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Abstract

Constructing gene circuits that satisfy quantitative performance
criteria has been a long-standing challenge in synthetic biology.
Here, we show a strategy for optimizing a complex three-gene
circuit, a novel proportional miRNA biosensor, using predictive
modeling to initiate a search in the phase space of sensor genetic
composition. We generate a library of sensor circuits using diverse
genetic building blocks in order to access favorable parameter
combinations and uncover specific genetic compositions with
greatly improved dynamic range. The combination of high-
throughput screening data and the data obtained from detailed
mechanistic interrogation of a small number of sensors was used
to validate the model. The validated model facilitated further
experimentation, including biosensor reprogramming and biosen-
sor integration into larger networks, enabling in principle arbitrary
logic with miRNA inputs using normal form circuits. The study
reveals how model-guided generation of genetic diversity followed
by screening and model validation can be successfully applied to
optimize performance of complex gene networks without exten-
sive prior knowledge.
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Introduction

Optimizing quantitative characteristics of complex artificial gene

pathways, networks, and circuits has been a long-standing problem

in genetic engineering and synthetic biology. The bulk of the experi-

mental optimization effort has focused on biomanufacturing path-

ways. Strategies included rational forward design of genetic

components as well as component reshuffling followed by screening

(Temme et al, 2012; Zhang et al, 2012; Jeschek et al, 2016). In this

case, the optimization task is facilitated by the fact that in metabolic

pathway optimization, the statement “the more the better” usually

applies, achieved by concurrent optimization of pathways yield

(ratio of product to substrate), specific productivity (product/cell

per unit time) and volumetric productivity (product per unit volume

per unit time). Sometimes these parameters can be anticorrelated

(Villaverde et al, 2016), in which case the yield would typically take

preference over volumetric and specific productivity (Sven Panke,

personal communication). In synthetic multi-gene networks that

implement regulatory or biosensing tasks, the optimization is exac-

erbated by the fact that no single readout can adequately character-

ize a system. Even in a single input/single output biosensor,

performance is characterized by at least two parameters, the sensor

response in the absence of an input (Off state) and the response

with saturating input (On state), with the ratio between the two

known as “dynamic range”. Thus, a good circuit candidate needs to

fulfill multiple conditions simultaneously. Directed evolution was

used to improve circuit performance (Haseltine & Arnold, 2007;

Schaerli & Isalan, 2013; Benes et al, 2015), but so far experimental

results are limited to simple systems (Yokobayashi et al, 2002;

Ellefson et al, 2014) or subcircuits (Lou et al, 2010).

Computational tools have played increasingly important roles in

rational design of optimally performing circuits (Marchisio &

Stelling, 2009). One can distinguish two complementary modeling

approaches. An approach one might call “parameter-centered” uses

mechanistic models to interrogate the parameter space or sensitivity

to parameter changes. This allows identifying, respectively, parame-

ter regimes that ensure (optimal) performance, and changes in

parameters that may improve performance (Elowitz & Leibler,

2000; Gardner et al, 2000; Feng et al, 2004; Batt et al, 2007). This

approach typically does not prescribe the genetic components that

would implement the predictions. The second approach, which

might be termed “component-centered”, uses mechanistic models

to predict behavior of complex networks built of known compo-

nents whose basic features had been measured or predicted with

relatively high precision (Ellis et al, 2009; Mutalik et al, 2013;

Nielsen et al, 2016). When large-enough libraries of components

with diverse and known behaviors are available, and the model

correctly captures higher-order interactions that take place in a

large network, the behavior of the large network can be (i)

predicted with high precision for a particular set of components and

(ii) tuned by choosing appropriate components from a component

library. In reality, the parameter- and component-centered

approaches are tightly interconnected, as the increasing availability

of characterized components enables implementation of parametric

model recommendations, while circuit construction and comparison
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of experimental data to a model allow model refinement to capture

higher-order, long-range effects. An important prerequisite to the

component-centered approach is prior knowledge of component

properties and associated parameter values. Barring direct experi-

mental characterization, predicting parameter values from de novo

DNA or RNA sequence, while constantly improving (Zuker, 2003;

Beisel et al, 2008; Salis et al, 2009; Choi et al, 2012; Rodrigo et al,

2012; Carey et al, 2013; Zhou et al, 2015), is still far from encom-

passing every aspect of molecular biology crucial for forward circuit

design. Often the predictions are an outcome of high-throughput

experiments followed by machine learning and are therefore speci-

fic to those experimental systems where data had been collected

(Kudla et al, 2009; Egbert & Klavins, 2012; Alipanahi et al, 2015).

Therefore, designing an optimally functioning circuit without a pre-

existing library of experimentally characterized components is still

a difficult task.

Rationale

Here, we describe a novel approach that establishes an integrated

computational-experimental framework for circuit optimization

without extensive a priori knowledge and without a large pre-

existing component library (Fig EV1). First, a parameter-centered

computational analysis of a circuit is performed based on our

best understanding of circuit’s biochemical mechanism. The

model predicts parameter regimes that optimize performance, as

well as performance sensitivity to changes in individual parame-

ters. Second, each circuit functional block is initialized with at

least two or three functionally identical but structurally distinct

genetic components, for example, two different transactivators,

three different arrangements of miRNA binding sites, two dif-

ferent constitutive promoters, and so on. Where possible, the

blocks are deliberately chosen to enact a desired change in a

parameter value. Third, every possible combination of these

components is tested; this is done to avoid the “guesswork” as

much as possible and to account for possible errors, nonlinear

effects, and higher-order interactions in a complex circuit that are

not captured by the model. In addition, a dataset resulting from

a combinatorial screening can be used either to validate or

modify the model in the case of discrepancy between the two.

The model is further validated by very detailed, low-throughput

characterization of well-performing and poorly performing

circuits. To summarize, at the end of an optimization campaign,

several goals are reached simultaneously: The model receives

experimental support (or modified to explain the data) such that

it can be used to guide further experimentation; one or more

well-functioning circuits are constructed; and the sets of initially

tested building blocks can be used as reference points to

construct additional components.

While a combinatorial screen can in principle be done without a

model, such a screen will miss out on many important aspects: First,

the initial library might not be optimally designed without the

knowledge of how specific parameters affect performance; second,

one might not be able to rationalize the results and explain why

certain circuits perform better than others; and third, no rational

conclusions will be drawn to serve subsequent design tasks. In other

words, the model “bookends” the process: It serves as a formal

system description and as a (partial) guide for library design; and at

the end of the experimental campaign, it is validated and possibly

modified to guide future design efforts.

Here, we explore this optimization strategy using a low-footprint

proportional miRNA sensor as a test bed. The feasibility of such

sensors was shown recently (Lapique & Benenson, 2014), but initial

efforts to implement them practically resulted in poor performance.

To address the problem comprehensively, we build on the extensive

in silico study of a mechanistic model (Mohammadi et al, 2017) that

provides specific recommendations with respect to optimal parame-

ter regimes, followed by construction of a diverse genetic compo-

nent library implementing some of the model recommendations,

and exhaustive library screening using cell culture robots and

imaging-based characterization. We uncover a number of high-

performing sensors and undertake detailed mechanistic studies, con-

firming that those sensors perform well for the reasons predicted by

the model. Lastly, we use the model to guide the construction of

optimized sensor networks able to compute universal logic with

miRNA inputs as exemplified by a difficult-to-implement “exclusive

or” (XOR) circuit.

Results

Setting up the screen

Proportional miRNA sensors are key building blocks of miRNA

sensing networks and miRNA cell classifiers (Xie et al, 2011;

Lapique & Benenson, 2014; Li et al, 2015; Miki et al, 2015; Sayeg

et al, 2015; Wroblewska et al, 2015). The cell classifiers can enable

selective cell targeting in cancer and genetic disease, as well as

selective detection and diagnostic tools. Published variants of these

sensors, while showing exceptional dynamic range, also require

large DNA payload. Previously, we found (Lapique & Benenson,

2014) that the protein repressor component of this sensor is in

principle dispensable, potentially resulting in a more compact

design (Fig 1A). In this sensor, an output gene driven by a consti-

tutive promoter is repressed by an artificial miRNA molecule via

complementary target sites in its untranslated region. The artificial

miRNA is itself transcriptionally induced by a constitutively

expressed transcriptional activator. The activator is targeted by the

input miRNA via complementary target sites embedded in its

untranslated sequence. As a result, in the absence of the input, the

activator induces the synthetic miRNA, which in turn suppresses

the output. In the presence of the miRNA input, the activator is

knocked down, expression of the regulated synthetic miRNA is

reduced, and output expression is elevated. Such compact topology

might be used in low-capacity viral vectors and potentially

deployed in vivo. Another change we considered was the use of

constitutive activator rather than Dox-inducible rtTA (Xie et al,

2011), to enable fully autonomous sensor operation. However,

initial tests with this topology using constitutive tTA activator in

HeLa cells showed low dynamic range and poor recovery of the

On state (Fig EV2) relative to the constitutive output. We explored

ways to optimize sensor performance as a part of theoretical analy-

sis, using a simplified mechanistic model of the compact sensor

(Fig 1A and Materials and Methods) (Mohammadi et al, 2017). In

the model, there are three parameters with the superscript MAX,

corresponding to what we call the “pool” of the respective species.
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For the activator and the output, the pool corresponds to the unin-

hibited expression levels of these species. For miR-FF4, the pool is

its maximal asymptotic expression when the inducible upstream

promoter is fully activated. There are also three different parame-

ters that describe regulatory interactions (the lower they are, the

stronger the interaction is for a given amount of regulator). They

are IC50
miR, Kd and IC50

FF4 corresponding, respectively, to the input

miRNA concentration that elicits 50% knockdown of the activator,

the dissociation constant of the activator from its promoter, and

the level of miR-FF4 resulting in 50% knockdown of the output.

Specific predictions and trends are summarized in Fig 1A. Note

that we distinguish two “On” states. The theoretical On state is

equal to the available output pool, because under asymptotically

large amount of input the amount of the activator, as well as that

of the synthetic miR-FF4 asymptotically approach zero. The “prac-

tical” On state is calculated using a finite, realistic amount of

miRNA input, corresponding to a highly expressed cellular miRNA

species (3,000 molecules/cell). For each parameter combination,

we also calculated the overall sensor sensitivity we call Sensor

IC50, corresponding to the amount of miRNA input that elicits 50%

of the theoretical maximal sensor response.

The simulations generate a number of specific predictions, in

particular regarding expected trends in sensor On and Off states,

and consequently, the respective dynamic range On:Off (Mohammadi

et al, 2017). Increase of IC50
miR (that is, decrease in miRNA activity

toward its target) results in decreased sensor sensitivity (higher

Sensor IC50 values), decreasing “practical” On state without

change in the Off state, and corresponding decrease in dynamic

range. Increase in IC50
FF4 causes changes in exactly the opposite

direction, resulting in increased sensor sensitivity, as well as

increase in both On and Off states, yet overall decrease in

dynamic range. Interestingly, when both miRNA regulation

parameters are increased simultaneously, some trends cancel each

other so the sensor sensitivity and the On state are roughly

constant (Fig 1A, row 3). However, the Off state increases, result-

ing in a decreased dynamic range. Overall, it is predicted that

decreasing both parameters improves dynamic range.

Increasing the miR-FF4 pool linearly reduces sensor sensitivity,

while at the same time increasing the dynamic range. The practical

dynamic range improves asymptotically. Here, a balance should be

found between high dynamic range and high sensitivity, as these

features are anticorrelated. The output pool does not affect sensor

sensitivity; it affects both On and Off states linearly and therefore

does not affect the dynamic range. However, the output pool plays a

key role when specific absolute output levels are required.

The size of the activator pool and an activator dissociation

constant have a complex effect of sensor performance. Increasing

the pool will result in decreasing On and Off states, but there exists

an optimal pool size that maximizes dynamic range. Likewise, for a

fixed pool, the On and Off states increase with higher dissociation

constant (weaker binding), yet there is a particular Kd value that

maximized the dynamic range. In the phase space of activator pool

size and Kd values, there exists an optimal crest corresponding to a

particular ratio of these two parameters.

Based on previous observations (Lee et al, 2009), we hypothe-

sized that miRNA inhibition can be rationally improved by placing

miRNA binding sites in both the 50- and 30-UTR of a targeted

gene. We built our sensor library to detect miR-21, a known

onco-miR (Selcuklu et al, 2009). In the context of activator

components, we compared the constructs with 30-UTR miR-21

binding sites (T21) with those carrying T21 sites in both 50- and

30-UTR (Fig 1B). Model recommendation regarding activator

expression and activator binding constant is more difficult to

implement rationally. One can modulate the binding constant by

choosing different activator proteins (as the specific molecular

nature of the activator does not affect circuit function). To modu-

late maximal expression rate, one can choose different constitutive

promoters of different expression strength. It is plausible to

assume that when many possible activator–promoter combinations

are tested, at least one combination will fulfill the model recom-

mendation. Thus, we used two very different components for the

activator itself, tTA (Gossen & Bujard, 1992) and PIT2 (Fux &

Fussenegger, 2003), and two different promoters, CMV and UbC,

the former driving stronger expression than the latter. Together

with two miRNA target configurations, this resulted in a total of

eight activator constructs (Fig 1B, left). For the synthetic miRNA

component, we used a proven miRNA sequence miR-FF4 (Leisner

et al, 2010), furnished with two different inducible promoters,

TRE or PIR, to respond to tTA or PIT2 activators, respectively; we

compared a construct with miR-FF4 coding intron only, with a

construct where the intron was embedded into a protein-coding

mCitrine gene as the means to tune miR-FF4 expression. For the

output, we compared two different constitutive promoters, EF1A

and UbC; and three different miR-FF4 target (TF) arrangements,

50-UTR only, 30-UTR only and 50- with 30-UTR TF targets, to

modulate miR-FF4 activity toward the output (Fig 1B, right).

▸Figure 1. Sensor schematics.

A Left upper panel: General architecture of a compact proportional miRNA sensor. A constitutively expressed activator Act regulates a synthetic miRNA miR-FF4 that in
turn downregulates constitutively expressed output. Left middle panel: In the absence of endogenous miRNA input (miR-I), activator is highly expressed, miR-FF4 is
highly expressed, and the output is repressed. The network diagram shows the topology implemented by this sensor. Left lower panel: In the presence of miR-I, the
activator and miR-FF4 are low and the output is high. The parameters used in the model for simulation are indicated next to their respective species or interactions
(see main text for explanation). Right: Model predictions regarding changes in On and Off sensor states as a function of parameter values. For each row (apart from
the bottom one), the first three charts show, respectively, the changes in sensor sensitivity, On and Off states, and the dynamic range. The fourth chart shows sensor
response function as a function of input concentration for two different parameter values, to exemplify the effect. In the bottom row, the heat maps show the effect
of the activator pool size and the activator dissociation constant on the sensor sensitivity, On and Off states, and the dynamic range.

B The structure of the combinatorial library utilized in the sensor screening campaign. Fixed components are embedded in the respective constructs, while
interchangeable components are shown as branching units. On the right, the names of different constructs are shown, as used throughout the article. In the output
construct names, Cherry is sometimes omitted for brevity because all the outputs use the same protein. CMV, cytomegalovirus promoter. UbC, ubiquitin C promoter.
EF1A, elongation factor 1A promoter. tTA, tetracycline-controlled transcriptional activator. PIT2, pristinamycin-dependent transactivator. pTRE, tTA responsive DNA
element. pPIR, PIT2 DNA binding motif. 50 and 30-UTR stand for 50 or 30 mRNA untranslated regions, respectively. T21: quadruple fully complementary miR-21 target;
Cit: citrine exons; ^miR-FF4^ indicates an intronically embedded miR-FF4. TF, a triple fully complementary miR-FF4 target site.

◀
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Screening results

The construct diversity resulted in a total of 96 sensor compositions.

We used HeLa cells to measure their performance. Highly expressed

endogenous miR-21 in these cells was used to estimate sensor On

state, while co-transfection of LNA miR-21 inhibitor (LNA-21) was

used to estimate the Off state. Triplicate measurements of On and

Off states, combined with control measurements, resulted in about

1,000 individual transfections. One sample out of each triplicate was

also measured with flow cytometry to confirm the imaging-derived

data. The image-processing data in general correlate well with flow

cytometry data (Fig EV3A) apart from some discrepancy in estimat-

ing very low Off states.

We examined the screening data for trends. First, we note that

different outputs have different expression levels (Fig EV3B), and

the level is slightly reduced when these constructs are combined

with the miRNA-expressing cassettes possibly due to leakage of

the inducible promoters in the absence or upstream activator. The

highest possible sensor output is obtained when the activator

construct is fully inhibited by a miRNA input; this level is

emulated in a control experiment when the activator construct is

entirely omitted from the transfection. Model predictions (apart

from those testing output effect explicitly) assume that the output

pool does not change; therefore, it is appropriate to test model

predictions when different data points are normalized by the rele-

vant output pool. Nevertheless, absolute levels could be important,

and therefore, we present the data with and without normaliza-

tion, as indicated. We note that the dynamic range is insensitive to

output normalization.

One can observe the trends visually using heat maps (Figs 2A

and EV2C) or by analyzing averaged effects between pairs of

sensors that only differ in one component, or at most two when

the activators are exchanged (Fig 2B). In the heat maps, one can

directly observe the specific changes for particular sensor composi-

tions while the average effects show the trend for all sensors in the

set. In general, these two ways of comparison lead to similar

conclusions. Thus, we observe that reducing activator expression

with UbC promoter increases both the On and the Off states, as

predicted by the model. The dynamic range increases slightly,

which is not inconsistent. Second, improving miRNA knockdown

of the activator using 50- and 30-sites is also fully consistent with

the model: The On state increases while the Off state remains

constant. The change in the nature of an activator is more complex

to rationalize as two factors change at once: the binding constant

and the activator pool (due to possibly different mRNA and protein

stability of these species). The fact that the On state is not changed

suggests that one of the activators has higher abundance and lower

binding affinity than the other. This is consistent with published

data and our own observations: Western blot analysis reveals that

CMV- or UbC-driven PIT2 FLAG-tagged constructs are expressed

around two orders of magnitude stronger than their respective tTA

counterparts (Fig EV4). Published data also suggest that the bind-

ing of TetR to its operator is about 100 times stronger than that of

PIT2 (Orth et al, 2000; Folcher et al, 2001). Adding an exon (indi-

cated as Cit^miR-FF4^) arguably reduces the amount of active

miRNA-FF4 due to slower transcription. Data show that the On

state increases somewhat while the Off state increases dramatically,

exactly as predicted. The dynamic range is therefore reduced, also

as expected. Using stronger output promoter results in comparable

increase of absolute On and Off values, while this difference disap-

pears post-normalization. There is only a weak effect on the

dynamic range, as predicted. Different target arrangements in the

output, either 50- alone, or 50- with 30-combination, lead to more or

less constant On state but substantially increased Off state. This

would be consistent with the prediction if we assumed that these

modifications in fact reduced the activity of miR-FF4 toward the

output. Interestingly, a test in a different cell line (HCT-116)

(Fig EV5) shows a reduction in On and Off states and an increase

in dynamic range, suggesting that in this cell line, miR-FF4 targets

in both 50- and 30-UTRs are beneficial compared to only 30-UTR. It
is also plausible that miR-FF4 is so efficient in HeLa cells that the

30-UTR target alone already elicits maximal effect.

The averaged trends are consistent with the model prediction,

but the screen also allows us to choose individual best-performing

sensors. Here, based on dynamic range only, the preferable activa-

tor construct is CMV-tTA with 50- and 30-targets, combined with

TRE-miR-FF4 without protein-coding exons, and either EF1a or UbC

promoter driving the output with either 30- or 50+30-targets. Combin-

ing this with HCT-116 data above, the combination of 50- with 30-
targets is preferable, while the promoter choice depends on absolute

output levels required under particular circumstances.

Sensor follow-up and validation

A few selected sensors were re-measured using manual triplicate

transfection and flow cytometry (Fig 3). The trends were consistent

with the model predictions. For example, the only variable compo-

nent between sensors 2 and 3 is the output promoter, and both the

On and the Off states decrease when a weaker UbC promoter is

used. Between sensors 3 and 4, the Citrine exons are removed,

resulting in increased miR-FF4 levels and further decrease in both

On and Off states. Comparing sensors 3 to 5, where a strong CMV

promoter is replaced with a weaker UbC promoter, we observe

increase in both On and Off states, as expected. Comparing sensors

6 to 3, where the activator tTA is replaced with PIT2, we observe

slight decrease in On and Off states. As discussed above, due to two

simultaneous changes that occur during this replacement, the exact

trend is difficult to predict. However, comparing sensors 7 to 6, we

once again confirm the increase in both On and Off states when a

weaker promoter is used to drive an activator.

Mechanistic verification

To examine whether performance improvements indeed happen for

the reasons identified by the model, we performed detailed charac-

terization of sensors 1 and 3 from Fig 3, which we denote as

30-sensor and 50+30-sensor. We titrated the amount of input and

measured all the relevant species on RNA and protein levels. tTA

and mCherry mRNA, and miR-FF4, were measured by qPCR; tTA

protein was quantified by Western blots; and Citrine and mCherry

levels were measured by flow cytometry. MiR-21 levels were modu-

lated with varying amount of LNA-21; the resulting miR-21 activity

was measured using a bidirectional reporter (Fig 4A). In addition,

one data point was obtained by exogenously transfecting miR-21

mimic into HeLa cells. We measured the dependency of different

species in the sensor cascade on the miR-21 activity. As we progress
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down the cascade, we make the following observations. First, the

mRNA of tTA is almost not affected by miR-21 (Fig 4B); measure-

ment noise is large and there might be a certain downward trend

with the 50+30-sensor, but it is inconclusive. However, the bulk of

the regulation occurs at the protein level (Fig 4C), despite the fact

that we use fully complementary miR-21 targets. The response

sensitivity, which we define as the amount of input eliciting half the

overall effect (IC50) for the 50+30-sensor, stands at about 5% of miR-

21 activity, while it is around 23% for the 30-sensor, consistent with

expectation that 50+30 targets are more sensitive to miR-21. MiR-21

? miR-FF4 mapping exhibits IC50 of about 20% for 50+30-sensor and

45–50% for 30-sensor (Fig 4D). Comparable difference between IC50

values is observed when we examine miR-21 ? mCitrine depen-

dency (Fig 4E). This difference is carried over from miR-21 ? tTA

mapping, because the transfer curve between tTA and miR-FF4 is

similar for both sensors with IC50 at 330 and 260 tTA protein units

for 30- and 30+50-sensor, respectively, when tTA ? miR-FF4 curves

are considered (Fig 4F), and 350 tTA units for both sensors when

using tTA ? Citrine curves (Fig 4G), as expected. At the output

level, mCherry mRNA is not affected by miR-21 (Fig 4H), similar to

the observation with tTA. miR-FF4 ? mCherry and mCitrine ?
Cherry (Fig 4I and J) dependencies show miR-FF4 IC50 of 0.051 and
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Figure 2. Screening results.

A Heat maps depicting the experimental sensor performance data in the form of a 96-well plate. Each well represents one sensor composition. The maps show the On,
log-transformed Off state, and log-transformed dynamic range (to emphasize differences at the low values). Sensors in each row use the same activator construct (as
indicated); sensors in the first six columns employ the exon-less miR-FF4 construct and mCitrine-embedded miR-FF4 in the columns 7–12. Sensors in each column
use the same output construct as indicated below. FF4 constructs are driven by TRE promoter when tTA is used and by PIR promoter when PIT2 is used. All values
were measured in triplicates and normalized to the theoretical maximal output level obtained in the presence of miR-FF4 expressing cassette and the output,
without the activator.

B Bar charts showing trends in sensor performance, namely, changes in On states, Off states, and the dynamic range. The trends are calculated by pairwise comparison
of sensors that only differ in a single building block, as indicated on the x-axis. In these labels, “X versus Y” means that the values measured with X are divided by the
values measured with Y. Act, activator. For activator replacement, both the activator and its regulated promoter must be changed simultaneously. The trends for On
and Off states are shown in absolute units (blue), or following pre-normalization (red) to the respective size of an output pool for each individual sensor. Screening
experiments were performed in HeLa cells. The error bars represent standard deviation of the parwise ratios, 48 values in all cases apart from output target
comparison where 32 values are used.

Source data are available online for this figure.
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0.024 concentration units in 30- and 30+50-sensor, respectively; and
0.31 and 0.18 units for Citrine. Thus, both measurements indicate

higher sensitivity to knock-down when 50- and 30-targets are used,

even though the difference is less pronounced compared to the

knock-down of tTA by miR-21. For the cumulative input ? output

(miR-21 ? mCherry) response, 30-sensor exhibits IC50 of 85% miR-

21 activity and 50+30-sensor has IC50 of about 55% miR-21, while at

the same time sensor dynamic range increases from 21- to 46-fold

(Fig 4K). To summarize, the incorporation of 50- and 30-miRNA

targets in the activator and the output increases miRNA activity

toward these targets. As we have observed, and consistent with the

model, this results in modest decrease in IC50 and large increase in

the dynamic range.

Compact sensor as the basis for universal miRNA logic

Having identified a number of optimal sensor configurations, we

asked whether the circuit is functional in additional cell lines and

whether it can be reprogrammed to address different inputs. The

miR-21 sensor 4 was tested in HCT-116 and HuH-7 cell lines that

both express intermediate levels of miR-21. The data (Fig 5A and B)

show that the sensor operates with good dynamic range in these cell

lines. Next, the sensor was reprogrammed to sense miR-27 input by

swapping the binding targets in the tTA gene. It was tested in HeLa

cells in the presence of extra miR-27 (due to intermediate endoge-

nous expression of this input) and upon miR-27 inhibition with

LNA-27 (Fig 5C). The characteristics of the reprogrammed sensor

0

0.5

1.5

2.0

2.5

CMV-5’T21-tTA-3’T21CMV-tTA-3’T21

TRE-mCitrine^miR-FF4^

UbC-mCherry-3’TF

TRE-mCitrine^miR-FF4^

EF1A-5’TF-mCherry-3’TF

CMV-5’T21-tTA-3’T21

TRE-mCitrine^miR-FF4^

UbC-5’TF-mCherry-3’TF

CMV-5’T21-tTA-3’T21

TRE-^miR-FF4^

UbC-5’TF-mCherry-3’TF

UbC-5’T21-tTA-3’T21

TRE-mCitrine^miR-FF4^

UbC-5’TF-mCherry-3’TF

CMV-5’T21-PIT2-3’T21

PIR-mCitrine^miR-FF4^

UbC-5’TF-mCherry-3’TF

UbC-5’T21-PIT2-3’T21

PIR-mCitrine^miR-FF4^

UbC-5’TF-mCherry-3’TF

13x

m
C

he
rry

, r
el

. u
ni

ts

1.0
13x

23x
79x

11x

41x
45x

7x

0

0.5

1.5

2.0

2.5

1.0

3.0

m
C

itr
in

e,
 re

l. 
un

its

6x
55x 61x

7383x

33x

2369x

Fl
ow

 c
yt

om
et

ry
M

ic
ro

sc
op

y

Sensor
output on             off on             off on             off on             off on             off on             off on             off

m
C

he
rr

y
m

C
itr

in
e

mCerulean

29%

80%

58% 51%

76%

45%

83%

1 2 3 4 5 6 7

On state Off state

Sensor
number

m
C

he
rr

y
m

C
itr

in
e

Figure 3. Experimental validation of selected sensors.
Sensors are numbered at the top. The bar charts showmCherry and mCitrine values of On and Off states, together with the fold-change and the percentage of recovery in the
On state relative to the highest theoretical output. Sensor compositions are indicated below the charts, together with representative flow cytometry andmicroscopy images of
triplicate measurements. Error bars represent standard deviations, and HeLa cells were also utilized in validation experiments. For construct notations, see the legend to Fig 1.

Source data are available online for this figure.
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are very similar to those of the miR-21 sensor, suggesting that the

architecture is flexible.

Sensors can operate in parallel if they utilize distinct sets of acti-

vators and internal miRNA molecules. Parallel operation of multiple

sensors implements a core OR logic between their inputs. In addi-

tion, the outputs of each sensor can be targeted directly by miRNA

inputs, amounting to AND logic between the positive input (target-

ing the activator) and negated inputs (targeting the output). The

combination of AND, NOT, and OR logic operations enables in prin-

ciple universal logic with miRNA inputs based on disjunctive normal

form. Despite earlier work on RNAi logic, universal computation has

never been shown; instead, NOR (Rinaudo et al, 2007) and AND

(Xie et al, 2011) gates were implemented. To illustrate the universal

logic possibility, we implemented an XOR logic operation between

two miRNA inputs that in the normal form expansion is equivalent

to the relationship “[miR-A AND NOT(miR-B)] OR [NOT(miR-A)

AND miR-B]”. We already established that PIT2 can be used instead

of tTA; in order to fully decouple the processing units, we replaced

miR-FF4 with another synthetic miRNA, miR-FF6. We employed

miR-21 and miR-27 as inputs, and constructed individual AND gates

B C

D E

H K

F G

I J

A

Figure 4. In-depth experimental mechanistic interrogation of two different sensors.

A The relationship between the amount of LNA-21 and the activity of miR-21 toward bidirectional activity sensor.
B The relationship between miR-21 activity and mRNA levels of tTA as measured by qPCR. RNA expression is calculated using DCt between tTA mRNA and that of a

housekeeping gene.
C miR-21? tTA protein response curve. Left, representative Western blots.
D miR-21 ? miR-FF4 dependency. miRNA expression is calculated using DCt between miR-FF4 and that of a housekeeping gene mRNA.
E miR-21 ? mCitrine dependency.
F tTA ? miR-FF4 dependency.
G tTA ? Citrine dependency.
H miR-21 ? mCherry mRNA dependency. RNA expression is calculated using DCt between mCherry mRNA and that of a housekeeping gene.
I miR-FF4 ? mCherry protein dependency.
J mCitrine ? mCherry dependency.
K miR-21 ? mCherry protein dependency, embodying the input–output response of the sensors.

Data information: Data are the mean of triplicate measurements, and error bars are standard deviations. Experiments were done in HeLa cells. In panels (B–K), blue
diamonds indicate Sensor 1 from Fig 3 while red squares indicate data for Sensor 3.
Source data are available online for this figure.
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“miR-21 AND NOT(miR-27)” using tTA and miR-FF4, and “NOT

(miR-21) AND miR-27” using PIT2 and miR-FF6. However, our

initial characterization of the PIT2/FF6 sensor showed low On

values and low dynamic range. We used the model prediction

regarding the effect of activator expression on the dynamic range,

and reasoned that low On state could be rectified with the decrease

in activator amount (Fig 1A), as supported by varying activator

dosage with our “best case” sensor (Fig 5D). Thus, we reduced the

amount of the PIT2 activator construct and improved the dynamic

range substantially. These modifications allowed comparable perfor-

mance of two “AND NOT” networks and the realization of the hard-

to-implement XOR computation with miRNA sensors (Fig 6).

Figure 5. Sensor portability, programmability, and fine-tuning.

A, B Sensor 4 (Fig 3) in HCT-116 (A) and HuH-7 (B) cell lines. We measured sensor output in response to endogenous miR-21 levels, upon miR-21 inhibition with LNA-21,
and in the presence of extra miR-21 using mimic cotransfections.

C Sensor reprogrammed to respond to miR-27 input in HeLa cells. Additional miR-27 is transfected to elucidate full sensor dynamic range.
D Measured On and Off states and the dynamic range of Sensor 4 (Fig 3) with increasing activator dosage. The curves are drawn by hand to illustrate the trends

Data information: Bar charts of triplicate measurements and their standard deviations are shown together with representative flow cytometry plots and microscopy images.
Source data are available online for this figure.
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Discussion

In this study, we describe a novel strategy for the development and

optimization of complex synthetic gene circuits. In general, optimal

design of complex networks is hindered by two factors. First, the

mechanistic model of a network might be incomplete and/or erro-

neous, resulting in wrong conclusions. If this is not the case, the

model may correctly prescribe ways to improve system performance

Figure 6. Optimized compact sensor serves as the basis for universal logic with miRNA inputs.

A Abstract network topology showing the “AND NOT” logic operations and the normal form expansion of the XOR logic function.
B Top to bottom: Molecular networks corresponding to the abstract networks; bar charts illustrating network response to all four input combinations; representative

flow cytometry plots and microscopy images. mCerulean serves as transfection control. On state of a miRNA input is obtained with mimic co-transfection while Off
state of a miRNA input is achieved using respective LNA inhibitor. The experiments were performed in triplicates in HeLa cells, and the error bars represent standard
deviations.

Source data are available online for this figure.
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via specific parameter adjustments, but not the concrete ways to

implement these adjustments at the DNA level. The traditional

approach to optimizing a genetic component would require repeated

cycles of mutagenesis and selection, or prior experimental character-

ization of a large library of components to evenly cover the para-

meter range. Both approaches are very time-consuming. In our

approach, we choose two to three basic component variants (i.e.,

promoters, activators, etc.) that are expected, based on the model

and on our best knowledge, to access distant points in the parame-

ter phase space. We then perform exhaustive combinatorial charac-

terization of all possible combinations of these building blocks and

use the resulting data to validate or modify the model and build

solid foundation for further design efforts. Indeed, in the current

study the generated diversity of 96 circuit variants already resulted

in a number of well-performing circuits that far surpassed the

performance of the original system. The analysis of trends (Fig 2B)

confirms model predictions, although it is interesting to note that

the agreement between the model and the data becomes apparent

only when the data are considered in aggregate, judging from the

large error bars in Fig 2B. In a detailed follow-up mechanistic

study, we were able to confirm that the factors determining supe-

rior performance were consistent with the original model predic-

tions. Lastly, the optimization study opened ways to reprogram the

sensor to address additional inputs, setting the background for

large-scale universal logic with miRNA inputs. The conclusions are

also valid for any double-inversion topology that is homologous to

our circuit, namely, a repressor input targeting an activator of a

downstream repressor, in turn repressing the output (Fig 2A). The

conclusion is that the inhibitory interactions must be as strong as

possible with lowest possible IC50, while the activating interactions

should operate far from saturation (thus, its IC50 should not be

much lower than the highest anticipated activator level, obtained

in the “Off” state).

This strategy can be generalized to additional multi-compo-

nent systems where multiple operation parameters must be opti-

mized simultaneously. Clearly, specific conclusions will tightly

depend on circuit topology, and therefore they cannot be easily

translated to other systems unless the latter already contain

modules whose topology matches a previously investigated one.

However, the workflow that begins with defining performance

metrics, followed by computational mapping of the parameter

space and identification of favorable regimes, further followed by

a screen of combinatorially composed networks that access

distant points in the parameter space, and concluding with model

validation or modification, can be applied to any gene circuit.

Even if the initial screen does not provide a desired solution, the

dataset would usually be enough to guide a final round of

focused optimization effort.

Materials and Methods

Modeling and simulation

The simulations were performed in MATLAB. The model

describes the one-input proportional sensor (Fig 1A), and it is a

special case of the general model (Mohammadi et al, 2017).

Briefly, we assume non-cooperative Hill-like relationships

between upstream and downstream components, as supported by

published experimental data (Mohammadi et al, 2017). The

concentration of the activator as the function of the miRNA input

is described as:

Act½ � I½ �ð Þ ¼ ActMAX ICmiR
50

ICmiR
50 þ I½ � ¼ ActMAX 1� I½ �

ICmiR
50 þ I½ �

 !
(1)

where [X] represent the concentration of molecular species X.

[Act] is a steady-state concentration of the activator, either tTA or

PIT2; ActMAX is the maximal steady-state activator concentration,

without any RNAi knockdown. [I] stands for input concentration,

here the miRNA sensor input. ICmiR
50 stands for miRNA concentra-

tion that elicits half the knock-down.

The equation governing miR-FF4 induction is:

miR - FF4½ � Act½ �ð Þ ¼ miR - FF4MAX Act½ �
Kd þ Act½ � (2)

where [miR-FF4] represents steady-state concentration of miR-FF4,

[Act] is the activator level (computed with equation 1), Kd is the

apparent dissociation constant of the activator from its promoter.

miR-FF4MAX is the maximal miR-FF4 expression from an inducible

promoter under activator saturation.

Lastly, the output level is determined by the strength of miR-

FF4 repression using a dependency similar to equation 1,

namely,

Out½ � miR - FF4½ �ð Þ ¼ OutMAX ICFF4
50

ICFF4
50 þ miR - FF4½ �

¼ OutMAX 1� miR - FF4½ �
ICFF4

50 þ miR - FF4½ �

 ! (3)

where [Out] is steady-state output concentration and OutMAX is

the maximal output concentration in the absence of miR-FF4

knock-down. ICFF4
50 denotes the activity of miR-FF4 toward the

output.

For numerical simulations, we used the following basic parame-

ter set:

ICmiR
50 : 20 molecules/cell, ICFF4

50 : 20 molecules/cell, Kd: 10,251

molecules/cell, ActMAX: 9,755 molecules/cell, miR-FF4MAX: 3,000

molecules/cell, and OutMAX: 30,000 molecules/cell.

These parameters were found to be optimal as well as plausible

physiologically and correspond to parameters C1OR, C1NOT, C2,

Tmax, FF4max, and Outmax (Mohammadi et al, 2017).

When required, the basic parameters were varied as indicated in

relevant figure legends or shown on graph axes.

Note: for a mammalian cell, 1 molecule/cell corresponds to

~ 1 pM (1,000 molecules/cell = 1 nM).

The simulations in Fig 1 were performed as follows: for each

parametric scan, the varied parameters were tested in the range

indicated in the plots. The fixed parameters were set at the values

above. In order to calculate the IC50 of the complete sensor,

sensor input/output curves were generated in the range 10�1–105

input molecules and fitted to a Hill function. The resulting curves

were fitted to the Hill function with leakage, namely,

y = b3 + b1x/(b2 + x). The fitted value of b2 parameter was inter-

preted as sensor’s IC50.
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In order to simulate an Off value, input value of 0 was substi-

tuted in the equations 1–3 above. For the On state, we considered

two cases. The highest possible On state is equivalent to OutMAX,

that is, 30,000 molecules; however, the amount of input required to

achieve this level could be extremely high. Therefore, we also evalu-

ate something called “practical” On output that corresponds to

3,000 input molecules/cell. This value represents a reasonably

highly expressed endogenous miRNA. Accordingly, the On:Off ratios

are calculated once using the theoretical On state and once using

the “practical” On state; the latter is likely to be characteristic of the

experimental observations.

Cloning

Plasmids were constructed using standard cloning techniques or

synthesized by Genewiz. Restriction enzymes were purchased from

New England Biolabs (NEB). Phusion High-Fidelity DNA Poly-

merase (NEB) was employed for fragment amplification. Primers

were synthesized by Sigma-Aldrich (Table EV1). For agarose gel-

mediated DNA purification, the GenElute Gel Extraction kit was

used (Sigma-Aldrich). Ligations were performed using T4 DNA

Ligase (NEB). Ligation products were transformed into chemically

competent E. coli DH5a that were plated on LB Agar with appropriate

antibiotics selection (ampicillin 100 lg/ml, kanamycin 50 lg/ml).

Sequence integrity of the plasmids was confirmed by sequencing. In

some cases, construct generation was based on previously published

plasmids (Weber et al, 2002; Leisner et al, 2010; Xie et al, 2011;

Prochazka et al, 2014; Angelici et al, 2016), see Table EV2 for addi-

tional information.

miRNA-mimics and inhibitors

The following miR-mimics purchased from GE were employed:

miR-27b (C-300589-05-0005), miR-21b (5081393), ctrl. (W9931K).

As inhibitors, the Exiqon products with the catalogue numbers

4103307 (mir-27b), 4102261 (miR-21b), and 100006 (ctrl) were

used.

Cell culture

HeLa cells were purchased from ATCC (Cat # CCL-2) and

cultured at 37°C, 5% CO2 in DMEM, high glucose (Life Technolo-

gies, Cat # 41966), supplemented with 10% FBS (Life Technologies,

Cat # 10270106), and 1% Pen/Strep solution (Sigma-Aldrich,

Cat # P4333). Same medium and conditions were employed for

HCT-116 cells (Clontech, Cat #630931) whereas HuH-7 cells,

received from the Health Science Research Resources bank of the

Japan Health Sciences Foundation (Cat #JCRB0403), were grown in

GlutaMAX (Life Technologies, Cat # 21885-025), supplemented with

10% FBS (Life Technologies, Cat # 10270106) and 1% Pen/Strep

solution (Sigma-Aldrich, Cat #P4333).

Cell transfections

Cells were seeded 16 h before transfection at varying density in

order to achieve an 80–90% confluence at the time of transfection

in 24-well plates: HeLa 90,000 cells, HCT-116 200,000 cells, and

HuH-7 50,000 cells per 24-well plate. OptiMEM-diluted DNA

samples and Lipofectamine 2000 (Life Technologies) were combined

and pipetted dropwise onto the cells after a 10-min incubation.

miRCURY LNA power inhibitors or Dharmacon miR-RNA mimics

were added before transfection as indicated. Based on the protocols

for 24-well transfections, all DNA amounts and volumes were scaled

by a factor of 0.2 for transfections in 96-well format for robotic

transfections. A HAMILTON STARplus liquid handling workstation

dedicated to the automated cultivation and transfection of adherent

mammalian cell lines was used to set up the master plates and

perform the transfection of HeLa cells. A customized script using

the Venus application from Hamilton was developed to control

liquid handling, pipetting, and mixing of the DNA solutions during

the screening experiment.

RNA preparation and qPCR

Cells were harvested using TRIzol according to the instructions of

the manufacturer. Before RNA precipitation, glycogen was added as

recommended in the protocol. RNA amounts were quantified using

a Nanodrop, and equal amounts were reverse transcribed following

a vigorous DNase digest (Ambion, Cat # AM1906). miR-FF4

was reverse transcribed using the Exiqon universal cDNA synthesis

kit and amplified with customized primers by the Exilent SYBR

Green master mix. For reverse transcription and amplification of

protein-coding genes, gene-specific primers were designed. A list

of primers can be found in the Table EV1. cDNA was generated by

the Revert Aid Premium First Strand cDNA synthesis kit (Thermo)

and amplified using the Light Cycler 480 Green I Master Mix

(Roche).

Fluorescence microscopy and flow cytometry analysis

Microscopy: 48 h after transfection, the cells were visualized for

fluorescence using a Nikon Eclipse Ti Microscope provided with

a Hamamatsu ORCA-R2 camera and controlled by the Nikon NIS-

Elements software. For the screening experiment, a similar analy-

sis strategy was pursued as in a recent publication (Haefliger

et al, 2016). Flow cytometry: 48 h after transfection cells were

harvested by incubation with 0.2 ll phenol red-free trypsin

(0.5% trypsin-EDTA (Gibco, Life Technologies, Cat # 15400-054)

at 37°C for 3 min. The prepared samples were analyzed using a

BD LSR Fortessa II Cell Analyzer with a combination of excita-

tion and emission that minimizes the crosstalk between different

fluorescent reporters. mCherry was measured with a 561-nm exci-

tation laser coupled with a 600-nm longpass filter and 610/20-nm

emission filter, mCitrine with 488-nm laser, 505-nm longpass fil-

ter and 542/27-nm emission filter and mCerulean using a 445-nm

excitation laser and 473/10-nm emission filter. FlowJo software

was used for data analysis. The provided flow cytometry plot

data are created through the FlowJo Layout editor, and the

shown plots represent one sample out of a biological triplicate.

In order to quantify the flow cytometry measurements, scores of

the different channels were calculated by multiplying the

frequency by the mean. To normalize for transfection efficiency,

the score of the investigated fluorophore/reporter (mCherry or

mCitrine) was normalized by independently expressed transfec-

tion control (mCerulean). The operations can be summarized in

the equation:
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fluorophore intensity in relative units (r.u.)

¼ [mean of fluorophore-positive cells

� frequency of fluorophore-positive cells]

=[mean of transfection ctrl. positive cells

� frequency of transfection ctrl. positive cells].

Western blotting

Adherent cells were harvested after several consecutive washes by

scraping in PBS supplemented with a protease inhibitor cocktail.

Cells were lysed by adding 1× Laemmli sample buffer containing

62.5 mM Tris–HCl, pH 6.8, 2% SDS, 25% glycerol, 0.01%

bromophenol blue, and 2-mercaptoethanol. Protein expression was

analyzed by standard procedures for Western blotting using 12%

Bio-Rad Criterion pre-casted gels and a Trans-Blot Mini device for

protein transfer onto PVDF membranes. a-Tubulin and FLAG-tagged

tTA or PIT2 expression was visualized with a fluorescent secondary

antibody on a LI-COR Odyssey Clx whereas conventional ECL

reagent providing a higher sensitivity was used to quantify tTA-

FLAG expression with an Image Quant LAS 4000mini device.

Antibodies

Detection of FLAG-tagged constructs was achieved using mono-

clonal ANTI-FLAG M2 as primary antibody (Sigma, Cat # F1804)

and an HRP-linked secondary antibody (GE Healthcare, Cat #

NA931). The signals were visualized with SuperSignalWest Femto

MaxSubstrate (Life Technologies, Cat # 34095). For tubulin Sigma0s
T6199 monoclonal antibody was used and a fluorescently labeled

secondary antibody visualized the signals (Li-Cor, Cat # 92632210).

Quantification was done using ImageStudioLite software (Li-Cor

Biosciences).

Data analysis

In order to determine IC50 values in Fig 4, the highest output value

was set to 100% in knock-down curves (miR21?tTA, miR-FF4/

Citrine?Cherry). The input value corresponding to 50% of the

output was calculated via inverse mapping using linear interpolation

of the data in the vicinity of this output value, using three data

points in total with at least one point above 50% output and one

below. In induction curves, that is, tTA?miR-FF4 and tTA?Citrine,

output saturation is achieved; the highest output values in the data

series were set to 100% and half-output values were calculated

accordingly. In the curves with mCherry output, the 100% output

value was measured in the control experiment where the activator

was omitted; thus, there were no assumptions made regarding satu-

ration in the response curves.

Expanded View for this article is available online.
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