (BD) for
each combinatorial library is very small, approximately 20% on average when clustering
the chemical space in

√
N clusters. Moreover, results show that even a random selection (by

cherry-picking) may lead to better coverage than the molecules reported in the literature.
These results are in agreement with results previously reported by our research group
regarding the study of the chemical space described by HEPT analogs [22,23].

It has also been evidenced that, in most cases (5 out of 7), even the synthetically
accessible combinatorial library (BCL), resulting from the fragmental combination of the
molecules described in the literature, is not entirely representative of the chemical space
(with lower values than a random study of

√
N molecules).

Neither the real space explored (BD) nor the fragment combination of the studied
molecules (BCL) significantly represents the space defined by the combinatorial libraries
derived from the Markush structure, especially when they are compared with the coverage
obtained by a statistically random sampling of

√
N molecules. Thus, there is a large part of

the chemical space claimed on patents that remains unexplored, and it can hide potential
leads that may surpass the activity of the original hit or reduce undesired side effects.
Rational selection algorithms could assist the traditional methodology to optimize the
selection of representative compounds of a given chemical space. This could be applied to
explore many pharmacokinetic profiles, such as toxicity, biological activity or solubility,
among others.

Results reinforce the proposal to integrate the rational selection in the R&D process in
early drug discovery or combine it in a mixed methodology involving a local optimization
around the original hit. Nevertheless, it should be noted that many large libraries derived
from a Markush structure may present candidates with problematic or even unfeasible
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synthesis and, hence, proper data curation is mandatory before proceeding to a definitive
rational selection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15091159/s1, Figure S1: Description of the Binning and OV
Binning partitioning methods implemented in this study; Figure S2: Application of binning and OV
binning on Tafenoquine’s dataset to divide the chemical space into 8 bins, Figure S3: OV Binning
partitioning representation of Tafenoquine’s case study dataset for 2, 4, 8, 16, 32 and 64 bins; Figure S4:
Silhouette Score Elbow plot for KMN clustering of Tafenoquine database; Figure S5: Boxplots of
population distribution for the 6 libraries of analogues and

√
N clusters; Table S1: Dacomitinib

fragment library (16,530 analogues); Table S2: Abemaciclib fragment library (45,696 analogues);
Table S3: Tafenoquine fragment library (25,472 analogues); Table S4: Ertugliflozin fragment library
(14,194 analogues); Table S5: Rufinamide fragment library (8959 analogues); Table S6: Azilsartan Me-
doxomil fragment library (1110 analogues); Table S7: Leflunomide fragment library (5641 analogues);
Table S8: SC and PC for Dacomitinib analogues (k =

√
N); Table S9: SC and PC for Abemaciclib

analogues (k =
√

N); Table S10: SC and PC for Tafenoquine analogues (k =
√

N); Table S11: SC
and PC for Ertugliflozin analogues (k =

√
N); Table S12: SC and PC for Rufinamide analogues

(k =
√

N); Table S13: SC and PC for Azilsartan Medoxomil analogues (k =
√

N); Table S14: SC and
PC for Leflunomide analogues (k =

√
N); Table S15: List of 206 1D and 2D descriptors calculated

using MOE2020.09.
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