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Gut microbiota have been emerging as important contributors to 
the regulation of host homeostasis. Accordingly, several substances 
converted by gut microbiota can have beneficial or adverse effects 
on human health. Among them, S-equol, which is produced from the 
isoflavone daidzein in the human and animal gut by certain microbiota, 
exerts estrogenic and antioxidant activities. Indoxyl sulfate, which is 
metabolized in the liver from indole converted from dietary trypto-
phan by bacterial tryptophanases in the colon, is known as a protein-
bound uremic toxin. Trimethylamine N-oxide, which is generated via 
the oxidization of gut microbiota-derived trimethylamine by hepatic 
flavin monooxygenases, is known as an accelerator of atheroscle-
rosis. The aforementioned gut-derived substances could be potential 
regulators of systematic tissue/organ function, including the vascular 
system. Macro- and microvascular complications of cardiovascular 

and metabolic diseases, including atherosclerosis, hypertension, 
and diabetes, occur systemically and represent the principal cause 
of morbidity and mortality. Vascular endothelial and smooth muscle 
dysfunction play pivotal roles in the development and progression 
of vasculopathies. We herein review the link between the aforemen-
tioned gut-derived substances and endothelial and vascular smooth 
muscle cell function. This information will provide a conceptual frame-
work that would allow the development of novel preventive and/or 
therapeutic approaches against vasculopathies.

Keywords:  blood pressure; endothelium; hypertension; indoxyl sul-
fate; S-equol; TMAO; vascular smooth muscle

doi:10.1093/ajh/hpaa053

This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/4.0/), which permits non-
commercial re-use, distribution, and reproduction in any medium, 
provided the original work is properly cited. For commercial re-use, 
please contact journals.permissions@oup.com

Vascular dysfunction is undoubtedly associated with the 
onset and maintenance of hypertension, as well as with the 
initiation and development of vascular complications related 
to several chronic diseases, including diabetes, hyperten-
sion, and atherosclerosis.1–6 Blood vessels contain two pri-
mary cell types, endothelial cells (ECs) and vascular smooth 
muscle cells (VSMCs), both of which exert an essential 
functions in sustaining vascular homeostasis.7

ECs constantly generate a number of vasoactive and 
trophic substances that regulate inflammation, VSMC 
growth, platelet function, plasmatic coagulation, and 
vasomotion under normal conditions.8,9 ECs play a piv-
otal role in vascular tone regulation by generating and re-
leasing several factors, including endothelium-derived 
relaxing factors (EDRFs) and contracting factors.9–12 
Among them, three EDRFs, including nitric oxide (NO), 
endothelium-derived hyperpolarizing factor (EDHF), and 
prostacyclin, and several endothelium-derived contracting 
factors, including angiotensin II, endothelin-1, vasocon-
strictor prostanoids, and uridine adenosine tetraphosphate, 
have been well known.9–13 During aging and/or in sev-
eral disease states, including hypertension, diabetes, 

hypercholesterolemia, and atherosclerosis, an imbalance 
between EDRFs and endothelium-derived contracting 
factors levels has been observed in different vasculatures.8–10 
Therefore, manipulating the balance between endothelium-
derived factors is an important strategy for preventing the 
initiation and development of vascular dysfunction and 
complications.

VSMCs are another major cell type that forms the blood 
vessels. Distinct from other mature cell types throughout the 
body, VSMCs do not terminally differentiate but maintain a 
remarkable plasticity.4–6,14 Fully differentiated medial VSMCs 
of mature blood vessels retain quiescence and express var-
ious genes and proteins related to important components 
that regulate contraction and relaxation, allowing them to 
regulate systemic and local blood pressure via vascular tone 
control.4,6,14 In response to vascular injury or changes in 
local environmental cues, differentiated/contractile VSMCs 
are capable of switching to a dedifferentiated phenotype 
characterized by increased proliferation, migration, and ex-
tracellular matrix synthesis consistent with the reduced ex-
pression of contractile markers.4–6,14 Given the key role of 
VSMC dysfunction in the remodeling process during the 
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development of vascular diseases,4–6,14,15 determining caus-
ative factors and molecular mechanisms underlying ab-
normal proliferation, migration, apoptosis, senescence, and 
calcification in VSMCs is critical for a comprehensive un-
derstanding on the initiation and development of vascular 
dysfunction and for the establishment of therapies and pre-
ventive strategies against vascular diseases.

A growing body of evidence has suggested a relationship 
between gut microbiota and several cardiovascular and met-
abolic diseases.16–24 A  number of substances derived from 
the gut microbiome, microbial metabolites, and bacterial 
structural components have been found to affect host ho-
meostasis. Given the adverse or beneficial effects of such 
substances on many physiological functions, controlling gut 
dysbiosis, defined as deleterious changes to the composition 
or number of gut bacteria, has been an important strategy 
against the development and/or progression of numerous 
diet-related diseases, including cardiovascular diseases.16–24

The present review summarizes some of the experimental 
and clinical evidence indicating that gut-derived substances 
can affect vascular function, especially focusing on the re-
lationship between cellular function and three substances, 
S-equol, indoxyl sulfate, and trimethylamine N-oxide 
(TMAO), in ECs and VSMCs.

S-EQUOL

Equol [7-hydroxyl-3-(4-hydroxyphenyl)chroman] is 
produced from soy isoflavone daidzein in human and an-
imal gut by certain bacterial biotypes that can across 
individuals.25,26 A  number of studies have suggested that 
S-equol is responsible for the metabolic and cardiovascular 
benefits of soy.27–29 Considerable evidence has suggested that 
S-equol can affect several phenomena in not only ECs but 
also VSMCs (Figure 1).

In VSMCs, S-equol inhibited the proliferation, col-
lagen, and total protein syntheses, migration, and mitogen-
activated protein kinase activity of human aortic smooth 
muscle cells (HASMCs) in a concentration-dependent 
manner,30 suggesting that S-equol may confer protec-
tive effects on the vascular system by inhibiting vascular 
remodeling and neointima formation.

In ECs, S-equol suppresses oxidized low-density 
lipoprotein-induced apoptosis via decreased superoxide 
production by nicotinamide adenine dinucleotide phos-
phate oxidase and increased NO production in human um-
bilical vein ECs (HUVECs)31 and inhibits H2O2-induced 
apoptosis by reducing intracellular reactive oxygen spe-
cies (ROS) generation and increasing the expression of 
phosphorylated-p38 mitogen-activated protein kinase and 
Bcl-2 in bovine aortic ECs.32 These findings suggest that 
S-equol exerts antiapoptotic effects in ECs. Another study 
showed that S-equol acutely activates endothelial NO re-
lease at basal cytosolic Ca2+ levels by activating extracellular 
signal-regulated kinase (ERK) 1/2 and Akt independent of 
classic estrogen receptor (ER) signaling.33 Inhibiting mito-
chondrial ROS abolished S-equol-mediated activation of 
Akt, ERK1/2, endothelial NO synthase (eNOS) phospho-
rylation, and NO production, as well as the relationship 

between S-equol-stimulated mitochondrial ROS genera-
tion and epidermal growth factor receptor kinase transac-
tivation and F-actin cytoskeleton reorganization.34 Hence, 
identifying novel actions of S-equol may provide valuable 
insights into therapeutic strategies that improve endothelial 
function in cardiovascular disease.

With regard to vascular tone regulation, S-equol can pro-
mote relaxation in a variety of arteries, including the ca-
rotid arteries, cerebral arteries,35 aorta,33,36,37 and basilar 
arteries.38 In rat carotid arteries, S-equol-induced relaxa-
tion via endothelium-, nitric oxide synthase (NOS)-, and 
K+ channel-independent pathways, which was preserved 
during angiotensin II-induced hypertension.35 Another 
study showed that S-equol-induced relaxation of rat tho-
racic aorta was NO dependent.33 In human uterine arteries, 
S-equol-induced relaxation was mediated by its calcium 
antagonistic action through its antagonism of receptor-
dependent but not voltage-dependent Ca2+ channels.39 
S-Equol increased regional cerebral blood flow in rats and 
promoted concentration-dependent but endothelium-
independent relaxation of rat cerebral basilar arteries, which 
was mediated by the large-conductance Ca2+-activated K+ 
(BKCa) channel.38 In fact, in stably expressed multiple K+ 
channels in HEK293 cells, S-equol inhibited several cardiac 
K+ currents at relatively high concentrations but increased 
BKCa current at very low concentrations, suggesting that 
S-equol was safe for cerebral vascular disorders.40 These 
evidences suggest that S-equol could cause endothelium-
dependent and/or -independent relaxation depending on 
the artery.

Elevated insulin level, an important pathophysiological 
condition for type 2 diabetes, results from insulin-resistant 
states. Prolonged elevation of circulating insulin levels can 
promote several types of systematic dysfunctions, including 
vascular diseases.3 We very recently demonstrated that 
S-equol can prevent the augmentation of serotonin-induced 
contraction in carotid arteries receiving prolonged treat-
ment with increased insulin levels, which may have been 
due to increased BKCa channel activity in carotid artery 
smooth muscle cells.41 Therefore, S-equol may possibly pre-
vent the development of vascular dysfunction in high insulin 
conditions and type 2 diabetes.

In in vivo studies, a dietary soy protein-rich diet for 
12–16 months can better modulate blood pressure in vivo, 
antioxidant and eNOS gene expression, and intracellular 
glutathione levels compared with a soy protein-deficient 
diet in male rats.42 S-Equol treatment (low-dose, 10 mg/kg 
and high-dose, 20  mg/kg orally for 4 weeks) could dose-
dependently decrease systolic blood pressure in deoxy-
corticosterone acetate-salt hypertensive rats by inhibiting 
angiotensin-converting enzyme activity and increasing 
the NO production.43 Removal of dietary soy isoflavones 
reduced endothelium-derived NO levels in ovariectomized 
rats, while S-equol supplementation (200 µg/day subcutane-
ously for 4 weeks starting at the 16th week after receiving an 
isoflavone-deficient diet) partially improved NO-mediated 
endothelial function.36 In addition, S-equol treatment (0.05% 
and 0.1% for 12–14 weeks) displayed antiatherosclerotic 
properties in apolipoprotein E knockout mice fed a high-fat 
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diet by inhibiting endoplasmic reticulum stress through the 
activation of nuclear factor-erythroid 2-related factor 2 in 
ECs.44 The aforementioned in vivo studies imply that S-equol 
has potential benefits against vascular dysfunction among 
not only postmenopausal women but also those with hyper-
tension and metabolic disorder-associated atherosclerosis.

Taking these in vitro and in vivo evidences together, 
S-equol appears to be a clinically safer alternative to 
feminizing estrogens for the prevention of cardiovascular 
diseases among both men and women.

Nonetheless, further investigations are required to elu-
cidate the underlying mechanisms. For instance, S-equol 
exerts several biological effects by binding to ERs, with its 
binding affinity being stronger to ERβ than ERα.45,46 Given 
that ERs are not equally distributed among different tissues/
cells, S-equol might have different effects depending on 
the ratio of ERα and ERβ isoforms present. Furthermore, 
S-equol may exert its effects by independently binding to 
ERs.33 Considering that the primary target(s) of S-equol in 
ECs and VSMCs related to the aforementioned effects re-
main unclear, future investigations will be required.

The production of S-equol has attracted considerable at-
tention, with several excellent reviews having been written 
on S-equol-producing phenotype, S-equol-producing 
microorganisms, and S-equol-producing populations in 

the human gut.25,26 S-Equol is produced by the action of 
gut bacteria in some individuals called S-equol-producers. 
The prevalence of S-equol-producers in Asian countries 
has been reported to be 50%–60%, with Western having a 
much lower prevalence (25%–30%) than Asian countries.47 
Observational studies have suggested that S-equol produc-
tion was associated with decreased risk of certain diseases 
or conditions, including obesity48, hypertension, and vas-
cular dysfunction.48–51 Clinical trials have reported that the 
beneficial effect of soy on cardiovascular health, particularly 
on the normalization of lipids profiles,52,53 inflammatory 
markers,54 vascular function,54,55 and blood pressure,53,55 was 
only present or more pronounced in equol-producers than 
nonproducers, although others did not.56,57 However, most 
of these data were from nonprespecified subgroup analysis 
of equol-producers who were not randomized accordingly. 
Recently, Ahuja et  al.58 investigated the cross-sectional as-
sociation between dietary isoflavones and equol-producer 
status and coronary artery calcification, a biomarker of cor-
onary atherosclerosis, among Japanese men. Their results 
subsequently showed that equol-producers had lower cor-
onary artery calcification than equol nonproducers inde-
pendent of cardiovascular risk factors. The absence of an 
inverse association between coronary arterial calcification 
and dietary isoflavones therefore indicated that equol may 

Figure 1. Effects of S-equol on vascular endothelial and smooth muscle cells. S-Equol has several beneficial effects, including anti-apoptosis, anti-
oxidation, and anti-atherosclerosis; production of nitric oxide in endothelial cells; anti-proliferation and/or migration; and promotion of vascular smooth 
muscle cell relaxation. Details are provided in the text. Abbreviations: BKCa, large-conductance calcium-activated potassium channel; EC, endothelial cell; 
eNOS, endothelial nitric oxide synthase; ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinase; HO-1, heme oxygenase-1; MAPK, mitogen-
activated protein kinase; NO, nitric oxide; Nrf2, NF-E2-related factor 2; NQO1, NAD(P)H:quinone oxidoreductase 1; Ox-LDL, oxidized low-density lipopro-
tein; PI3K, phosphoinositide 3-kinase; ROC, receptor-operated calcium channel; VSMC, vascular smooth muscle cell.
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be an important factor for the atheroprotective properties of 
dietary isoflavones.58 Further prospective studies and clin-
ical trials are warranted to expand on such observations.

Despite the growing body of evidence suggesting a re-
lationship between microbiota profile and cardiovascular 
diseases, some questions about S-equol currently remain 
unresolved. For instance, the extent of differences in S-equol 
production under physiological and pathophysiological 
states have yet to be determined. Considering that the ac-
tual microorganisms involved in S-equol production cur-
rently remain unknown and that the production phenotype 
and S-equol production itself may be modified by dietary 
habits, drug consumption, and disease duration, aging, or 
sex, understanding the association between S-equol levels, 
microbiota population, and lifestyle among humans with 
and without cardiovascular diseases should be encouraged 
to elucidate the preventive or therapeutic effects of S-equol 
as a nutraceutical or pharmaceutical agent against cardiovas-
cular diseases.

INDOXYL SULFATE

Indoxyl sulfate is a protein-bound uremic toxin that 
has deleterious effects on the vascular system. Dietary 
protein-derived tryptophan is metabolized to indole by 
tryptophanase, which is produced by intestinal bacteria, 
such as Escherichia coli. Indole is then absorbed into the 
blood from the intestine, metabolized to indoxyl sulfate in 
the liver, and normally excreted into the urine.59 During 
uremia, however, the reduced renal clearance of indoxyl 
sulfate results in elevated circulating levels, as observed in 
patients with chronic kidney disease (CKD).21–24,60

Organic anion transporters (OATs) are involved in the 
cellular uptake of indoxyl sulfate and play a role in the im-
pairment of endothelial and smooth muscle functions.61 
Among the OATs related to indoxyl sulfate uptake, OAT1, 
and OAT3 are expressed in ECs61 and VSMCs.62–65 Studies 
have shown that the aryl hydrocarbon receptor (AhR) is an 
intracellular receptor for indoxyl sulfate.66,67 The AhR is a 
ligand-activated transcriptional factor that mediates adap-
tive and toxic responses in cells.67,68 Indoxyl sulfate induces 
a number of inflammation-related substances in ECs and 
VSMCs via OATs and AhR. Using the small interfering 
RNA technique, indoxyl sulfate-induced interleukin-6 (IL-
6) expression in both HUVECs and HASMCs, which were 
suppressed by OAT3 small interfering RNA, AhR small 
interfering RNA, and nuclear factor-κB (NF-κB) subunit 
p65 small interfering RNA. This suggests that indoxyl sul-
fate induces IL-6 expression in both ECs and VSMCs via 
the OAT3/AhR/NF-κB pathway.62 Given that IL-6 plays an 
important role in the initiation and amplification of inflam-
mation, OAT3/AhR/NF-κB pathway suppression can be 
effective in preventing indoxyl sulfate-induced inflamma-
tion. Indoxyl sulfate not only induced the expression inflam-
matory substances, including cytokines, but also amplified 
cytokine-induced responses in ECs and VSMCs. Using 
EC-specific AhR knockout mouse, Ito et al.68 demonstrated 
that indoxyl sulfate could enhance tumor necrosis 
factor (TNF)-α-induced leukocyte–endothelial interactions 

due to activator protein-1 transcriptional activity through 
AhR. Morita’s laboratory found that indoxyl sulfate activates 
AhR and increases oxidative stress in HUVECs via Nox4  
(a component of nicotinamide adenine dinucleotide phos-
phate oxidase), resulting in enhanced monocyte chemo-
attractant protein-1 expression.69 In addition, indoxyl 
sulfate-induced monocyte chemoattractant protein-1 ex-
pression was related to indoxyl sulfate uptake via OATs in 
human ECs.61 These evidences strongly suggest that indoxyl 
sulfate plays a key role in the development of atherosclerosis 
and that manipulation of indoxyl sulfate-related molecules 
(e.g., OATs and AhR) may be a potential approach against 
atherosclerosis.

Tissue factor is the primary initiator of blood coagula-
tion in vivo and has been implicated in the pathogenesis 
of cardiovascular disorders and development of athero-
sclerotic diseases. Studies have shown that indoxyl sulfate 
increased tissue factor production in ECs and peripheral 
blood mononuclear cells, which are two cellular sources 
of tissue factor in the blood, via AhR activation.70 This 
increase in tissue factor expression was associated with 
increased procoagulant activity.70 Thus, given that indoxyl 
sulfate may be an initiation factor that increases throm-
botic events, suppression of indoxyl sulfate-mediated 
signaling may prevent thrombotic complications associ-
ated with atherosclerosis.

Several reports have suggested an association between 
indoxyl sulfate and cellular senescence in ECs. Indoxyl sul-
fate suppresses Sirt1 activity in association with a reduction 
in intracellular nicotinamide phosphoribosyltransferase 
activity and NAD+ content, leading to the acceleration of 
cellular senescence due to oxidative stress, with cellular se-
nescence in HUVECs being mediated by AhR.71 In addition, 
indoxyl sulfate promoted cellular senescence in HUVECs by 
increasing ROS production and p53 activity.72 Considering 
the involvement of vascular senescence in the development 
of cardiovascular diseases, these evidences suggest that 
suppressing the indoxyl sulfate–AhR signaling pathway to 
regulate cellular senescence may be a novel approach against 
cardiovascular diseases.

EC apoptosis has been an important pathological fea-
ture in the development of vascular disease. Indoxyl sul-
fate downregulated microRNA-214 (miR-214) consistent 
with enhanced apoptosis in mouse aortic ECs, while 
cyclooxygenase-2  (COX-2)  had been determined to be a 
target gene of miR-214, the inhibition of which reduced in-
doxyl sulfate-induced ECs apoptosis along with the suppres-
sion of prostaglandin E2 (PGE2) secretion.73 Thus, miR-214 
plays a protective role against indoxyl sulfate-induced EC 
apoptosis by direct downregulation of cyclooxygenase-2/
prostaglandin E2 signaling, making it a potential target for 
indoxyl sulfate-induced EC injury.

Extracellular vesicles released by different cells, including 
ECs, have been closely associated with vascular dysfunction.74 
Indoxyl sulfate increases the release of extracellular vesicles 
from ECs, which promotes VSMC proliferation by inducing 
transforming growth factor-β production.75,76 Although 
mechanisms underlying indoxyl sulfate-induced release of 
extracellular vesicles remain unclear, the aforementioned 



American Journal of Hypertension 33(9) September 2020 797

Vascular Function and Gut-Derived Substances

data suggest that indoxyl sulfate may be a causative factor in 
the pathogenesis of vascular access stenosis.

Indoxyl sulfate affects many cellular functions in not only 
ECs but also VSMCs77,78 (Figure 2) and induces the prolif-
eration and migration of VSMCs through platelet-derived 
growth factor-β receptors and ROS generation.79

Vascular calcification is an independent risk factor for the 
development of cardiovascular diseases and a prognostic in-
dicator of end-stage renal disease.78,80 Phosphorus (Pi) is an 
important regulator of vascular calcification, with Pi trans-
port via type-III sodium (Na)–Pi cotransporters, PiT1, and 
PiT-2, being a crucial step in calcification.81 Indoxyl sulfate 
promoted Pit-1 expression in part by activating the c-Jun 
N-terminal kinase pathway related to the mechanism of in-
doxyl sulfate-induced osteoblastic differentiation and matrix 
mineralization.82 Indoxyl sulfate-induced ROS generation 
via Nox4 upregulation and the expression of osteoblast-
specific proteins, including core binding factor 1, alkaline 
phosphatase, and osteopontin in HASMCs.83 The activation 
of the phosphoinositide-3-kinase/Akt/NF-κB pathway was 
also related to VSMC calcification induced by indoxyl sul-
fate.84 Several reports have suggested an association between 
indoxyl sulfate, calcification, and epigenetic regulators in 
VSMCs. Indoxyl sulfate increased CpG hypermethylation 
of the Klotho gene, decreased Klotho expression in 
HASMCs, and potentiated calcification in HASMCs.85 

Methyltransferase-like 14-dependent m6A methylome 
in VSMCs is also related to the development of indoxyl 
sulfate-induced calcification.86 Indoxyl sulfate promoted 
osteoblastic differentiation and calcification of VSMCs and 
reduced the expression of lysine methyltransferase 7/9, one 
of the important histone methyltransferases.87 In addition, 
indoxyl sulfate was able to activate autophagy, with the in-
hibition of autophagy partly suppressing the stimulating ef-
fect of indoxyl sulfate on the expression of both runt-related 
transcription factor 2 and calcium deposition.87 In HASMCs, 
indoxyl sulfate accelerates calcification through miRNA-
29b-dependent regulation of Wnt/β-catenin signaling.88

Studies have shown that acutely exposing indoxyl sul-
fate to normal control vessels decreases ACh-induced 
endothelium-dependent relaxation in the thoracic aorta 
of mice89 and rats90, and reduces in the superior mesen-
teric artery of rats.91 Such acute effects of indoxyl sulfate 
on endothelium-dependent relaxation may be attributed to 
decreased NO bioavailability. ACh-induced endothelium-
dependent relaxation is largely mediated by NO in the 
thoracic aorta, with EDHF also contributing to supe-
rior mesenteric artery relaxation in addition to NO.92 We 
demonstrated that the indoxyl sulfate-mediated reduction 
in ACh-induced relaxation within the rat superior mesen-
teric artery was still preserved following COX inhibition by 
indomethacin or COX plus EDHF signaling inhibition by 

Figure 2. Effects of indoxyl sulfate on vascular endothelial and smooth muscle cells. Indoxyl sulfate induces apoptosis, senescence, prothrombotic 
events, reduction of nitric oxide bioavailability, and release of extracellular vesicle in endothelial cells and inflammation, proliferation and/or migration, 
calcification, and modulation of vascular tone in vascular smooth muscle cells. Details are provided in the text. Abbreviations: COX-2, cyclooxygenase-2; 
EC, endothelial cell; eNOS, endothelial nitric oxide synthase; ERK, extracellular signal-regulated kinase; ICAM-1, intercellular adhesion molecule-1; IL-6, in-
terleukin-6; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemotactic protein-1; METTL14, methyltransferase-
like 14; miR-214, microRNA-214; NF-κB, nuclear factor-kappa B; PDGF, platelet-derived growth factor; PGE2, prostaglandin E2; PI3K, phosphoinositide 
3-kinase; Pit-1, phosphate transporter 1; ROCK, Rho-associated protein kinase; ROS, reactive oxygen species; SET7/9, lysine methyltransferase 7/9; VCAM-
1, vascular cell adhesion molecule-1.
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indomethacin plus small (SKCa)- and intermediate (IKCa)-
conductance calcium-activated K+ channels.91 However, the 
difference in ACh-induced relaxation between vehicle and 
indoxyl sulfate treated groups was eliminated by NOS inhi-
bition or NOS/COX inhibition.91 Therefore, acute exposure 
of rat superior mesenteric artery to indoxyl sulfate impaired 
ACh-induced endothelium-dependent relaxation due to the 
reduction in NO signaling rather than alterations in other 
EDRFs, such as EDHF and prostacyclin. In addition to acute 
treatment with indoxyl sulfate, prolonged in vitro treatment 
with indoxyl sulfate impaired ACh-induced relaxation in 
the aorta of female wild-type mice whereas AST-120 (an 
oral charcoal adsorbent, described below) improved relax-
ation and prevented indoxyl sulfate-induced EC loss (assess 
using CD31 expression) and intercellular adhesion mole-
cule-1/vascular cell adhesion molecule-1 upregulation.89 
Furthermore, in vivo AST-120 treatment in a mice model 
of CKD (i) improved ACh-induced aortic relaxation, (ii) 
reduced aortic expressions of vascular cell adhesion mole-
cule-1 and intercellular adhesion molecule-1, (iii) decreased 
aorta systolic expansion rate, and (iv) prevented the in-
crease in pulse wave velocity.89 Moreover, treatment with in-
doxyl sulfate impaired vascular responses, such as increased 
phenylephrine-induced contraction and decreased ACh-
induced relaxation of the aorta, in 5/6 nephrectomized rats, 
all of which were improved by ROS scavengers or RhoA/Rho 
kinase (ROCK) pathway blockade.93

Despite the presence of complicating mechanisms un-
derlying indoxyl sulfate-induced EC and VSMC dysfunc-
tion (Figure  2), the manipulation of the aforementioned 
signalings may constitute an effective strategy. AST-120 ad-
sorption of indoxyl sulfate can also be an effective strategy 
for blocking the deleterious effects of indoxyl sulfate. 
Indeed, AST-120 treatment has been shown to reduce ox-
idative stress94,95 and improve flow-mediated vasodilation 
in patients with CKD94 and endothelium-dependent relaxa-
tion in uremic rat arteries95 while exerting protective effects 
against the progression of atherosclerosis.96 Considering the 
aforementioned evidence suggesting that indoxyl sulfate is 
undoubtedly a causative factor for the development of vas-
cular dysfunction, decreasing its levels (e.g., through AST-
120) may be an effective and novel therapeutic strategy for 
the treatment of cardiovascular diseases.

Indoxyl sulfate is excreted from the circulating blood into 
the urine by healthy kidneys.97 Generally, indoxyl sulfate is 
metabolized by dietary tryptophan.69,97 Thus, a high-protein 
diet and gut microflora influence the increase in circulating 
indoxyl sulfate levels among patients with mild renal dys-
function or without CKD.98,99 However, indoxyl sulfate can 
easily accumulate in patients with renal dysfunction, es-
pecially those with impaired renal tubular excretory func-
tion.97 Patients with advanced CKD have higher levels of 
circulating indoxyl sulfate than those without CKD. In ad-
dition, the increased accumulation of indoxyl sulfate has 
been associated with future risk.100,101 On the other hand, 
an increased plasma indoxyl sulfate levels had been associ-
ated with increased carotid intima-media thickness among 
patients with chronic coronary artery disease with pre-
served renal function.102 Also, a recent study using a com-
prehensive metabolomic profiling of plasma in patients 

with type 2 diabetes to explore metabolites associated with 
atherosclerosis found that plasma levels of inositol and in-
doxyl sulfate were associated with carotid maximal intima-
media thickness and/or flow-mediated vasodilation.103 
Moreover, subjects with coronary artery disease had signif-
icantly higher plasma levels of inositol and indoxyl sulfate 
than those without an apparent history of cardiovascular 
disease.103 These findings suggest that increased plasma in-
doxyl sulfate levels can accelerate atherosclerosis not only in 
patients with severe renal dysfunction but also in those with 
early nephropathy or normal renal function. Thus, impaired 
renal function is not the sole reason for high concentrations 
of circulating indoxyl sulfate. Given that diabetes profoundly 
alters the gut microenvironment and is associated with a 
distinct gut microbial composition and metabolism,104,105 it 
could be also related to elevated circulating indoxyl sulfate 
levels. Nonetheless, further investigations on the balance 
between generation and excretion of indoxyl sulfate in each 
cardiovascular disease will be required.

TRIMETHYLAMINE N-OXIDE

Dietary betaine, choline, l-carnitine, and other choline-
containing compounds, which are the principal nutrient 
precursors of TMAO, are metabolized to trimethylamine 
(TMA) by gut microbiota and several enzymes. TMAO is a 
compound generated by the liver via a flavin-monooxygenase 
3 oxidation of gut microbiota-derived TMA, which is ab-
sorbed in the intestines and delivered to the liver via the 
portal circulation.16,18,106 Dietary choline intake has been 
mechanistically linked to atherosclerotic plaque formation 
by increasing circulating TMAO levels derived from gut 
microbiome metabolism of choline to TMA.21,107

A growing body of evidence has suggested that TMAO 
has various adverse effects at the EC level.106 In HUVEC 
and aortas from ApoE knockout mouse, TMAO exerted 
proinflammatory effects through nucleotide-binding 
oligomerization domain-like receptor family, pyrin domain-
containing 3 (NLRP3) inflammasome activation partly due 
to the inhibition of the sirtuin 3-superoxide dismutase 
2-mitochondrial ROS signaling pathway.108 TMAO was 
able to induce the expression of inflammatory markers in 
both primary human aortic ECs (i.e., cyclooxygenase-2, 
IL-6, E-selectin, and intercellular adhesion molecule-1) 
and VSMCs (cyclooxygenase-2, IL-6, tumor necrosis 
factor-α, and intercellular adhesion molecule-1), increase 
leukocyte adhesion to ECs, and activate mitogen-activated 
protein kinases (p38 mitogen-activated protein kinase 
and ERK1/2) and NF-κB.109 These evidences suggest that 
TMAO has proinflammatory abilities in both ECs and 
VSMCs. Decreased self-repair capacity in ECs may play a 
role in the initiation of atherosclerosis. TMAO impaired the 
self-repair capacity of HUVECs and increased monocyte 
adhesion partly due to the activation of the protein kinase 
C/NF-κB/vascular cell adhesion molecule-1 pathway.110 
Another study showed that TMAO increased senescence 
in HUVECs through suppression of SIRT1 expression, 
increased oxidative stress, and p53/p21/Rb pathway acti-
vation.111 Activation of the ROS-thioredoxin interacting 
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protein-NLRP3 inflammasome contributed to TMAO-
induced inflammation (i.e., increased production of IL-1β 
and IL-18) and endothelial dysfunction (i.e., reduced eNOS 
expression and NO production).112 These evidences indi-
cate that TMAO is a novel positive regulator of endothelial 
dysfunction. Although the receptors for TMAO have not 
yet to be identified, the aforementioned signaling molecules 
may provide information on suppressing TMAO-related 
endothelial dysfunction and atherogenesis.

Several reports have investigated the relationship be-
tween TMAO and vascular tone regulation (Table  1). 
Accordingly, an association between elevated circulating 
TMAO levels and endothelial dysfunction, including 
decreased eNOS-derived NO bioavailability in the aorta, 
had been observed in Fischer-344 rats.113 In a reduced 
uterine perfusion pressure rat model of preeclampsia, 
increased levels of circulating TMAO, increased super-
oxide production, and proinflammatory cytokines in the 
aorta, reduced aortic relaxation, and hypertension had 
been observed, all of which were normalized following 
TMAO inhibitor treatment (3,3-dimethyl-1-butanol).114 
In a rat model of CKD, 3,3-dimethyl-1-butanol treatment 
normalized ACh-induced endothelium-dependent relaxa-
tion and eNOS activity and reduced superoxide production 
and proinflammatory cytokine (i.e., tumor necrosis factor-α 
and IL-6) expressions in the aorta.115 These evidences sug-
gest that TMAO is a causative factor for the development of 
endothelial dysfunction in aging, preeclampsia, and CKD 
and that targeting TMAO may be a novel strategy for the 
prevention and treatment of patients with cardiovascular 
disease.

However, only a few direct evidences have been avail-
able regarding the relationship between TMAO and vas-
cular function (Table 1). Intraluminal exposure to TMAO 
(1  µmol/l for 4 hours) had no effect on ACh-induced re-
laxation in adipose arterioles from healthy volunteers.116 
In our recent study, acute exposure to TMAO (300 µmol/l 

for 1 hour) specifically impaired EDHF-type relaxation in 
rat femoral arteries but not superior mesenteric arteries.117 
In that study, we found that ACh-induced femoral arterial 
relaxation was similar between the control and TMAO-
exposed groups, whereas ACh-induced femoral arterial 
relaxation observed in the presence of Nω-nitro-l-arginine 
(l-NNA, a NOS inhibitor) plus indomethacin (a COX in-
hibitor) was greatly impaired in the TMAO-treated group. 
In addition, under indomethacin treatment (i.e., preserved 
NO and EDHF components), ACh-induced femoral arte-
rial relaxation was slightly weaker in the TMAO-exposed 
group than in the control group. We also found that ACh-
induced NO-mediated femoral artery relaxation was sim-
ilar between the control and TMAO-exposed groups under 
treatment with indomethacin and 1-[(2-chlorophenyl)
diphenylmethyl]-1H-pyrazole (TRAM-34, IKCa inhibitor) 
and apamin (SKCa inhibitor) (two KCa channel inhibitors re-
lated to the source of EDHF). Furthermore, ACh-induced 
femoral arterial relaxation was considerably small and sim-
ilar between both two groups under three EDRFs blockades 
established via treatment with l-NNA, indomethacin, 
TRAM-34, and apamin. Finally, we showed that ACh-
induced relaxation was similar between the control and 
TMAO-exposed groups under (i) intact, (ii) l-NNA plus 
indomethacin, and (iii) l-NNA, indomethacin, TRAM-
34, and apamin conditions in the rat superior mesenteric 
arteries. Therefore, the aforementioned findings suggest 
that TMAO could specifically affect endothelial function 
with variations among different vessels.

A growing body of evidence has suggested that TMAO 
affects the cardiovascular system, exerting both harmful 
or beneficial effects.118,119 These discrepancies may have 
resulted from the limited number of studies investigating 
the effects of TMAO at concentrations close to physio-
logical levels in mammals. In fact, chronic, low-dose, oral 
TMAO treatment could reduce diastolic dysfunction in 
the pressure-overloaded heart of hypertensive rats.120 On 

Table 1. Evidence of the relationship between vascular tone and TMAO

Conditions Responses References

Direct exposure of TMAO to vessels

 Adipose arterioles from healthy volunteers [1 µmol/l for 4 h] No effect on ACh-induced relaxation Malik et al.116

 Superior mesenteric artery of rat [300 µmol/l for 1 h] No effect on ACh-induced relaxation Matsumoto et al.117

 Femoral artery of rat [300 µmol/l for 1 h] Impaired ACh-induced EDHF-type relaxation Matsumoto et al.117

Treatment with DMB, an inhibitor of trimethylamine formation to reduce TMAO levels

 Aorta of aged rat [male Fisher-344 rat (~22 months old), with 
vs. without DMB]

Improvement of ACh-induced relaxation Li et al.113

No effect on SNP-induced relaxation

 Aorta of CKD model rat [5/6 nephrectomy rat,  
with vs. without DMB]

Improvement of ACh-induced relaxation Li et al.115

No effect on SNP-induced relaxation

 Aorta of RUPP model rat [with vs. without DMB] Improvement of ACh-induced relaxation Chen et al.114

No effect on SNP-induced relaxation

Abbreviations: ACh, acetylcholine; CKD, chronic kidney disease; DMB, 3,3-dimethyl-1-butanol (an inhibitor of trimethylamine forma-
tion); EDHF, endothelium-derived hyperpolarizing factor; RUPP, reduced uterine perfusion pressure; SNP, sodium nitroprusside; TMAO, 
trimethylamine N-oxide.
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the other hand, Jaworska et  al.121 observed that older rats 
presented higher levels of plasma TMA, which is associated 
with alterations in gut bacteria composition, structural, and 
functional changes in the colon, and increased penetration 
of TMA from the colon to portal blood. The same authors 
found that close to physiological concentrations of TMA 
reduced proliferation and viability of human VSMCs, and 
that TMAO did not exert cytotoxic effects at concentrations 
exceeding its physiological levels by 1,000-fold.121 Thus, 
understanding the role of not only TMAO but also its pre-
cursor TMA in the initiation and development of vascular 
dysfunction is necessary.

A comprehensive understanding of the direct effects 
of TMAO on vascular function and their molecular 
mechanisms could provide a potentially novel therapeutic 
target for the treatment of vascular diseases.

Evidence from experimental and clinical investigations 
has confirmed the role of the gut microbiota in TMAO 
metabolism, with recent seminal reviews focusing on the 
relationship between gut microbiota and TMAO in cardi-
ovascular diseases.106,122 For example, the association be-
tween gut microbiota dysbiosis and increased circulating 
TMAO levels had been observed in several pathophysio-
logical states, such as atherosclerosis,123 preeclampsia,124 
and CKD.125 Given that microbiota-derived TMA is an 
important precursor of TMAO generation, the regulation 
of TMA production, including gut microbiota remodeling 
(e.g., antibiotics, synbiotics, probiotic functional products, 
and some natural molecules), and blocking of micro-
biota TMA lyases (e.g., 3,3-dimethyl-1-butanol126) can be 
strategies in the regulation of circulating TMAO. In addi-
tion, inhibiting hepatic flavin-monooxygenase 3 activity 
(e.g., trigonelline, a compound from Trigonella foenum-
graecum127 and guggulsterone, a nuclear factor farnesoid 
X receptor antagonist128) to inhibit the conversion from 
TMA to TMAO can also be a beneficial strategy. Thus, a 
theoretical basis for controlling the gut microbiota to reg-
ulate TMAO levels will be beneficial for preventing and/
or treating cardiovascular diseases.106,107,129 However, one 
should note that reducing TMAO may also have adverse 
effects. Therefore, we believe that a new TMAO-targeting 
therapeutic approach against cardiovascular diseases will 
be established in the near future.

The number of publications on gut-derived substances 
and host homeostasis has been growing rapidly. This re-
view mainly focused on the effects of S-equol, indoxyl 
sulfate, and TMAO on vascular functions. Notably, 
other substances, such as bile acids and short-chain 
fatty acids, also play a role in the regulation of vascular 
functions.16–18,20,21 Alterations in vascular tone regula-
tion, including the generation of several endogenous vas-
oactive substances and responsiveness thereto, and their 
signaling pathways by gut-derived substances may depend 
on vessel type, exposure duration (e.g., acute or chronic), 
and host status (sex, age, or disease). Despite the ongoing 
questions as mentioned previously, we believe that further 
knowledge on the manipulation of gut-derived substances 

will lead to new approaches in the prevention and treat-
ment of vascular diseases.
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