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Abstract

Non-invasive ventilation is increasingly used for respiratory support in preterm infants, and

is associated with a lower risk of chronic lung disease. However, this mode is often not suc-

cessful in the extremely preterm infant in part due to their markedly increased chest wall

compliance that does not provide enough structure against which the forces of inhalation

can generate sufficient pressure. To address the continued challenge of studying treatments

in this fragile population, we developed a nonlinear lumped-parameter respiratory system

mechanics model of the extremely preterm infant that incorporates nonlinear lung and chest

wall compliances and lung volume parameters tuned to this population. In particular we

developed a novel empirical representation of progressive volume loss based on compen-

satory alveolar pressure increase resulting from collapsed alveoli. The model demonstrates

increased rate of volume loss related to high chest wall compliance, and simulates laryngeal

braking for elevation of end-expiratory lung volume and constant positive airway pressure

(CPAP). The model predicts that low chest wall compliance (chest stiffening) in addition to

laryngeal braking and CPAP enhance breathing and delay lung volume loss. These results

motivate future data collection strategies and investigation into treatments for chest wall

stiffening.

Introduction

The extremely preterm infant, born at< 28 weeks gestation and often < 1000g, is at risk of

developing chronic lung disease despite established treatments such as surfactant replacement

therapy. Currently the survival rate of this group ranges from 94% at 27 weeks to as low as 33%

at 23 weeks [1], with survivors living with varying degrees of morbidity. One risk factor for

lung disease remains the trauma associated with traditional mechanical ventilation including

endotracheal tube injury, high cyclic tidal volumes and pressures, and hyperoxia. Non-invasive

methods of ventilation such as continuous positive airway pressure (CPAP) are being used

with more frequency and have been successful with more mature infants but appear to fail in

the extremely preterm infant [2–4]. One hypothesis for the failure of non-invasive ventilation
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and the need for increasing invasive respiratory support is the markedly increased compliance

(floppiness) of the chest wall in the extremely preterm infant resulting from ribcage undermi-

neralization common at the start of the third trimester [5–7]. In the preterm infant, chest wall

compliance can be up to five times lung tissue compliance [8].

When the chest wall is not sufficiently rigid, the negative pressure within the pleural space

between the lung and chest wall generated from diaphragm contraction is diminished [9]. In

many cases this leads to progressive lung collapse (atelectasis) with each breath as the forces

needed to open airspaces after each exhalation become insurmountable [10], leading to

decreasing lung compliance and functional residual capacity (FRC) [11]. This progression of

events is observed clinically in X-rays and by symptoms of respiratory distress such as chest

retractions and rapid breathing. The clinical result is progressively reduced tidal volumes and

end-expiratory lung volume (EELV) as the forces needed to open airspaces after exhalation are

insufficient. Non-invasive ventilation has been observed to be become ineffective under these

conditions, necessitating placement of an endotracheal tube and positive pressure mechanical

ventilation and markedly increasing the risk of lung damage.

Despite this being repeatedly observed clinically, there remains little quantification of the

impact of variable nonlinear chest wall compliance on tidal breathing dynamics, and even

fewer computational modeling efforts supporting these observations of progressive volume

loss. Most computational models of breathing address the extremes of lung capacity such as a

forced vital capacity maneuver, study a static, excised, or injured lung, or use an animal model

[12–16]. Existing computer models of tidal breathing have not fully accounted for the physiol-

ogy particular to premature infants and thus have limited applicability. Often, methods of pro-

viding ventilator support have been developed in adults and children, then refined and scaled

for newborns and premature infants, limiting innovation aimed specifically at this vulnerable

population.

In this work, we have developed a nonlinear computational model of respiratory mechanics

parameterized for the extremely preterm infant that demonstrates differential volume loss

under high vs low chest wall compliance conditions. We adapt a model first presented by

Athanasiades et al [14] and modified for newborn lambs by LeRolle et al [17]. In the latter, dif-

ferences such as smaller diameter airways, higher respiratory rates, higher lung resistance, and

higher chest wall compliances were considered, however many of the critical physiological

nonlinearities contributing to long-term dynamics were not included. The present model is

built upon the nonlinear compliance curves describing pressure-volume relationships specific

to preterm infants [18]. Dynamic alterations of compliance curves based on breath-to-breath

end-inspiratory lung volume (EILV) and peak inspiratory pressure (PIP) are shown to influ-

ence tidal volume and EELV, thus simulating progressive lung volume loss. We also demon-

strate the effect of two simulated interventions that raise alveolar pressure and lung elastic

recoil: CPAP, which raises the pressure at the mouth; and laryngeal braking (grunting), which

increases upper airway resistance during expiration.

Mathematical model

The lumped-parameter respiratory mechanics model describes dynamic volumes and pres-

sures in the airways, lungs, chest wall, and intrapleural space between lungs and chest. A signal

that represents diaphragm pressure generated during spontaneous breathing drives the model.

A compartment is assumed to display aggregate behavior, e.g. the alveolar compartment repre-

sents the collective dynamics of the alveoli as a whole. The model is designed using the vol-

ume-pressure analog of an electrical circuit, see Fig 1. As such, relevant states are in terms of

pressure P(t) [cm H2O] and volume V(t) [ml] in and between air compartments, with
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Table 1. Glossary.

Parameter/State Physiologic description

TLC [ml] Total lung capacity

RV [ml] Residual volume

FRC [ml] Functional residual capacity

VC[ml] Vital capacity

RR [br/min] Respiratory rate

f [br/s] Respiratory frequency

T [s] Duration of respiratory cycle

VT [ml] Tidal volume

_VE [ml/min] Minute ventilation

_VA [ml/s] Airflow

Amus [cm H2O] Muscle pressure amplitude

Ptm [cm H2O] Transmural pressure

PA [cm H2O] Alveolar pressure

Pel [cm H2O] Lung elastic recoil (transpulmonary pressure)

Pve [cm H2O] Viscoelastic component of pressure

Pl,dyn [cm H2O] Dynamic pulmonary pressure

Ppl [cm H2O] Pleural pressure

Pcw [cm H2O] Chest wall elastic recoil

Pmus [cm H2O] Respiratory muscle pressure

CA [ml/cm H2O] Lung compliance

Cw [ml/cm H2O] Chest wall compliance

Crs [ml/cm H2O] Respiratory system compliance

Rrs [cm H2O s/L] Respiratory system resistance

ν Fraction of VC for chest wall relaxation volume

V0 [ml] Chest wall relaxation volume

β Baseline fraction of lung recruited at Pel = 0

γ Maximum recruitable function of lung

α Lower asymptote, fraction recruitment

k [1/cm H2O] Characterizes slope, aggregate lung elasticity

cF [cm H2O] Pressure at maximum lung recruitment

dF [cm H2O] Characterizes slope at maximum lung recruitment

aw [ml] Lower asymptote, chest wall compliance

bw [ml] Characterizes slope, Pcw!1

cw [cm H2O] Transition point, chest wall compliance

dw [cm H2O] Characterizes slope, Pcw!1

ac [ml] Lower asymptote, collapsible airway

bc [ml] Upper asymptote, collapsible airway

cc [cm H2O] Pressure at peak collapsible airway compliance

dc [cm H2O] Characterizes slope, peak coll. airway compliance

Kc Collapsible airway resistance coefficient

Vc,max [ml] Peak collapsible airway volume

Rs,m [cm H2O s/L] Minimum small airway resistance

Rs,d [cm H2O s/L] Change in small airway resistance

Ks Small airway resistance low pressure coefficient

Iu [cm H2O s2/L] Upper airway inertance

Ru,m [cm H2O s/L] Laminar value, upper airway resistance

Ku [cm H2O s/L] Turbulent coefficient, upper airway resistance

Cve [L / cm H2O] Lung viscoelastic compliance

Rve [cm H2O s/L] Lung viscoelastic resistance

https://doi.org/10.1371/journal.pone.0198425.t001
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volumetric flow rate and rate of change represented as _V ðtÞ [ml/s] and dV
dt respectively. Air

pressure Pi within a specific volume i is defined as the difference between intra-airway pressure

Pint and pressure external to the body Pext, i.e. Pi = Pint,i − Pext,i. Since all pressures are relative

to the same constant atmospheric pressure, all Pext = 0 and all intra-airway pressures Pi = Pint,i.

The pressure Pij = Pi − Pj refers to the transmural pressure across a compliant boundary sepa-

rating volumes i and j.

State equations

Each non-rigid compartment has an associated compliance Ci [ml/cm H2O], describing the

change in compartmental volume Vi given a change in transmural pressure Pij across its

boundary with compartment j:

Ci ¼
dVi

dPij
;

The nature of Ci does not change explicitly with time but instead is implicitly determined by

Fig 1. Lumped-parameter respiratory mechanics model, in both volume-pressure (panel A) and electrical (panel B) system analogs. Each non-

rigid compartment has a volume V (black), pressure P, (black) and associated compliance C (green, for emphasis) that is a function of the transmural

pressures (purple) across the compartment boundaries. Air flows _V (red) across resistances R and inertance I (blue) are positive in the direction of the

arrows. Circular yellow arrows indication direction of loop summations in Eq (3). Subscripts: airway opening ao, upper u, collapsible c, small peripheral

s, alveolar A, viscoelastic ve, lung elastic el, transmural tm, pleural pl, chest wall cw, muscle mus.

https://doi.org/10.1371/journal.pone.0198425.g001
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the relationship between volume and pressure. This can be reformulated in terms of dynamic

changes of state:

dVi

dt
¼ Ci

dPij

dt

� �

:

Bidirectional airflow through the trachea, bronchi, bronchioles, and to and from the lungs

results from contraction and relaxation of the diaphragm generating a pressure difference. Air-

flow is opposed by the resistance of the airways as functions of their radaii or tissue properties.

This relationship is described by the flow-pressure analog of Ohm’s law [19],

_V i ¼
Pi� 1 � Pi

Ri
; ð1Þ

where Ri [cm H2O�s/ml] is the resistance to airflow prior to compartment i. If a compartment

includes inertial effects, the pressure gradient is also a function of the acceleration of flow,

Pi� 1 � Pi ¼ Ii
€V iðtÞ ð2Þ

where I is the inertance. Inertial effects are considered for the newborn upper rigid airway

because of its smaller radius, but neglected for the rest of the model tissues [17].

The pressures Pij across each compliant compartment include transmural pressure between

the compliant airways and the pleural space Ptm = Pc − Ppl, lung elastic recoil Pel = PA − PT,

lung viscoelastic component Pve = PT − Ppl, and chest wall elastic recoil Pcw = Ppl − Pmus. Sum-

ming pressures over each of three loops according to Kirchhoff’s mesh rule gives a system of

time-varying algebraic equations:

0 ¼ Pao � Pc þ Ptm þ Ppl

0 ¼ ðPc � PAÞ þ Pel þ Pve � Ptm

0 ¼ Pve � Rveð
_V A �

_V veÞ

Using the additional relationships obtained from applying Eqs (1) and (2), the system of loop

equations can be rewritten as

0 ¼ Pao þ Rc
_V � Ru

_V � Iu
€V þ Ptm þ Pcw � Pmus

0 ¼ Rs
_V A þ Pel þ Pve � Ptm

0 ¼ Pve � Rveð
_V A �

_V veÞ:

ð3Þ

Rearranging Eq (3) and using Kirchhoff’s current law along with Eqs (1) and (2) produces

the consolidated set of model differential equations:

€V :
d _V
dt
¼

1

Iu
Pao � Pu � Ru

_V
� �

_V c :
dVc

dt
¼ _V � _V A

_Pel :
dPel

dt
¼

_V A

CA

_Pve :
dPve

dt
¼

_V A � ðPve=RveÞ

Cve

ð4Þ
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Conservation laws also maintain that V = Vcw = VA + Vc, in other words the total system

volume equals the chest wall volume, which is the sum of the alveolar and compressible airway

volumes. Pressure-volume relationships and compliances Ci will be further described below.

Nonlinear resistance constitutive relations

The airways begin with an upper rigid segment characterized by an inertance Iu and a nonlin-

ear Rohrer resistance Ru [17, 20] that increases with airflow:

Ru ¼ Ru;m þ Kuj
_V j ð5Þ

The constants Ru,m and Ku represent laminar and turbulent flow components.

A middle collapsible portion is modeled as a cylinder with constant length having nonlinear

resistance Rc that depends inversely on the 4th power of the radius according to Poiseuille’s

law. Therefore Rc is formulated as [12, 21]:

Rc ¼ Kc

Vc;max

Vc

� �2

ð6Þ

where Rc equals its minimum value Kc when Vc = Vc,max, an estimate of dead space.

An inverse relationship between resistance in the smaller peripheral airways Rs and lung

volume VA reflects high resistance at low or near-zero volumes [21]. To avoid Rs!1 as

VA! 0 [22] from a strict exponential decay model, we adopt the formulation used by both Liu

et al and Athanasiades et al [12, 14], a decaying exponential function of relative lung volume

with finite Rs at VA = 0:

Rs ¼ Rs;d � eKsðVA � RV Þ=ðTLC� RV Þ þ Rs;m ð7Þ

where Ks < 0. This parameterization gives that Rs� Rs,m when VA = TLC, and Rs = Rs,d + Rs,m

when VA = RV (residual volume).

Nonlinear compliance constitutive relations

The volumes Vc, VA, and Vcw representing physiological compartments are assumed to have

nonlinear compliance which are modeled implicitly with a pressure-volume curve or explicitly

by Ci ¼
dVi
dPi

.

The compliance curve for the collapsible airway volume Vc as a function of Ptm represents

data depicted in [21] following a sigmoidal function [17, 22]

Vc ¼
Vc;max

1þ e� ðPtm � ccÞ=dc
ð8Þ

Maximal compliance occurs at the middle of the sigmoid cc, with dc characterizing the slope of

the sigmoid.

In newborns and infants an exponential-like chest-wall compliance curve is observed [23,

24] but with compliance being near infinite for Pcw> 0. We chose to model the static compli-

ance of the chest wall as a “softplus” function of the form f(x) = ln(1 + ex), the smooth approxi-

mation of the rectifier activation function f(x) = max(0, x). Accounting for translations and

scaling, this is represented by

Vcw ¼ RV þ bw ln ð1þ eðPcwÞ=dwÞ ð9Þ

The asymptotic volume at large negative pressure is thus assumed to equal RV. The “transition

point” where the softplus function slope has the greatest rate of change from horizontal to
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affine occurs at Pcw = . The chest wall relaxation volume V0 = Vcw|Pcw = 0 is set using an

estimate from literature at 25% of VC (vital capacity) [23, 24]. From this parameterization,

bw = (V0 − RV)/(ln 2). The single degree of freedom dw then characterizes the slope of the chest

wall compliance curve and is adjusted to produce a range of dynamic compliance values.

The volume of the lung compartment VA is modeled as the product of distention of lung

units Vel(Pel) and fraction of recruited alveoli Frec(Pel) [25, 26]. To obtain VA� RV near Pel = 0,

lung volume is given as

VA ¼ VelðPelÞ � FrecðPelÞ þ RV : ð10Þ

Alveolar compliance CA as used in the system of differential Eq (4) is found with symbolic

computation as
dVA
dPel

.

The first term Vel represents the volume due to aggregate elasticity of the lung unit struc-

ture, which is modeled here as a saturated exponential [26–28]

Vel ¼ VC � ð1 � eð� kPelÞÞ ð11Þ

where k characterizes the lung stiffness. This representation has been found to suffice in cases

of a healthy or surfactant-treated lung. The second term of the lung compliance Frec represents

the contribution of recruitment and derecruitment of alveoli to compliance, which has been

modeled previously as dependent on both time and pressure [25, 26, 29]. It can be represented

by a sigmoid which resembles the probability density function of a Gaussian distribution

describing aggregate opening or closing pressures of individual alveolar sacs or ducts [30]. We

adopt the formulation of Hamlington et al [26]:

Frec ¼ aþ
g � a

1þ e� ðPel � cF Þ=dF
;

where a ¼
ð1þ ecF=dF Þb � g

ecF=dF
:

ð12Þ

It follows that β is the baseline fraction of lung recruited at Pel = 0, γ represents the maxi-

mum recruitable fraction of lung, cF is mean opening pressure at which recruitment is maxi-

mum, and dF describes the transition to full recruitment capturing the heterogeneity of the

lung. Parameterization of Frec is based on the state of health being modeled and can change

breath-to-breath depending on conditions. For example, an increase in stiffness resulting from

derecruitment may manifest as higher mean opening pressure cF and move the VA curve to the

right. Likewise a lower maximum recruitable fraction γ would flatten the VA curve. Both sce-

narios indicate a lower compliance and greater pressure required to increase the lung volume

in the region of operating pressure. In certain pathological situations such as ARDS, a sigmoi-

dal representation of VA(Pel) with a low compliance region at low Pel [28, 31–34] could be cap-

tured in the parameterization of Frec.

The viscoelastic properties of pulmonary tissue are represented with a linear Kelvin-Voigt

model consisting of scalar compliance Cve and resistance Rve, which contributes a viscoelastic

pressure component Pve in series with lung elastic recoil Pel, see Fig 1. The sum of these two

pressures is dynamic pressure Pl,dyn which also equals Ppl − PA.

Respiratory muscle driving pressure

The pressure Pmus describes the effective action of the respiratory muscles driving the model

dynamics with Pmus negative in the outward direction. We used a sinusoidal function to
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describe tidal breathing, with maximum equaling zero at end-expiration:

Pmus ¼ Amus cos ð2pftÞ � Amus; ð13Þ

where Amus is the amplitude of the cosine wave and f = RR/60 is the frequency. The wave gen-

erates a negative pressure with total magnitude 2Amus outward from the body. Though simple,

the sinusoidal function can admit time-varying frequency, show dynamics over multiple

breaths, is used in artificial ventilation, has compact support on the closed interval [0, T], and

has been used in previous modeling studies (see eg. [14]). More sophisticated functions [17,

35, 36] can model inhalation and exhalation with different durations or qualitative forms,

however the breath-to-breath dynamics displayed in this study can be captured sufficiently

with the sinusoidal function.

Progressive volume loss

The complete mechanism of interaction between inefficient inhalation resulting from high

chest wall compliance and the progressive nature of lung volume loss and respiratory distress

is not fully understood. Clinical X-ray evidence of delayed atelectasis and subsequent acute

respiratory distress in otherwise healthy lungs may suggest a process by which a lack of full

recruitment during a given breath lowers lung capacity and compliance for the following

breath, and continues to an unrecoverable level in the absence of neural modulation or com-

pensatory mechanisms such as sighing. As a first attempt at modeling progressive volume loss,

we empirically describe the breath-to-breath evolution of Frec (Eq (12)) as lung recruitment

pressure parameters cF and dF increase with PIP and maximum recruitable fraction γ decreases

with EILV.

The lung compliance curve shifts slightly with each breath via changes in mean threshold

opening pressure based on number of collapsed alveoli. A volume loss associated with

derecruited alveoli necessitates an increase in expanded volume of recruited alveoli relative to

the radius cubed, with an increased distending pressure proportional to the change in radius.

This is illustrated in [37] using a simple example of expansion of 3 alveoli that double in vol-

ume with a 25% increase in radius; if 1 alveolus closes, the other two radaii must now increase

by 35% to achieve the same overall volume change and the required distending pressure

increases proportionally. This proportion applied to cF and dF shifts the compliance curve to

the right. In this way the compliance decreases approximately proportional to the amount of

derecruitment [38]. If tidal breathing begins on the steepest part of the lung compliance curve,

compliance decreases monotonically until eventually tidal breathing occurs on the low compli-

ance tail on the left part of the curve and VT� 0. Tidal breathing may begin at a higher posi-

tion towards the flatter upper part of the curve, in which case compliance will increase slightly

with this modification but will again eventually decrease in the manner described above.

Assuming constant amplitude of the sinusoidal muscle pressure pressure function and no

stochasticity, the maximum recruitable fraction of alveoli is achieved at end-inspiration (EI)

during steady-state oscillatory breathing and additional fraction will not be recruited under

a pressure of this same amplitude in subsequent breaths. The value for γ for subsequent breaths

is then dependent on Frec|EI and the percentage of alveoli assumed to be permanently collapsed /

no longer recruitable, represented by the calculation gnext ¼ gcurrent
_ð1 � ð%permanentÞ � ðFclosedÞÞ

where Fclosed is fraction closed. If all unrecruited alveoli remain as such, then Frec|EI becomes the

new γ for the next breath; likewise, if all alveoli remain recruitable, γ = 1 for the duration of the

simulation. Note that even for γ = 1, Frec < 1 for all Pel thus causing small changes in cF and dF

and shifts in the Frec(Pel) curve regardless of the % of alveoli permanently closed that still lead to

progressive volume loss. The rate at which volume loss progresses depends on where on the Frec
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curve tidal breathing occurs, and thus both the curve’s intrinsic characterizing parameters and

extrinsic system variables.

Simulation conditions

Parameterization

The lung curve was parameterized to obtain an approximate dynamic lung compliance CA of

2.3 ml/cm H2O [8, 39, 40] calculated as the slope (VA|EI − VA|EE)/(Pel|EI − Pel|EE) during normal

breathing with no interventions. In particular, k was tuned to produce a curve Vel between RV

and TLC with the calculated slope, and the parameters of Frec produced a curve that is� 1 for

the whole range of normal breathing to represent a nearly fully recruited lung. High Cw for a

typical preterm infant was targeted at 8.5 ml/cm H2O [8, 39] and low Cw about equal to lung

compliance. The parameter dw characterized the approximate dynamic chest wall compliance,

which was calculated as the slope (Vcw|EI − Vcw|EE)/(Pcw|EI − Pcw|EE). Parameter values for Ru,

Rc, Rs, and Vc were estimated from previously published studies [12, 14, 41]. The viscoelastic

parameters Cve and Rve were manually tuned to obtain idealized tidal volume and end-expira-

tory lung volume rather than the magnitude of the hysteresis.

FRC is the volume at the resting position of the respiratory system i.e. where Presp = Pel +

Pcw = 0. The naturally high compliance of the healthy full-term and especially preterm infant

(with even steeper Vcw(Pcw)) lowers Presp and decreases FRC to about 20% of vital capacity

(VC), compared to at about 35-40% of VC in the adult [42]. A nominal value for FRC for a

given set of static compliance curves is obtained by first computing volumes using a vector of

physiological pressures [-20. . .40] cm H2O. Lung and chest recoil pressure vectors are then

added in the P direction to obtain Presp, and the index where Presp = 0 is used to determine FRC

using either Vcw or VA. The lung, chest wall, and respiratory PV compliance curves for both

high and low Cw created from Eqs (9) and (10) are given in Fig 2. The value for Pel|FRC is then

Fig 2. Lung, chest wall, and total respiratory system compliance curves for high Cw (left) and low Cw (right). Curves are described by Eqs (9) and (10) and

parameterized using the procedures described in Parameterization. Tidal breathing loops with normal Ru (grey) and increased Ru (black) are superimposed for each

condition over the lung compliance curve and larger in each inset to display hysteresis.

https://doi.org/10.1371/journal.pone.0198425.g002
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set as the initial condition for solving dPel/dt. Note that the lung curve is identical between sce-

narios so the decreased slope in the low Cw scenario with the same ν and V0 raises FRC and

thus EELV. Decreased lung compliance (flatter VA(Pel)) resulting from injury, disease, or pro-

gressive volume loss further reduces FRC and EELV. In this model we consider chest wall

compliance to be either high or low and unchanging for the duration of a simulation, but lung

compliance changes depending on breathing conditions.

Table 2 gives values and formulas / sources for parameters that remain unchanged between

simulations. These values as well as the FRC, respiratory pressure amplitude, chest wall com-

pliance, and upper airway resistance parameters in Table 3 that vary between simulation con-

ditions were manually tuned to best obtain the reported aggregate parameters and state

outputs as shown in Table 4. As an example, dynamic lung compliance CA is not an explicit

input into the model, but was determined as described above. For ease of computation and to

match the target demographic, we assumed the simulated subject weighed 1 kg.

Table 2. Tuned steady-state and dynamic simulation parameters that remained unchanged during simulations.

Parameter Value Formula References

TLC [ml] 63 — [18, 23]

RV [ml] 23 — [18]

VC[ml] 40 TLC-RV [18, 23]

RR [br/min] 60 — [23]

f [br/s] 1 RR/60 —

T [s] 1 1/f —

ν 0.25 — [23, 24]

V0 [ml] 35 ν�VC+RV —

β 0.01 estimated [26]

γ 1 estimated [26]

α -0.76 ð1þecF =dF Þb� g

ecF =dF
[26]

k [1/cm H2O] 0.07 estimated [26, 28]

cF [cm H2O] 0.1 estimated [26]

dF [cm H2O] 0.4 estimated [26]

aw [ml] 23 RV [23, 24]

bw [ml] 17.3 (V0 − RV)/ln2 —

cw [cm H2O] 0 estimated —

ac [ml] 0 — [12]

bc [ml] 2.5 Vc,max [43]

cc [cm H2O] 4.4 estimated from adult [12]

dc [cm H2O] 4.4 estimated from adult [12]

Kc 0.1 estimated from adult [14]

Vc,max [ml] 2.5 estimated as dead space [23, 43]

Rs,m [cm H2O s/L] 12 — [41, 44]

Rs,d [cm H2O s/L] 20 estimated from adult [14]

Ks -15 estimated from adult [14]

Iu [cm H2O s2/L] 0.33 — [17, 41]

Cve [L / cm H2O] 0.005 estimated from adult [14]

Rve [cm H2O s/L] 20 estimated from adult [14]

See Table 1 (Glossary) for variable definitions.

https://doi.org/10.1371/journal.pone.0198425.t002
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Computational procedures

All simulations proceeded with an initial respiration rate of 60 breaths/min (f = 1), initial min-

ute ventilation _V E ¼ 360, and initial tidal volume VT = 6 ml, with the expectation that tidal

volume changes with changes in dynamic lung compliance. The motivation for ths choice was

twofold: One, this is consistent with a physiological requirement of constant _V E regardless of

chest or lung compliance; and two, this allowed for comparison of simulation results originat-

ing from similar starting points. Distinct values for Amus were prescribed for each simulation

to achieve the initial _V E ¼ 360, see Table 3.

Simulated conditions were chosen to demonstrate the model dynamics with high and low

chest wall compliance, under two interventions and two states of permanent alveolar closure.

An infant often exhibits compensatory mechanisms such as laryngeal braking (grunting) and

increased activity of diaphragm and intercostal muscles [18] to increase end-expiratory pres-

sure in order to keep EELV above the volume at which alveolar units start to collapse during

expiration. Laryngeal braking is simulated with a 10-fold increase in expiratory upper airway

resistance Ru. CPAP is simulated with an increase of Pao from 0 to 5 triggered at Frec,EI = 0.9,

0.95, 0.97 characterizing volume losses of 10%, 5%, and 3%. Simulations also include assump-

tions of either no permanently closed alveoli, such that γ = 1 for all time, or10% permanently

closed alveoli per breath, such that gnext ¼ gcurrent
_ð1 � 0:1ðFclosedÞÞ. Each simulation was

Table 3. Parameters varying with chest wall compliance and simulation conditions.

Parameter High Cw Low Cw Formula References

normal Ru increased Ru normal Ru increased Ru

FRC [ml] 24.9 24.9 28.1 28.1 Pel|FRC + Pcw|FRC = 0 [18, 23, 45]

Amus [cm H2O] 1.85 3.2 2.78 3.8 estimated —

dw [cm H2O] 0.48 0.48 2.4 2.4 estimated —

Ru,m [cm H2O s/L] 20 200 20 200 — [39, 41]

Ku [cm H2O s/L] 60 600 60 600 estimated from adult [14, 39, 41]

See Table 1 (Glossary) for variable definitions.

https://doi.org/10.1371/journal.pone.0198425.t003

Table 4. Aggregate parameters and output states targeted during simulations.

Parameter Ref. Value High Cw Low Cw Formula References

normal Ru increased Ru normal Ru increased Ru

CL [ml/cm H2O] 2.3 2.7 2.1 2.3 2.1 ðVA jEI � VA jEEÞ

ðPel jEI � Pel jEEÞ
[8, 39, 40]

Cw [ml/cm H2O] 8.5 9.9 16.0 2.7 3.3 ðVcw jEI � Vcw jEEÞ

ðPcw jEI � Pcw jEEÞ
[8, 39]

Crs [ml/cm H2O] 1.8 2.1 1.9 1.2 1.3 (1/CL + 1/Cw)−1 [39, 46]

Rrs [cm H2O s/L] 40 34 to 41 32 to 223 33 to 36 32 to 223 Ru + Rc + Rs [47]

_V E [ml/min] 360 359.2 358.2 360.0 360.0 — [23]

VT [ml] 6 5.99 5.97 6.00 6.00 — [40, 48, 49]

_V A [ml/s] ±20 -19.4 to 20.8 -16.4 to 28.9 -20.3 to 20.4 -17.1 to 26.4 — [40, 48]

PA [cm H2O] ±1 − 2 -0.75 to 0.84 -0.96 to 3.63 -0.69 to 0.69 -0.89 to 3.80 — [23]

Pel [cm H2O] 1 to 6 0.9 to 3.6 2.7 to 5.9 1.8 to 4.8 2.8 to 6.1 — [40]

Ppl [cm H2O] -3 to -6 -0.6 to -3.8 0 to -6.2 -1.5 to -4.9 0 to -6.4 — [23]

EI: end-inspiratory. EE: end-expiratory. See Table 1 (Glossary) for variable definitions.

https://doi.org/10.1371/journal.pone.0198425.t004
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performed three times: constant f; variable f by breath according to _V E ¼ VT;ave � f where VT,ave

is a moving average of the previous 60 tidal volumes (� 1 minute of breathing); variable f
including a single 20 second apneic event.

The system of differential Eq (4), together with the constitutive relations (5–13), were

solved using MATLAB R2016b (MathWorks, Natick, MA) with the differential equations

solver ode15s (see S1 Code). Initial conditions were set at physiological values as given in

Table 5. The equations were solved for each new breath using the end conditions from the pre-

vious breath as initial conditions. Parameter values as discussed earlier are given in Tables 2

and 3. The steady-state stability of the model was analyzed under constant non-oscillatory

muscle pressure by examining the eigenvalues of the Jacobian at the nominal parameter

set and varying parameters by multiples of 2 and 10. Results of this analysis are found in

S1 Appendix.

Results

Parameterized static compliance curves for Vcw(Pcw) and VA(Pel) are shown in Fig 2 for high

Cw (left) and low Cw (right). The hysteretic tidal breathing loops are superimposed on the

curve VA(Pel) for normal Ru in black and increased Ru in grey. Hysteresis is caused in the

model by the viscoelastic parameters Cve and Rve, which were tuned to maintain appropriately

valued lung volume outputs.

Fig 3 shows the impact of high vs low Cw and normal vs. high Ru on the five states PA, Pl,dyn,

Ppl, VA, and _V . Increased Ru increases PA almost threefold, but Cw has very little impact. How-

ever, decreased Cw increases Pl,dyn significantly, effectively raising it higher on the lung PV

curve. Increasing Ru even higher increases Pl,dyn but there is no difference with respect to Cw.

The opposite appears to occur with Ppl dynamics, in that decreasing Cw makes Ppl more nega-

tive (“increasing” the magnitude of the pressure) and increasing Ru strengthens that effect.

Low Cw and subsequently high Ru increase VA, mimicking the effect for Pl,dyn. High Ru shifts _V
by 5 ml/s, with airflow more restricted during expiration. Tabulated magnitudes of the steady

states are gives in Table 4. These results compare favorably to the record reported in Abbasi

et al [50] in which esophageal (pleural) pressure, airflow, and tidal volume were approximately

-2 to -6 cm H2O, -30 to 30 ml/s, and 8 ml, respectively.

Table 6 presents the 14 simulations and their time to failure, defined for this study as 90%

volume loss. Dynamics were comparable between simulations with the major difference being

the timing, therefore only representative or significant results are presented in figures. Our

model consistently indicates a faster loss of end-expiratory lung volume in all simulations with

high Cw compared to the same with low Cw. Variable f did not significantly change TTF except

in the case of CPAP administered at 3% loss (S14), with TTF shortened by almost 2 hours.

Adding a single 20 second apnea shortened the TTF by 1-4 minutes in the shortest simulations

but by over an hour under high Cw and increased Ru (S8).

Table 5. Initial conditions.

Initial Condition High Cw Low Cw Formula References

_V ð0Þ 0 0 — —

Vc(0) 0.0001 0.0001 estimated from adult [12]

Pel(0) 0.954 2.015 Pel|FRC [18]

Pve(0) 0 0 — —

https://doi.org/10.1371/journal.pone.0198425.t005
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The breath-to-breath change in EELV and VT under high and low Cw conditions with no

interventions are given in Fig 4 (Simulations 1 and 3). The high Cw simulation reaches acceler-

ated loss of volume and eventually failure at 0.3 hours, much more quickly than the low Cw at

2.5 hours. This depicts a possible scenario in which lung volume loss and failure may appear to

onset suddenly after a long period of apparent steady conditions.

Fig 5 shows changes in dynamic lung compliance and tidal volume with high and low Cw

without changes in γ, then adding CPAP to the high Cw condition at three different levels (c.f.

Table 6, simulations 1,3,11,13-14). CPAP was simulated by an increase in mouth pressure Pao

to 5 cm H2O when Frec,max < 0.9, which happened when the lung volumes were already

decreasing quickly towards failure. However, CPAP triggering at Frec,max < 0.95 and 0.97

gained 3 and 9 hours of time, respectively. Note that regardless of timing, the administration

Fig 3. Simulated periodic steady-state tracings of five breaths. Depicted are alveolar volume, airflow, alveolar pressure, dynamic elastic lung recoil, and pleural

pressure, under high and low Cw conditions, with normal vs. high Ru.

https://doi.org/10.1371/journal.pone.0198425.g003
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of CPAP is correlated with reduced tidal volume (see also [51]). Increasing Pao moves the

resulting PV loop higher up on the lung compliance curve but does not change the nature of

the curve, thus eventually the influence of high Cw on dynamics induces the same lung volume

loss without other mitigating actions.

Table 6. Simulations and time to failure (TTF, in hours), defined as 90% volume loss.

Intervention Cw condition Variable γ Simulation TTF, hours

constant f variable f variable f + AE

None Low No 1 2.49 2.53 2.51

Yes 2 2.25 2.28 2.26

High No 3 0.30 0.32 0.30

Yes 4 0.27 0.29 0.27

Increased Ru Low No 5 24.7 24.7 24.5

Yes 6 22.2 22.2 21.9

High No 7 18.5 18.4 17.3

Yes 8 16.6 16.5 15.0

CPAP, 10% loss Low No 9 2.56 2.61 2.60

Yes 10 2.32 2.36 2.34

Yes No 11 0.83 0.79 0.76

Yes 12 0.83 0.80 0.77

CPAP, 5% loss High No 13 2.94 2.50 2.46

1-1 4-7 CPAP, 3% loss 14 8.57 6.89 6.83

Increased Ru: A 10-fold increase in Ru was applied during expiration. CPAP: Simulated administration of Pao = 5 occurred when recruited fraction was down 10%, then

again at 5% and 3% with constant γ. AE: A single 20 second apneic event occurred at the 2 minute mark of the simulation.

https://doi.org/10.1371/journal.pone.0198425.t006

Fig 4. Breath-to-breath volumes. End-expiratory lung volume (left y-axis) and tidal volume (right y-axis) under high and low Cw conditions, no interventions.

https://doi.org/10.1371/journal.pone.0198425.g004
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Discussion

In summary, we have developed a lumped-parameter respiratory mechanics model tuned with

parameters specific to the extremely preterm infant weighing 1 kg. The model includes a novel

representation of derecruitment based on alveolar pressure and volume expansion compensat-

ing for collapsed alveoli. Model simulations suggest conditions under which volume loss may

result more quickly from higher vs lower chest wall compliance in the preterm infant, indicat-

ing the plausibility of dynamics underlying the symptoms observed clinically. Given the fragile

nature of this population, it is extremely difficult to obtain non-pathological parameter or state

output values for a healthy or surfactant-treated infant during spontaneous breathing, and

even more so to obtain time series for model validation and eventual parameter estimation.

The much earlier study by Abbasi and Bhutani [50] and a later one by Pandit et al [40] gave

the best insight into the respiratory dynamics of an extremely preterm infant, making these the

standard against which our results were qualitatively validated. We therefore claim that this

effort is a “proof of concept” that will be further explored in future investigations using pres-

sure and airflow time series data in a parameter estimation / optimization procedure to charac-

terize parameter values specific to a particular patient dataset. Additional model modifications

will allow for hypothesis generation for future data testing and data collection.

As mentioned briefly in Nonlinear compliance constitutive relations, recruitment/decre-

cruitment may have a time component [29, 52], in that the time it takes for an airway or alveo-

lus to open may be a function of how far away its pressure is from its critical opening pressure.

Earlier studies have developed models that incorporate opening and closing pressures for indi-

vidual alveoli, contributing to the aggregate difference in inflation and deflation limbs of the

hysteretic PV curve [53, 54]. These previous studies considered recruitment resulting from

one or two hyperinflations but not long-term derecruitment. In our model breath-to-breath

derecruitment is manifested as the change of the lung compliance curve during normal spon-

taneous breathing as described in Progressive volume loss, and the hysteresis found in the

tidal breathing loop is accounted for by the viscoelastic component of the system of differential

Fig 5. Breath-to-breath dynamic lung compliance and tidal volume. Depicted are high and low Cw conditions, with simulated CPAP triggered in the

high Cw condition when recruited fraction dropped 10%, 5%, and 3%.

https://doi.org/10.1371/journal.pone.0198425.g005
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equations. It is clear from Table 6 that time to failure shortens if an assumption is made about

a non-zero percentage of alveoli permanently closing and being unavailable for recruitment.

As a topic for further study, the pulmonary tissue may be modeled by more complex Voigt-

Maxwell models within the “electrical analog” model or other non-electrical analog represen-

tations (e.g. those described in [29]). While such a modification may affect the overall trends

in observed states such as EELV, the differential impact between high and low Cw would be

expected to remain.

The noninvasive ventilatory intervention CPAP shifts the tidal volume loop to a higher

position on the lung compliance curve, operating with a higher EELV and end-expiratory lung

elastic recoil. Our model suggests that the timing of administration of CPAP and the perma-

nent closure or injury state of alveoli may impact its effectiveness. In our first simulation with

simulated CPAP triggered at 10% volume loss, the recruited volume fraction does not recover

fully to 1 and the use of CPAP only gains about a half hour of breathing before failure. How-

ever, CPAP starting at 5% and 3% loss gained 3 and 9 hours of time, respectively. This magni-

tude of loss may not be symptomatic at this point but would benefit from pressure support to

avoid the quick descent to failure. These results are reported for the case with all fully recruita-

ble alveoli. In the case of 10% permanent collapse of closed alveoli at each breath and subse-

quent breath-by-breath decrease in γ, the function Frec can never reach 1 (full recruitment) for

the duration of breathing, tidal breathing occurs on a lower lung compliance curve, and CPAP

cannot recover the full volume loss in subsequent breaths. Results in Table 6 indicate that time

to failure is 10% faster with the permanent collapse. These simulated loss and collapse percent-

ages were arbitrarily chosen to demonstrate the capabilities of the model and possible influ-

ences on breathing dynamics, but more investigation into actual loss values would add to the

model’s usefulness. Starting from a lower Cw appears to be the optimal condition presented

here as hypothesized.

Prolonged shallow breathing has been associated with increased surface tension and

decreased surface area that further hinders breathing [55]. We safely assume in our model that

derecruitment is a continuous process that will eventually induce loss of lung volume if left

uncompensated [56, 57]. In a healthy lung in the absence of fatigue, permanent alveolar col-

lapse (due to injury or disease), and/or high chest wall compliance, this process is on a much

longer time scale than the natural compensation mechanisms that compensate for and recoup

volume loss (such as grunting in the infant). One such mechanism is spontaneous deep breath-

ing, or “sighing”, which may help prevent atelectasis [58–60] by re-opening air spaces that col-

lapse naturally under tidal breathing [61] via increased pressure and surfactant activation and

possibly affect neurorespiratory control. Sighing occurs more frequently and at relatively larger

magnitude in the infant vs adults [62]. A natural extension of our model would be incorporat-

ing the restorative actions of sighing and testing the hypothesis that spontaneous deep breaths

mitigate or reverse volume loss.

Several features of the physiology of preterm infants are not currently addressed in this

model but should be considered in future model enhancements for further investigations.

Preterm infants commonly exhibit diaphragm weakness and dysfunction and paradoxical

breathing. While a sinusoidal waveform is used in the clinic under some mechanical ventila-

tion protocols, the sinusoidal pressure function used here is an elementary representation for

spontaneous breathing and does not capture dynamics related to diaphragm dysfunction or

possible expiratory flow limitation. Modifications reflecting such dynamics may include

adjustments to the pressure amplitude, varying fractions of time spent in inspiration vs expi-

ration, and the use of a model that combines functional forms such as polynomials or expo-

nentials (see e.g. [35]). Components that differentiate between abdominal and rib cage

movements (see e.g. [63]) may model the paradoxical chest movement.
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Another limitation of this model is the absence of any feedback mechanisms compensating

for loss of volume. More sophisticated models of central pattern generators have been devel-

oped in conjunction with simple lung mechanics [64, 65] that could potentially be incorpo-

rated with ours. A chemoreflex model, see for example [65, 66], may also augment our model.

Despite these limitation, we expect that the timing of dynamics of individual simulations may

change with model enhancements but that time to failure would still be extended under low

chest wall compliance conditions as observed in this study.

Conclusion

Respiratory mechanics models have been investigated for several years and many formulations

exist; the challenge to be appreciated is the customization to the preterm infant with signifi-

cantly different physiological features than adults and even term infants. Hence future model

modifications must always keep this at the forefront of any investigation. The lumped-parame-

ter respiratory mechanics model developed in this study will be used in future studies with

data currently being collected in the NICU to estimate patient-specific parameters, which may

shed light on factors influencing volume loss dynamics. This process may help generate

hypotheses about predicting volume loss and recovery to motivate future data collection strate-

gies. Our hope is that these investigations lead to a chest-stiffening treatment that can target an

infant’s specific physiological characteristics and prevent volume loss in this vulnerable

population.

Supporting information

S1 Appendix. Model stability analysis. The inherent stability of the model was analyzed

under constant non-oscillatory muscle pressure by examining the eigenvalues of the Jacobian

at the nominal parameter set and varying parameters by integer multiples.

(PDF)

S1 Code. Minimal representative code. Attached MATLAB code runs Simulation 3 (high Cw,

normal Ru) with constant frequency for 6 periods.

(PDF)
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