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Abstract

Prostate cancer (PCa) is the most commonly diagnosed malignancy and the second leading

cause of cancer-related death in American men. Androgen deprivation therapy (ADT) has

become a standard treatment strategy for advanced PCa. Although a majority of patients ini-

tially respond to ADT well, most of them will eventually develop castration-resistant PCa

(CRPC). Previous studies suggest that ADT-induced changes in the immune microenviron-

ment (mE) in PCa might be responsible for the failures of various therapies. However, the

role of the immune system in CRPC development remains unclear. To systematically under-

stand the immunity leading to CRPC progression and predict the optimal treatment strategy

in silico, we developed a 3D Hybrid Multi-scale Model (HMSM), consisting of an ODE sys-

tem and an agent-based model (ABM), to manipulate the tumor growth in a defined immune

system. Based on our analysis, we revealed that the key factors (e.g. WNT5A, TRAIL,

CSF1, etc.) mediated the activation of PC-Treg and PC-TAM interaction pathways, which

induced the immunosuppression during CRPC progression. Our HMSM model also pro-

vided an optimal therapeutic strategy for improving the outcomes of PCa treatment.

Author summary

Prostate cancer (PCa) is the second leading cause of cancer-related deaths in American

men. Androgen deprivation therapy (ADT) is the first-line therapy for advanced PCa, yet

a significant number of primary PCa patients treated with ADT eventually develop incur-

able castration-resistant prostate cancer (CRPC). Recent observations suggest that the

immunosuppressive microenvironment of PCa might be responsible for the failures of

various therapies. However, the role of immune system in CRPC progression is still

unclear. To deeply understand the immunity leading to CRPC progression, we developed

a unique systems biology approach (HMSM). Based on our analysis, we identified the key

molecules (e.g. WNT5A, TRAIL, CSF1, etc.) mediating the communication of PCa and

immune cells. Our HMSM system also revealed the optimal therapeutic strategy for PCa

treatment. Collectively, our study provides a new insight to study tumor-related immune

mechanisms and pave the way for the development of more effective treatments.
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Introduction

Prostate cancer (PCa) is the second leading cause of cancer-related death in American men [1,

2]. Androgen deprivation therapy (ADT) has become standard therapy for the treatment of

PCa. Although the majority of patients initially respond well to ADT, most patients will even-

tually become unresponsive, and the PCas recur within 1–3 years after ADT as castration-

resistant prostate cancers (CRPC) [3].

Previous studies have demonstrated that androgen receptor (AR)-mediated signaling path-

way plays a central role in CRPC cell survival and growth, constituting an attractive target for

therapy [4, 5]. MDV3100 (enzalutamide), an FDA-approved drug, is a well-known AR antago-

nist that can effectively block androgen binding to AR, thereby preventing AR nuclear translo-

cation and coactivator recruitment [6, 7]. However, prostate cancer treatment with AR

antagonists can also acquire resistance through AR mutations [8–10], such as AR splice vari-

ants [11] and gene amplification. Therefore, there is an urgent need for the development of

new therapeutic strategies. To date, immunotherapy represents an appealing option in prostate

cancer treatment [12]. The FDA-approved vaccine (sipeucel-T [13]) and PD-1 inhibitor (e.g.,

pembrolizumab [14]) have been used to treat advanced PCa in clinical trials. However, recent

phase III trials showed multiple failures of immunotherapy in PCa [15–18].

Recent observations suggest that the microenvironment (mE) of PCa is immunosuppressive,
which appears to be responsible for the failures of various agents targeting the immune system

in PCa [15, 19]. Escamila et al. found that tumor-associated macrophages (TAM) exert a nega-

tive impact on the treatment response of PCa after ADT [20]. ADT induced an increased

expression of colony-stimulating factor 1 (CSF1) in prostate cancer cells (PCs), leading to a

significant enhancement of TAM infiltration. The increased levels of IL10, VEGF, and EGF in

TAMs, in turn, promote treatment resistance by enhancing immune suppression and tumor

proliferation. Moreover, in the prostate-specific Pten-/- mouse model, Akins and colleagues

found that Treg (Regulatory T cell) expansion occurred following ADT and the frequency and

function of CD8+ T cells (CTLs) increased at the early stage but reduced after a late time point

[21, 22]. In this study, we found that WNT5A activated AKT/AR signaling pathway and stimu-

lated the PC proliferation, which might be a new mechanism of PC resistance to ADT. How-

ever, the precise cellular targets and the exact molecular mechanism of the immunity leading

to CRPC remain unclear. Therefore, systematic understanding of the impact of androgen dep-

rivation on the tumor-associated immune system will help to characterize novel cytokine net-

works and signal transduction pathways and develop more effective combined therapies for

patients with advanced PCa. Taking above studies together, we hypothesize that 1) following

ADT, the reactivation of AR signaling in PC cells and the altered immune mE contribute to

the development of CRPC; 2) the communication between immune cells and PCs results in

immune suppression and PCa progression; 3) targeting the immune-PC pathways mediated

by cytokines after ADT may prevent CRPC development.

In recent years, some mathematical approaches have been developed to model the tumor

growth, angiogenesis, and drug resistance, providing a new perspective way in exploring the

molecular mechanisms of cancer treatment resistance [23–26]. Peng et al. developed an ODE-

based model to characterize the effect of castration on the immune system and to predict the

efficacy of combined therapy with ADT and vaccines on PCs [27]. However, the role of the

immune system in CRPC progression was rarely studied. Based on the hypothesis described

above, we developed a predictive 3D Hybrid Multi-scale Model (HMSM) with various types of

data for systematically understanding the immunity leading to CRPC progression.

The HMSM model consists of a 3D agent-based model (ABM) and an ordinary differential

equations (ODEs) model. The ABM is used for modeling tumor growth, angiogenesis,
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immune response in the prostate and lymph node compartments, and the ODEs model for

dynamics of intracellular signal transduction. The HMSM model integrates key biological

events spatially and temporally. Spatially, the simulated mE contains two components: prostate

tumor space and lymph node. PCs and TAMs reside in the tumor space for tumor growth and

angiogenesis, and CTLs and Tregs home in the lymph node and infiltrate to tumor bed once

the initial immune response is activated. Temporally, we modeled the intracellular signaling

dynamics (minutes to hours); cell division, apoptosis, migration, and immune infiltration

(hours to days); drug response (days to weeks), and CRPC progression and tumor growth

(weeks to months). After parameter tuning, the outcomes of our HMSM model in different

conditions are fit with the experimental observations. Finally, we use this model to predict the

effect of individual and combined treatments with WNT5A neutralization, CSF1R inhibition

[20], IL-2 neutralization [22], and EGFR inhibition [28] on the development of CRPC. Our

simulation indicates that suppression of Treg expansion with IL-2 antibody and blockade of

PC-Treg and PC-TAM interactions appear to re-activate anti-tumor immune responses and to

prevent CRPC occurrence. In summary, this study revealed the key cytokines/pathways-

induced immunosuppression during CRPC progression and also provided an optimal thera-

peutic strategy for improving the outcomes of CRPC treatments.

Results

Inference of PC-Treg interactions

To model CRPC progression, we first identified the cell-cell interactions between PC and Treg

based on the transcriptomic data. We calculated 1) the significantly overexpressed ligands-

and receptors-encoded genes from the GEO (Gene Expression Omnibus) dataset GSE38043

[29] and GSE46218 [30]; 2) the directionality of cell-cell communication of ligand-receptor

pairs based on the prior information in public databases, such as iRefWeb [31]. The interac-

tions between PC and Treg were mainly inferred from above two GEO datasets using the

approach reported previously [31]. The dataset GSE38043 was generated from isolated Treg

cells of CRPC patients (3 patients VS. 3 control). Student T-test was used to filter the signifi-

cantly overexpressed genes with a p-value < 0.05. In total, we filtered 18 ligand genes (e.g.,

WNT5A) and 26 receptor genes (e.g., DCR2, EGFR, etc.). The dataset GSE46218 was gener-

ated from prostate orthotopic xenograft models. We compared the gene expression profiles of

castration-resistant prostate cancer and androgen-dependent prostate cancer, and obtained 23

overexpressed ligand-encoded genes and 39 overexpressed receptor-encoded genes from the

castration-resistant PCa, such as FZD5, BMP6, TNFSF10 (TRAIL), etc. The calculation proce-

dure was shown in S1 Fig. We did further filtration analysis for the identified ligand- and

receptor-encoded gene pairs and found potential pairwise interactions between PC and Treg:

Treg!WNT5A!PC, and PC!TRAIL!Treg (S2 Fig). All of the significantly overexpressed

ligand- and receptor-encoding genes were listed in S1 and S2 Tables.

To determine the cell-cell interaction inferred above, we treated castration-resistant pros-

tate cancer cells 22RV1 with WNT5A and generated RNA-seq data. Our analysis shows that

WNT5A treatment up-regulates a group of genes in 22RV1 cells, e.g., AR, FZD5, SKP2, PKC,

ERK, STAT3, and TNFSF10 (TRAIL), etc. (S3 Fig). Further functional analysis of the signifi-

cantly expressed genes shows that some important pathways are enriched, including PI3K/

AKT/AR pathway, Ras pathway, MAPK pathway, JAK/STAT pathway, prostate cancer path-

way, and WNT pathway, etc (see the details in S3 Table). Thus, WNT5A appears to be a key

factor in the activation of the survival and proliferation pathways in the castration-resistant PC

cells. To further validate the results obtained from RNA-seq analysis and inferred WNT5A/

TRAIL pathway loop, we treated 22RV1 cells with WNT5A and the gene expression and
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protein levels were measured using qRT-PCR and/or Western blot, including FZD5, TNFSF10

(TRAIL), BMP6, AR, BMP6, Skp2, Foxo1, and ERK. WNT5A receptor, FZD5 was significantly

up-regulated at 1 hour after treatment (Fig 1A). In addition, WNT5A stimulation induced a

sharp increase of TNFSF10 (TRAIL) (Fig 1B), which may further promote Treg expansion [32].

In addition, WNT5A led to a significant increase in the BMP6 level at 0.5, 1 and 3 hours follow-

ing treatment (Fig 1C). This finding is consistent with the previous studies showing that

WNT5A stimulates BMP-6 expression in metastatic prostate cancer (CaP) in the context of

bone niche; and BMP-6 in turn stimulated the proliferation of CaP cells [33]. Most important,

treating cells with WNT5A resulted in a dramatical and persistent increase in the transcript

level of AR (Fig 1D). The protein levels of Skp2 and FOXO1 were increased at 3, 7 and 24 hours

post-treatment (Fig 1E and 1F). These findings are consistent with reports that Skp2 and

FOXO1 activation are associated with AR transactivation and tumorigenesis [34, 35]. Finally,

increased ERK phosphorylation was observed at 0.5 and 7 hours (Fig 1G), also consistent with

the early studies that MEK/ERK axis may promote CRPC development, leading to early relapse

[36, 37]. Taken together, our experimental results demonstrated that WNT5A induced AR sig-

naling activation and secretion of TRAIL, which potentially promotes CRPC development.

Inference of PC-TAM interaction

We also identified the PC-TAM interactions based on the previous findings. Escamilla and

coworkers found that CSF1 was significantly induced in the prostate cancer cells by ADT, lead-

ing to a significant increase in TAM [20]. TAM expresses elevated levels of VEGF, MMP-9,

IL10, and EGF, thereby to promote the protumorigenic phenotype (such as angiogenesis and

immune suppression) of macrophages [20, 38]. Tang et al. reported that Treg expansion in

Pten-/- mice after castration was mediated by IL-2 [22].

In order to validate the PC-TAM interactions inferred above, we performed coculture

experiments (Materials and Methods). The in vitro experiments were designed to test the inter-

actions of induced M2 macrophages with LNCaP cells (androgen-sensitive) or 22RV1. The

RNA-seq data from the co-culture of M2 macrophages with LNCaP or 22Rv1 cells was used to

validate the PC-TAM interactions. With a defined FC value> 1.3 (fold change of presence

TAM to absence TAM), we totally obtained 11 over-expressed ligand genes (e.g., TNFSF10,

VEGFA) and 6 receptor genes from the co-cultured LNCAP cells; and 13 ligand genes

(TNFSF10, SPP1, etc.) and 12 receptor genes (e.g., EGFR) in the co-cultured 22RV1 cells. At the

presence of TAMs, we found that 1) LNCaP positively expressed AR signaling axis; 2) 22RV1

secreted CSF1 and TNFSF10 (TRAIL), which potentially induced TAM recruitment and polari-

zation, and Treg proliferation. Similarly, we obtained 27 overexpressed ligand genes (e.g., IL10)

and 30 receptor genes (e.g., CSF1R) from M2 macrophages co-cultured with LNCAP cells, com-

pared with the M2 cells without co-culture. Also, 31 ligand genes (IL10, TNFSF10, and VEGFA,

etc.) and 46 receptor genes (CSF1R, TGFBR1, etc.) were over-expressed in M2 macrophage co-

cultured with 22RV1 cells. Fig 2A shows the top-ranked overexpressed ligand and receptor

genes in these three types of cells (S1 Data). As described in the above section, we determined

the potential directional connections with high confidence scores (from iRefWeb) and obtained

5 ligand/receptor pairs between TAMs and 22RV1s (Fig 2A), including the positive loop

PC!CSF1!TAM and TAM!EGF!PC demonstrated by other researchers [20]. Combing

the above findings, Fig 2B revealed the cell-cell interaction network between TAM, Treg, and

22RV1. All the enriched genes corresponding to Fig 2A were presented in S4 Table.

Taken together, our analyses show that two potential cell-cell interaction loops appear to

involve in the development of CRPC. The first loop is the secreted WNT5A from Tregs and

macrophages triggers the activation of signaling pathways of cell survival and proliferation

Systematically modeling of CRPC development
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Fig 1. qRT-PCR and Western blot analysis to determine the effect of WNT5A on AR-signaling associated genes and proteins in androgen-

resistant 22RV1 prostate cancer cells. (A-D) The gene expression levels of FZD5, TNFSF10, BMP6 and AR at 0.5, 1, 3, 7 and 24h after treatment

with WNT5A, respectively. (E-G) The effect of WNT5A on protein levels of skp2, Foxo1 and pERK, respectively.

https://doi.org/10.1371/journal.pcbi.1007344.g001
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(e.g., WNT5A signaling, PI3K/AKT/AR and MAPK pathways, etc.) in androgen-resistant PCa

cells. TRAIL secreted from PCs promotes Treg proliferation [32]. The second loop is ADT-

induced CSF1 expression in the tumor cells stimulates TAM infiltration. Increased TAM acti-

vation leads to increased secretion of EGF and VEGF, which in turn activate AR signaling and

promote angiogenesis, respectively. Combining the above information of cell-cell communica-

tions, we highlighted an integral system in the immune mE of prostate cancer that may lead to

CRPC development (Fig 3).

Fig 2. Inference of TAM-PC interactions with RNA-Seq data. (A) The left panel shows the RNA-seq data from the cocultured macrophage and

PC LnCap and 22RV1 cells. Prostate cancer cells (LNCaP or 22RV1) were co-cultured with or without M2 macrophage (TAM) for 48 h and RNA

samples were collected for RNA-seq analysis. All of the gene expression data (fold change value) were normalized with non-co-cultured counterpart

cells. For example, LNCaP W/WO TAM shows the gene expression ratio of LNCaP cells co-cultured with TAM to LNCaP cells not co-cultured with

TAM. The top-ranked overexpressed genes with FC>1.3 are presented. Five enriched ligand-receptor pairs were highlighted. (B) The inferred cell-

cell interaction networks between TAM, Treg, 22RV1.

https://doi.org/10.1371/journal.pcbi.1007344.g002
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Model development

Hypothesis. Except the genomics data described above for the prediction of cell-cell inter-

actions, the cell population data quantified from animal models was also needed for tumor

growth modeling. Akins and Tang et al. developed a prostate-specific Pten-/- mouse model

[21, 22] and observed the dynamical changes of CD8+ T cells and Tregs at 2.5wk and 5wk after

castration. Their studies showed that 1) castration induced an accelerated Treg expansion in

mice; 2) the frequency and function of CD8+ T cells (CTL) was significantly increased at the

early stage after castration and dropped at 5 weeks post-castration; 3) blockage of IL-2 abol-

ished the increased expansion of Treg in lymph node following ADT. Based on the above find-

ings, we generated the following hypothesis for modeling the immune mE during CRPC

progression, as shown in Fig 3. At the early stages after castration, androgen deprivation

induces apoptotic death of PCs and antigen secretion from the dying prostate tumor cells.

Dendritic cells (DCs) process these antigens and present them on the cell surface. Once acti-

vated, DCs migrate to the lymph nodes and interact with T cells to initiate immune response

[39, 40]. As a result, a number of activated immune cells (CD8+ and Treg) are quickly cloned

in the prostate draining lymph nodes and infiltrated through lymph vessels. CTLs are

expanded at the early stage and induced the lysis of tumor cells. However, the number of CTLs

is declined at a late time after ADT due to the accelerated amplification of Tregs [22, 41]. IL-2,

produced by activated CD8+ T cells contributes to Treg proliferation [42]. Moreover, ADT

induces the PC-Treg and PC-TAM positive signaling loops, which promote the resistance of

PCa and elevates the expression of key cytokines in the PCa mE [43, 44].

Systematically modeling the immunity leading to CRPC progression. To systematically

understand cell-cell interactions, we established a predictive 3D Hybrid Multi-scale Model

(HMSM), which combines a 3D multi-scale agent-based model (ABM) for tumor growth and

Fig 3. The system modeling diagram of CRPC development. The HMSM model includes two components: prostate cancer compartment (left) and

lymph node compartment (right). The arrows represent cell-cell communications, which were inferred from our data or other public datasets.

https://doi.org/10.1371/journal.pcbi.1007344.g003
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immune response, and an ODE system for dynamic signal transduction (Fig 4). Our HMSM

model includes five types of cells (PC, TAM, CTL, Treg, and EC (Endothelial Cell)), which

were represented by five types of cell agents of intracellular signaling events and interfaces.

(1) PC agents represent prostate tumor cells with two possible states: androgen-dependent

(sensitive), and androgen-independent (resistant). The development mechanism from andro-

gen dependent to androgen independent PCs (CRPC) is associated with AR reactivation

through AR mutations, AR variants, and gene amplifications after ADT [45, 46]. After castra-

tion, the concentration of androgen in blood and tumor tissues decreases to ~10% and 20% of

the pre-treatment values, respectively [47, 48]. However, CRPC cells can synthesize dihydro-

testosterone (DHT), thereby reactive AR [49]. In PC agents, we not only took into account of

the androgen-independent pathway (triggered by EGF and WNT5A), but also DHT-mediated

androgen-dependent signaling to determine the internal factors-associated tumor cell prolifer-

ation [46, 50]. The proliferation rates of PC cells were determined via Hill function for the

Fig 4. Schematic representation of computational framework of HMSM model.

https://doi.org/10.1371/journal.pcbi.1007344.g004
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androgen-dependent pathways and ODE system for the androgen-independent pathways (S1

Text). Therefore, we developed an ODE system to simulate WNT5A/EGF-triggered signal

transduction of PC proliferation (Fig 5). Firstly, we observed the changes of PC proliferation

treated by WNT5A or EGF with different doses (Fig 5A and 5B). Secondly, the key proteins

associated with PC proliferation were measured using Western Blot (Fig 5C). We mainly used

the signaling data from 0-3h for modeling in the ODE system because initial phosphorylation

typically occurs around 2 hours after stimulated by extracellular ligands [51]. For Skp2, we

only chose the observed values at 0.5 and 1h for model training as its expression didn’t change

after 3h, compared with control. Finally, an ODE system was built on the signaling pathway

network as shown in Fig 5D. The ODE system was described into details in “Materials and

Methods”. All of the parameters involved in this system were estimated using GA algorithm

[27, 52], and presented in the S5 Table. With the GA-guided optimal parameters, the ODE

system fitted the experimental observations well and the ODE system stabilized after 1 hour

(Fig 5E). In addition, Fig 5F and 5G indicate that the optimized ODE system recaptures the

experimental observations shown in Fig 5A and 5B. Sensitivity analysis shows that the ODE

system is quite stable when each parameter (S5 Table) was perturbed by a 5% increase or

decrease (Fig 5H and 5I).

(2) TAM agents denote TAM cell population, which reside in the tumor space. TAMs are

believed to promote tumor invasion and metastasis [20]. TAM infiltration is a significant unfa-

vorable prognostic factor for prostate cancer patients [53, 54]. Our data analysis shows that the

direct interactions between TAMs and PCs appear to be one of the main reasons for the resis-

tance of PCs to androgen deprivation.

(3) CTL agents represent the CD8+ effector T cells, which mediate tumor cell lysis through

cell-cell contact. Antigen-presenting DCs migrate to the draining lymph nodes and present

the antigen to T cells, so that the CD4+ T helper and CD8+ effector cells are activated [55, 56].

After undergoing up to 8 generations of division, these T cells acquire effector functions, such

as cytotoxicity [57]. Activated CTLs migrate to the tumor through lymph vessels or peripheral

blood and contribute to tumor cell death either by releasing perforins that create holes in the

target cell’s membrane or by triggering apoptosis in the target cells.

(4) Treg agents represent the immune-suppressive T cell population responsible for the

maintenance of peripheral tolerance and have been implicated in the suppression of tumor

immunity. Tregs have been shown to inhibit tumor-specific T cell functions, such as the cyto-

toxic effects of CTLs [58]. Tregs require ligand-specific activation and cell-cell communication

to exert their suppressive activities [59]. The factor TRAIL, expressed in PC, can promote the

growth of Tregs [32]. Also, the secreted IL-2 by CTLs promoted Treg expansion [42, 60]. In

our HMSM model, Tregs in the tumor space was initially activated in lymph node and then

infiltrated to the tumor to inhibit/prevent the cytotoxic effects of CTLs by suppressing CTL

proliferation (Materials and Methods).

(5) EC agent is defined to simulate tumor angiogenesis in prostate cancer mE. After ADT,

TAMs and PCs secret VEGF to induce new vessels to sprout from the pre-existing vasculature

towards the center of a tumor, providing nutrients to the starving tumor cells and thereby

stimulating tumor growth. VEGF spreads to the surrounding tumor tissues and is also con-

sumed by endothelial cells [61]. The motion (branching or proliferation) of individual ECs

located at the tip of a capillary sprout governs the movement of the whole sprout, and chemo-

taxis in response to VEGF gradients [62].

3D Multi-scale modeling. As shown in Fig 3, CRPC progression is simulated at intracel-

lular, intercellular, and tissue levels in the HMSM model. Intracellular signal transduction was

modeled by Hill functions or ODEs to represent the rates of proliferation and apoptosis (S1

Text).
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The intercellular communication in HMSM reflects the relationship between cancer cells,

immune cells and tumor mE evolution during CRPC progression through the following

aspects. 1) ADT induces the prostate tumor cells to express CSF1, which promotes macro-

phage activation and infiltration [20]. 2) Enhanced infiltration of TAM results in the accumu-

lation of VEGF, IL10, and EGF, promoting angiogenesis, tumor growth, and immune

suppression [20, 38]. 3) The positive feedback loop between Tregs and PCs leads to PC prolif-

eration stimulated by WNT5A and Treg growth induced by TRAIL [32]. 4) The production of

IL-2 from CD8+ promotes Treg proliferation [63]. 5) CTLs recognize tumor cells in their local

regions and migrate toward these target cells for clearance [64]. 6) Accumulation of Tregs

potentially inhibits the proliferation of CTLs, resulting in the suppression of anti-tumor

immune responses [58].

The tissue scale reflects 3D prostate tumor growth and cell responses to castration via vari-

ous intercellular cell-cell interactions spatially and temporally as described above. At the tissue

level, intracellular signaling pathways were triggered by the secreted cytokines, such as

WNT5A, TRAIL, CSF1, EGF, IL-2, VEGF, and IL10, locally via the interfaces of cell agents,

and result in the changes in the cells’ fate and behaviors, which in turn modulate the tumor

mE for cell growth and response to treatment. In this scale, we defined the dynamic 3D distri-

bution of the key cytokines secreted from four types of cells. VEGF can be secreted from both

PCs and TAMs, leading to the initiation of tumor angiogenesis. In addition, the distribution of

cell populations in tumor mE is defined by cell proliferation and migration in 3D ECM. In par-

ticularly, we defined the immune cell infiltration from lymph nodes to the tumor bed via

lymph vessels.

Model implementation. At the beginning of simulation, 200, 100, 2, and 2 of PC, TAM,

CD8+ T, and Treg cells were used, respectively, to mimic the initial stage for prostate tumor

cells spreading to a new location. Based on all the observed data mentioned above, we manu-

ally tuned all the parameters associated with ABM part in HMSM for optimizing the data fit-

ting (see the details in S1.9 Text). All the parameters of ABM model are presented in S6 Table.

After optimization, we selected WNT5A antagonist, CSF1R inhibitor PLX3397 (PLX) [20],

EGFR inhibitor, anti-IL2 mAb [22] as the representatives of agents, respectively, in HMSM to

predict the therapeutic effects in silico. The number of each cell type in HMSM was recorded

every 2 hours [25, 52, 65]. The drug effects were represented as the fold changes in the number

of tumor and immune cells following treatments. Our HMSM model simulated a series of bio-

logical events up to 9 weeks, including prostate tumor growth, ADT-induced immune

response, and the emergence of CRPC (S4 Fig).

A simulation example of prostate tumor growth before and after castration in the immune

suppressed mE is shown in Fig 6A. Panel I represents a simulated PC tumor status before cas-

tration. CD8+ T cells and Tregs gradually infiltrated to the tumor space from lymph nodes fol-

lowing the activation induced by prostate-specific antigen-presenting DCs. Castration leads to

a rapid decrease of the androgen concentration and increase of immune infiltration, resulting

in tumor regression. Panel II shows that most of the tumor cells are cleared at 2.5 wks after cas-

tration. After that, CRPC phase eventually emerges, manifested as the elevated TAM infiltra-

tion and increased Treg expansion, which appears to contribute to the tumor relapse and

Fig 5. ODE modeling of WNT5A-EGF/AR signaling and experimental validation. (A) The effect of WNT5A on 22RV1 cell viability.

(B) The effect of EGF on 22RV1 cell viability. (C) The effect of WNT5A and EGF on protein levels of Skp2, pERK, pAKT and AR. (D)

The network topology of androgen-independent pathways in prostate cancer cells. WNT5A or EGF regulates the cellular proliferation by

activating AR-related pathway. This network was represented as a series of ODE equations shown in Eq. (1–6) in the section “Materials

and methods”. (E) The predicted values of four proteins fit the observation data well. (F, G) The ODE system-predicted PC proliferation

at 72 hours perturbed by WNT5A (F) or EGF (G) with different doses. (H, I) Sensitivity analysis of the ODE system was performed under

two conditions: WNT5A treatment only (H), and EGF treatment only (I). Each parameter was perturbed by increasing or decreasing 5%.

https://doi.org/10.1371/journal.pcbi.1007344.g005
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Fig 6. Experimental observation and in silico prediction of HMSM Model. The bars with blue color are experimental-measured values, and the bars with green color

are predicted values in the HMSM model. CX: Castration. Time 0 denotes pre-castration. (A) A simulation example of prostate tumor before/after castration. I) pre-

castration; II) 2.5 weeks after castration; III) 5 weeks after castration. (B) A simulation example of cytokine profiles before/after castration. I) pre-castration; II) 2.5

weeks after castration; III) 5 weeks after castration. The slices are extracted when Y = 50. Y is the Y axis. (C) TAMs are elevated by ADT in prostate cancer (day 7 and

day 14 castration). (D) CSF1 protein level was analyzed from castrated mice (day 2 and day 35 castration). (E) Relative gene expression of IL10 and VEGF at 48hours

after ADT. (F) PLX lowered macrophage levels and VEGF expression after ADT. (G) The number of Treg cells is increased in lymph nodes at 2.5 weeks and 5 weeks
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immune suppression in the prostate mE (Panel III). Fig 6B presents the dynamics of CSF1

profiles associated with CRPC development (S5–S7 Figs). CSF1 accumulation is transitorily

decreased in the early stage after castration and rapidly rebounded as CRPC occurrence.

Model evaluation

To test the fit of our HMSM model to the training data, in silico simulations under several con-

texts were evaluated using the experimental data from our laboratory, as well as the data from

previously reported studies (S2 Data). Firstly, we simulated the whole process of prostate

tumor growth from the initial state to 6 wks after castration. The dynamic changes of TAM

population, CSF1 expression, and TAM-secreted protumorigenic cytokines (e.g., IL10, and

VEGF, etc.) in the simulated mE were predicted. Fig 6C shows that TAM population are

increased by 1.826±0.2 folds at day 7 and continued to increase to 2.891±0.353 folds at the day

14 after castration. Fig 6D represents the simulated expression of CSF1 from prostate cancer

cells. The expression of CSF1 in PCs is significantly increased after ADT, which is close to the

measured results from the subcutaneous mouse model [20]. Moreover, the predicted expres-

sions of IL10 and VEGF in TAMs have increased 2.98±0.171 and 1.54±0.078 folds at two days

post-castration (Fig 6E). We also predicted the effect of the CSF1R inhibitor on the distribu-

tion of the cell population after castration. As shown in Fig 6F, inhibition of CSF1R with PLX

after ADT results in a 5-fold reduction of the TAM population in the early stage, compared

with the results in castration only. The CSF1R blockade appears to inhibit macrophage prolif-

eration, and lower TAM-induced expression of VEGF, which potentially delays the emergence

of CRPC. The simulated results shown in Fig 6C–6F are consistent with the experimental data

reported in [20].

To examine the dynamical changes of immune responses, we calculated the changes of the

Treg population after castration in the simulated system. As shown in Fig 6G, the number of

Treg cells is significantly increased in lymph nodes at 2.5 weeks and 5 weeks post-castration

compared to that from pre-castration. This simulation result is close to the previous findings

reported by Tang et al. [22]. In addition, Fig 6H shows that Treg expansion is prevented by

IL2 neutralization, suggesting the increased IL2 after castration and immunization promotes

Treg expansion [22]. Taken together, we found that the HMSM model fits the observed data

very well under different contexts.

Model validation

To further validate the reliability of our HMSM model optimized above, we compared the sim-

ulation results with additional experimental data (S2 Data) generated from Pten-/- prostate

cancer mouse model [21, 27]. Fourteen weeks-old mice were castrated, and the relative

changes of immune cells (Treg and CD8+ T cells) in tumor space were observed at the 2.5

weeks and 5 weeks after castration [21]. Fig 6I and 6J show that castration induces infiltration

of Treg cells into the tumor area in the prostate tumor-bearing mice. However, the accumula-

tion of functional CD8+ T cells in the prostate tumor is not long-lasting, evident at 2.5 weeks

after castration but reduced at 5 weeks after castration. The measured CD8+ T cells at 2.5

weeks and 5 weeks after castration are around 2.05±0.25 and 1.75±0.125 folds of pre-castra-

tion, respectively [27]. Fig 6I indicates that the prediction of the CD8+ population (2.107

post-castration. (H) Treg expansion in lymph nodes was reduced by IL-2 neutralization. (I) In silico prediction of CD8+ cells in the castrated tumor at 2.5 and 5 weeks.

(J) In silico prediction of Treg cells in the castrated tumor at 2.5 and 5 weeks. (K) In silico prediction of single or combined treatment on PC growth after castration

relative to pre-castration. (L-N) The predictions and experimental validations for prostate tumor growth with castration only (L) or plus CSF1R (M) or plus EGFR

inhibition (N) after castration.

https://doi.org/10.1371/journal.pcbi.1007344.g006
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±0.775, and 1.7606±0.8141 folds) in the HMSM model is consistent with the experimental

observations. Moreover, the number of Tregs was significantly increased to 1.7±0.5 and 3.2

±0.6 folds in the tumors at 2.5 and 5 weeks after castration, respectively [27]. HMSM model

simulation shows that the predicted changes of the Treg population at 2.5 and 5 weeks after

castration, and our predicted results are close to the experimental observations (Fig 6J). In

summary, our testing experimental data further confirms that the outputs of HMSM model

are reliable.

Prediction and validation of therapeutic outcomes

To identify the potential therapeutic targets of PCa in the immunosuppressive prostate cancer

mE, we predicted the effects of single or combined treatments with castration on PCa growth

using the established HMSM model (S2 Data). Our experimental data revealed WNT5A was a

potential factor associated with CRPC development. Therefore, we simulated the effect of

WNT5A neutralization on PC growth with our in silico model. Recent studies indicate that

CSF1R inhibitor (PLX3397) [20, 66] and IL-2 neutralization [22] revealed the effects for

immune re-activation after ADT. In addition, early studies have reported the efficacy of EGFR

inhibitors (e.g. erlotinib, canertinib, and cetuximab, etc.) in castration-resistant prostate cancer

in vitro and in vivo, and claimed that EGFR inhibition might improve the outcome of patients

with CRPC [28, 67, 68]. Therefore, we mainly tested the anti-tumor effects of four representa-

tive agents in HMSM, including anti-WNT5A antibody, PLX3997, Anti-IL-2 antibody (IL-2

neutralization), and EGFR inhibitor.

Fig 6K shows the predicted outcomes from single or combined treatments relative to pre-

castration. Prostate tumor cells were reduced sharply at the first 2 weeks after castration and

then re-expanded continuously (silver curve). The combined treatment with castration and a

single agent (Anti-WNT5A, PLX, Anti-IL-2, or EGFR inhibitor) yields a better treatment

response than that from the castration only group. Comparing with Anti-IL-2 and EGFR

inhibitor, a combination of castration with Anti-WNT5A or PLX yields better anti-tumor

responses, indicating that blockade of the PC-Treg or PC-TAM interaction may effectively

reduce tumor cell growth. In addition, the poor response was observed in the combined treat-

ment group with castration plus EGFR inhibitor, compared with the other combined treat-

ment groups. The optimal prediction outcome was achieved from the treatment group with a

combination of PLX, Anti-WNT5A, and Anti-IL-2 (red curve) after castration, revealing that

the activation of both Treg and TAM appears to contribute to CRPC development. Moreover,

we compared the predicted results with the experimental observations reported previously. Fig

6L shows that the tumor growth rebounded approximately 3 times after castration, paralleling

the emergence of CRPC observed in the clinical setting [20]. The addition of CSF1R inhibitor

PLX3997 to castration resulted in a significant delay in the onset of CRPC (Fig 6M) [20]. Also,

Anti-EGFR leads to 0.77±0.128 and 0.86±0.157 fold tumor growth at 3 and 5 weeks after cas-

tration relative to castration only (Fig 6N), which are close to the experimental observation of

in vivo effects of EGFR inhibitors in 22RV1 xenografts mice model [28]. Above analyses indi-

cate that the predictive capabilities of our HMSM model are high and the model-based predic-

tions are reliable.

Discussion

The focus of this work is to explore CRPC progression in the immune mE and to develop opti-

mal treatment strategies in silico to improve therapeutic responses of CRPC. To systematically

understand the role of the immune system in CRPC development, we generated RNA-seq data

and integrated it with the GEO datasets. Through the analysis of these data, we found the
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potential factors/cytokines (e.g., WNT5A, and TRAIL) associated with PC-immune interac-

tions. Elevated levels of WNT5A have been reported in melanomas, lung cancer, breast cancer,

and gastric cancer [69–73]. Lee, et al. investigated the Cap-bone stromal cells interaction, and

reported that WNT5A secreted by bone stromal cells increases BMP-6 expression in Cap,

thereby leading to Cap cell proliferation [33]. Our study demonstrated that WNT5A induced

the activation of androgen-independent pathways and the elevated expression of TRAIL in

CRPC cells after castration, indicating the enhancement of PC growth and immune suppres-

sion. As a type 2 membrane protein belonging to TNF superfamily, TRAIL is known to play a

pivotal role in the immune regulation and antitumor immunity [74–76]. Early studies revealed

that TRAIL has the potential to promote Treg proliferation in certain situations [77]. Ikeda

and coworkers demonstrated that the proliferative effect of TRAIL on Tregs becomes apparent

in autoimmunity [32]. The exploration of TRAIL function in prostate cancer may be of consid-

erable significance for understanding CRPC mechanisms.

We are the first to systemically model the CRPC development in the immune mE using an

integrated 3D system (S8 Fig). In our HMSM model, we simulated the PC growth before and

after castration. The first stage covers a sequence of key biological events, including DC matu-

ration, T cell activation, and division in lymph nodes triggered by DC, T cell migration and

infiltration. The second stage denotes the initial castration therapy (5 weeks), in which the AR

signaling reactivation appears around 2 weeks after castration (S4 Fig). Therefore, the pro-

posed model provides a new way to present the dynamic changes in tumor growth, immune

response, and drug treatment effect.

We also provide a novel computational platform to optimize the potential target therapy on

the castrated PCs. ADT is a standard treatment for PC patients, including surgical castration,

and AR disruption with pharmacologic interventions (such as MDV3100 (enzalutamide) [78]).

However, clinical studies indicate that AR antagonist can induce AR T878A mutation and result

in AR reactivation [79–81]. Our analysis of a representative GEO dataset (GSE67980) [82] also

revealed that AR expression was increased when the patients with CRPC treated by enzaluta-

mide (S9 Fig). In recent years, active immunotherapy, such as therapeutic vaccines, provide

new strategies for overcoming tumor-mediated immune suppression [83]. Multifaceted

approaches that combine vaccine with targeted therapies may have the potential to improve the

current therapeutic outcomes by targeting the suppressive immune microenvironment and

tumor survival. In the present study, we evaluated several new therapeutic strategies in silico
with our optimized HMSM model. The simulated results showed that the optimal prediction

outcome was achieved from the treatment group with a combination of PLX, Anti-WNT5A,

and Anti-IL-2 after castration, revealing the important role of Treg and TAM activation.

Moreover, the proposed model includes a large number of parameters, and most of the

parameters were tuned manually or determined based on the experimental results. In order to

confirm the variability of the simulated results from the developed 3D hybrid multi-scale

model, a parameter sensitivity analysis was performed by measuring the impact of a small per-

turbation (5% increase) of individual 34 key parameters on the prostate tumor cell populations

(5wk after castration). We found that 1st and 2nd parameters (the basic proliferation rates

caused by castration-dependent and castration-independent pathways in PCs) were more sen-

sitive than others (S10 Fig). It indicates that ADT induced prostate cancer cells to progress

and further express cytokines to promote CRPC occurence. The sensitivity analysis showed

the changes in model outcomes were under 4%, indicating that the outcomes of the optimized

model were stable. We also tested the effect of initial cell numbers and cut-off values in the

ABM rules on the model variability. S11 Fig and S12 Fig show that simulated tumor growth is

not sensitive to the perturbations on the initialization of cell number and the cut-off values in

the ABM rules. We did additional analysis with the experimental time points overlaid as dots
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at the observed times, our results indicate that the optimized HMSM model is reliable

(S13 Fig).

Although a number of mathematical approaches have been introduced to model the tumor

growth and drug resistance in recent years, most of the well-defined 3D agent-based models

not only neglect the stage-structured immune response during the tumor initialization and

development, but also did not simulate the dynamics of intracellular pathways in the cell-cell

communications [25, 65]. Solovyev et al. was the first to put forward the concept “hybrid

model”, which combined ODE model and agent-based model to mimic signal transduction

processes at the intracellular scale, stochastic cell behaviors at the intercellular scale, and the

dynamic distribution of growth factors at the tissue scale [84]. However, their model was only

designed for two-dimensional space so that it cannot be used in 3D tumor study. Our 3D

Hybrid model (HMSM) overcomes the limitations of existing models described above, and

creates a new paradigm for systematically understanding the immunity leading to CRPC.

There are several limitations of our HMSM model. We used some experimental data from

in vitro 2D culture to model 3D microenvironment in this study. Ideally, experimental data

obtained directly from 3D tissues can better reflect actual environmental status. However,

such types of data are not easily available due to animal study settings. Moreover, using limited

available animal data for ABM model training, validation, and prediction may not be enough

for the validation of our large-scale-based ABM model. Incorporating much more observed

data will increase the reliability of the model outcome. In the future, we will collect tumor tis-

sue data from patients with PCa before and after castration to verify our 3D model. We will

develop heterogeneity scoring approaches to evaluate cell-level heterogeneity (receptor expres-

sion) and tumor-level heterogeneity (cytokine levels, and geometry). We will extend our

model to simulate the effect of new blood vessels on the tumor growth, e.g. modeling increased

cancer cell migration and invasion. To better address clinically relevant issues, we will further

improve our model in terms of varying-degree inhibition with inhibitors, enabling it to predict

dose-related treatment outcomes.

Materials and methods

Experiment

1) Cell culture. LNCaP and THP1 cells were purchased from ATCC (Manassas, VA) and

22RV1 cells were a gift from Dr. Lin’s lab in Wake Forest Medical Center. LNCaP cells were

maintained in RPMI-1640 medium supplemented with 10% bovine calf serum (FBS), 2 mM L-

glutamine, 10 mM HEPES, 1 mM sodium pyruvate, 4500 mg/L glucose, 100 IU/mL penicillin,

100 μg/mL streptomycin and 1500 mg/L sodium bicarbonate, 22RV1 cells were maintained in

DMEM medium containing 10% FBS, 2 mM L-glutamine, 100 IU/mL penicillin and 100 μg/

mL streptomycin. THP1 cells were cultured with RPMI-1640 medium supplemented with

10% FBS, 2 mM L-glutamine 0.05 mM 2-mercaptoethanol, 100 IU/mL penicillin and 100 μg/

mL streptomycin.

2) Cell viability analysis for the 22RV1 cells treated with EGF. 2 X 104 22RV1 cells were

plated in 24-well plates and incubated overnight. The cells were then treated w/wo EGF (1, 5,

10, 20, 50 ng/mL) for 72 hours. Cell viability was determined using a modified thiazolyl blue

tetrazolium bromide (MTT) (Acros Organics, Thermo Fisher Scientific, New Jersey) method

as described previously [85]. Briefly, 125 μL of 5 mg/mL MTT reagent in PBS was added to

each well and incubated for 4 hours in a CO2 incubator. Cells were then lysed by adding 50 μL

lysis buffer (20% SDS, 50% N, N, N-dimethyl formamide (DMF), PH4.7) at 37˚C. The absor-

bance at 560 nm was measured using a spectrophotometer (Molecular Devices, Sunnyvale,

CA).
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3) Coculture of prostate cancer cells and macrophages. 2 X 105 THP1 monocytes were

seeded onto 6 well plates overnight and then treated with 10 ng/ml of 12-O-tetradecanoylphor-

bol-I3-acetate (PMA) for 24 h. The PMA containing medium was replaced with serum-free

medium and culture for another 2 days. For the M2 cell differentiation, the cell was treated

with 25 ng/ml of IL4 and 25 ng/ml of IL13 for 48 h. The differentiated cells were washed 3

times with PBS and 4 ml of RPMI medium containing 10% FBS, 2 mM L-glutamine, 100 IU/

mL penicillin and 100 μg/mL streptomycin was added into each well. Two days prior to the

co-culture experiment, 2 X 105 of LnCap and 22RV1 cells were seeded into 0.4 μM transwell

inserts, respectively. For coculture, the culture medium in the inserts with prostate cells was

removed and transferred onto the top of the 6-well plates with differentiated TPH1 cells. 2 mL

of RPMI medium was added into each insert. Prostate cancer cells and M2 macrophage were

co-cultured for an additional 48 hours, and cells were harvested for RNA analysis.

4) Treatment of 22RV1 cells with human recombinant WNT5A protein. The human

recombinant WNT-5A protein was obtained from R&D System. 22RV1 cells were cultured in

the 6-well plates. 80% confluence cells were incubated with serum-free medium for 24 h and

then treated with 250ng/mL WNT5A for up to 24 h. The cells were then harvested for RNA

and protein analysis using Western blot and quantitative real-time PCR.

5) Western blotting. The differentiated THP1 cells were lysed with 1 X RIPA buffer sup-

plemented with protease and phosphatase inhibitor cocktail (Roche Applied Science, India-

napolis, IN) and stored in aliquots at -20˚C until use. Twenty micrograms of cell lysates were

denatured by boiling, and separated by SDS-PAGE. The separated proteins were then trans-

ferred to a nitrocellulose membrane (BioRad). The membranes were blocked using 5% non-fat

dry milk for 1 h at room temperature and probed with antibodies overnight. After incubated

with IgG horseradish peroxidase-conjugated secondary antibodies (Cell Signaling, Beverly,

MA) for 2 h at room temperature, the immunoblots were developed using the enhanced

chemiluminescence (ECL) reagent (Cell Signaling, Beverly, MA) and visualized using a Fluro-

ChemQ processor (Proteinsimple, Santa Clara, CA). The antibodies used in this study include

CD206, ERK, pERK. AKT, pAKT, foxo1, Glut1, N-cad and skp2, which were obtained from

Cell Signaling Technologies.

6) Quantitative Real-time PCR (qRT-PCR). The qPCR amplification was performed in a

20uL reaction mixture containing 100 ng of cDNA, 10 uL 2 X All-in-OneTM qPCR mix (Gen-

eCopoeia, Rockville, MD), 0.3 mM of upstream and downstream primers and nuclear-free

water. The PCR reaction was conducted with 1 cycle at 95˚C for 10 min, 40 cycles at 95˚C for

15 s, 40˚C for 30 s and 60˚C for 1 min, followed by dissociation curve analysis distinguishing

PCR products. The expression level of a gene was normalized with the endogenous control

gene β-actin. The relative changes of genes were calculated using the 2-ΔΔCT method and pre-

sented as mean ± SD (n = 3). The sequences of the paired sense and antisense primers for

human Antigen receptor, TNF-10, FTZ1, and β-actin are listed in the S7 Table.

7) RNA isolation and sequencing. Total RNA was extracted from the cells using an

RNeasy Mini kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions. The

quality and quantity of total RNA were verified spectrophotometrically (NanoDrop 1000 spec-

trometer; Thermo Scientific, Wilmington, DE, USA) and electrophoretically (Bioanalyzer

2100; Agilent Technologies, Palo Alto, CA, USA). The mRNA libraries were prepared accord-

ing to the TruSeq RNA Sample Prep Kit protocol (Illumina, San Diego, CA, USA) and

sequenced using Illumina HiSeq2000 DNA sequence analyzer. RNA-seq reads were aligned

with the reference genome using TopHat [86]. The resulting alignment files were input to Cuf-

flinks to generate transcriptome assemblies, and the Fragments per Kilobase of Transcript per

Million fragments mapped (FPKM) values of isoforms were calculated for individual genes

[87].
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ODE-based modeling of EGF-driven Androgen independent pathway

Androgen Receptor (AR) not only can be activated by extracellular growth factor through

androgen-independent pathway network, but also by DHT from the tumor microenvironment

through androgen dependent pathway. The activation or inhibition of these two ways depends

on the stages of CRPC progression. In our study, we developed an ODE model to simulate the

effect of WNT5A/EGF-triggered androgen-independent pathway on the proliferation of pros-

tate cancer cells (Fig 5D). The extracellular concentration of WNT5A and EGF are the input

variables for the ODEs. In the training of ODEs, the input parameters (WNT5A or EGF) were

restricted to the range [0, 1], and the maximal value “1” represents the maximal dose of ligands

we used in our experiment. The output is the fold change of proliferation rates relative to no

stimulation. The ODE system has the following form:

d½ERK�
dt

¼ k1

½WNT5A�
H1 þ ½WNT5A�

� d1 ERK½ � ð1Þ

d½Skp2�
dt

¼ k2

½EGF�
H2 þ ½EGF�

� d2 Skp2½ � ð2Þ

d½AKT�
dt

¼ k3

½Skp2�
H3 þ ½Skp2�

� d3 AKT½ � ð3Þ

d½AR�
dt
¼ ð1 � D1Þ � k4

½ERK�
H4 þ ½ERK�

þ 1 � D2ð Þ � k5

½AKT�
H5 þ ½AKT�

� d4 AR½ � ð4Þ

d½Prol�
dt

¼ k6

½AR�
H6 þ ½AR�

� d5 prol½ � ð5Þ

As mentioned above, our phosphor-proteomics data covered the key signaling proteins

(pERK, pAKT, AR, and Skp2), which were involved in this androgen-independent signaling

network (Fig 5C). The effect of WNT5A and EGF on 22RV1 cell proliferation were also pre-

sented in Fig 5A and 5B. All above parameters involved in this ODE system were estimated by

optimizing formula (6) via the GA algorithm [27]:

y
�
¼ argmin

P
i�I1;t�T1

jXt
i � X̂

t
iðyÞj ð6Þ

Where Xt
i and X̂ t

iðyÞ denote the measurement from the experiments and the theoretical results

obtained from the ODE model of protein i at the time point t. The parameter vector θ = {k1,

H1,d1,. . .. . .,k6,H5,d5} in above formulas (1–5) can be obtained by formula (6). D1 and D2 rep-

resent the inhibitors of WNT5A and EGF pathways, respectively. The set I1 is the indexes of

observed proteins in this signaling network, and time series set T1 = {0, 30min, 60min,

420min} covers all the time points related with experimental data (Fig 5C). S5 Table repre-

sents the estimated values of all parameters. The fitting accuracy of the predicted and measured

values of key proteins is shown in Fig 5.

The agent-based model of CRPC progression

We defined five types of agents in the ABM model to represent PC, TAM, CTL, Treg, and EC,

respectively (Fig 3). The ABM model simulates the effects of various cell-cell interactions on

prostate tumor growth, angiogenesis, programmed immune response, and drug response in a

simulated mE. We initialized the simulated microenvironment as a cuboid, which consists of
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two connected cubes. One is for the growth and proliferation of mixed PC, TAM, CTL, Treg,

and EC compartments (tumor space) and the other is for the activation and division of T cells

triggered by matured DC in lymph node and T cell infiltration from its lymph vessels. The pro-

posed model simulated a series of key biological events involved in tumor growth, immune

response, and CRPC development (S4 Fig). The details of time points related with these events

were described in the S1 Text.

This multi-scale modeling includes intracellular, intercellular and tissue scales, which are

illustrated in the S8 Fig, and described into details in the following sections. Detailed flow-

charts of each agent were illustrated in the S1 Text. Individual cell behaviors were simulated

by probability-based rule implementation [52, 65]. A cell senses the hints in its neighbor-

hood such as local cytokines and drugs and adjusts itself with the embedded signaling path-

ways, and outputs the corresponding changes on its cell behaviors, including proliferation,

survival, differentiation, migration, and cytokine secretion rate. Cell fate decision is then

determined by rolling a dice and compared with the probability threshold of cell behavior

(S14 Fig).

Intracellular level

In this study, the proliferation rate of PCs was determined by two pathways. Our hypothesis is

that: the androgen concentration in blood and gland will be sharply decreased after castration,

so that prostate tumor cell proliferation will be supported by WNT5A or EGF-mediated

androgen-independent pathway until the occurrence of CRPC (AR-reactivation). The ODE

system for cell proliferation of PCs has been described in the above section. Except the ODE

system was applied to model the intracellular signaling network in PC cells, Hill functions

were used to simulate the signal transduction of other cells to calculate apoptosis and prolifera-

tion rates, and further determine the cell behaviors.

Intercellular level

In response to the changes of WNT5A, EGF or DHT in its local mE, each prostate cancer cell

will proliferate, migrate, become quiescent, or undergo death process. PCs secrete CSF1 to

promote macrophage infiltration. Macrophage-derived EGF enhances tumor cell invasion

[38]. TAMs also suppress the immune response of T cells by releasing the immunosuppressive

factor, such as IL10 [88]. Similarly, the WNT5A-TRAIL positive loop between PCs and Tregs

and the associated molecules are also considered as important modulating components for

CRPC development and immune suppression. In addition, prostate tumor cells can be killed

by CD8+ T cells. Treg cells can migrate towards CD8+ T cells locally and suppress the prolifera-

tion of these cells in a manner of cell cycle arrest or apoptosis [89].

Migration. A non-M-phase cell will migrate if it can find a free space nearby (S15 Fig).

The ability of a cancer cell to undergo migration and invasion allows it to change position

within the tissue. CD8+ T cells tend to move towards the places where tumor cells reside and

try to eliminate residual cancer cells. Tumor cells can evade immune elimination through the

loss of antigenicity and/or loss of immunogenicity and by coordinating an immunosuppressive

microenvironment. Treg cells migrate to CD8+ T cells and suppress the proliferation of these

effector cells. The migration was governed by space availability, migration speed, and stochas-

tic effects using Hill functions and dice-casting simulation.

Programmed cytotoxic T cell response. A naïve T cell remains quiescent until it receives

antigenic stimulation from dendritic cells through MHC-TCR interactions [55, 90]. After

stimulation, naïve cells appear to be committed to a programmed response that causes them to

divide and acquire effector functions [91]. For the first 19-24h, they do not replicate, but after
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this initial phase, they can rapidly undergo divisions with 7–10 generations [92]. After divi-

sions, they acquire effector functions, such as cytotoxicity. In the ABM model, DC maturation

started 12 hours later when they migrated into the lymph node. The initial immune response

would be started 12 hours later after DC maturation. When T cells have received antigenic

stimulation for 20 hours, they would rapidly divide (clonal expansion). For the clearance of

cancer cells, each T cell might infiltrate to tumor space through the lymphatic vessel. After the

stage of initial expansion, T cells continuously proliferate and to persist the population (T cell

memory) [93]. We also simulated the activation and clonal expansion of naïve Tregs as CTLs

in our model (S1 Text).

Tissue level

Modeling of tumor angiogenesis. Tumor-induced angiogenesis is the process by which

new blood vessels develop from existing vasculature, through endothelial cell sprouting and pro-

liferation (S16 Fig). This process is essential for tumor growth and spread [94]. Solid tumors are

known to progress through two distinct phases of growth: the avascular phase and the vascular

phase [95]. The transition from the avascular stage to the vascular stage, wherein the tumor pos-

sesses the ability to invade surrounding tissue and metastasis to distant parts of the body, depends

on the ability of the tumor to induce new blood vessels from the surrounding tissue to sprout

towards and then gradually surround and penetrate the tumor, thus providing it with an ade-

quate blood supply and microcirculation. Tumor-induced angiogenesis is believed to start when

a small avascular tumor exceeds a critical diameter (~2mm) [95]. At this stage, the tumor cells

lacking nutrients and oxygen. In response, the tumor cells secrete a number of tumor angiogenic

factors (TAF), such as VEGF [25]. Endothelial cells (EC) respond to the TAF concentration,

forming sprouts, proliferating and migrating towards the tumor [62]. It takes approximately 10–

21 days for the growing network to link the tumor to the parent vessel [96, 97].

In our ABM model, we also simulated tumor-induced angiogenesis. As shown in S4 Fig, the

prostate tumor at the start point is in the avascular phase, and the initial tumor size is around

~1mm radius. With the distribution of VEGF in the tumor microenvironment [25], sprout

branching and anastomosis were developed from an existing parent vessel (S16 Fig). The gener-

ation of new sprout (branching) occurs only from existing sprout tips. The newly formed

sprouts are unlikely to branch immediately and that there must be a sufficient number of endo-

thelial cells, near the sprout tip, for new sprouts to form (branching age is 18 hours [62]). We

assume that the density of endothelial cells required for branching is inversely proportional to

the concentration of TAF. In order to accomplish vascularization, the endothelial cells must

proliferate and subsequently migrate the whole distance to the tumor [98]. After 4 weeks, the

simulated prostate tumor will reach to ~4mm radius [99], and it will undergo castration. The

details related to the modeling of tumor-induced angiogenesis were described in S1 Text.

T-cell activation and infiltration. Several studies have reported that tumor-associated

antigens can induce T cell responses [100] and the production of antibodies, indicating that

with the optimum balance of immune effectiveness over immune suppression [58, 59], and the

immune system can fight cancer.

In this study, the proposed model simply simulated the cycle of generating an antitumor

response. Dendritic cells engulf antigens from dying prostate tumor cells. As these dendritic

cells migrate to the draining lymph node, they present the prostate-specific antigen (PSA) to

naïve T cells (CD8+ effector T cells, regulatory T cells, etc.) for their clonal expansion and dif-

ferentiation in the lymph node [101, 102]. Activated CD8+ effector T cells migrate to the

tumor bed through the blood vessels or the lymphatic vessels [55]. When CD8+ T cells encoun-

ter tumor cells, they initiate programmed events leading to tumor cell death. Tregs similarly
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return to the tumor and suppress effector T cell killing efficiency to guard against overt inflam-

mation and normal tissue damage. Within 2 days, these DCs lose their motility as they become

integrated into the network of lymph-node DCs and die rapidly [56].

Fig 3 defines the entire simulated microenvironment consisting of tumor space and lymph

node, which are connected with one lymphatic vessel. There is also a lymphatic vessel gener-

ated from lymph node, and it involves in the cycle of peripheral blood. In our model, activated

CTLs and Tregs are migrated mainly through lymphatic vessel, moved to and accumulated in

tumors. Each T cell agent is randomly selected and then infiltrated into the tumor tissue; its

coordinates will be updated immediately. A schematic illustration of tumor growth and

immune infiltration simulated by our HMSM model is displayed in S17 Fig.

Model implementation

The framework of the ABM model was designed using the conception of “Object-Oriented

Programming” and achieved with C++. The ODE system of intracellular signaling pathways in

PC was established with C and solved by the Fortran ODE Solver (DLSODE [103]), and called

in the ABM model of HMSM (S1.10 Text). The ABM model was debugged and implemented

under Linux environment on the cluster platform of Demon in Wake Forest Baptist Medical

Center and Texas Advance Computing Center (TACC). All of the parameters in the ABM

model were tuned by running the system 100 times for each candidate solution. The model

with optimal parameters should fit the training data well. For addressing the stochastic results

from the ABM, we evaluated the model outcomes after replicating simulations (repeat 100

times) on a fixed model. Both average and standard deviation were used to present the results.

Supporting information

S1 Text. Development of HMSM model.

(DOCX)

S1 Fig. The calculation procedures for identifying overexpressed ligand-receptor gene

pairs.

(TIF)

S2 Fig. The inferred cell-cell interactions between PCs and Tregs from public GEO data-

sets. Twenty-three overexpressed ligand genes and 39 overexpressed receptor genes were iden-

tified from the dataset GSE46218, respectively. Eighteen overexpressed ligand genes and 26

receptor genes were identified from the dataset GSE38043. Based on the public ligand-receptor

interaction database (iRefWeb) with a high confidence socore, a potential interaction pair was

found: Treg!WNT5A!PC, and PC!TRAIL!Treg.

(TIF)

S3 Fig. RNA-seq analysis showing the effect of WNT5A on the expression of a group of

genes in 22RV1 cells. 22RV1 cells were treated with 250ng WNT5A and RNA samples col-

lected at 1, 3, 7, and 24 hours.

(TIF)

S4 Fig. The key biological events included in the HMSM model.

(TIF)

S5 Fig. A simulation example of CSF1 profiling before/after castration. Two slices are pre-

sented: Y = 40, and Y = 50. Y is the Y axis (0�Y�100).

(TIF)

Systematically modeling of CRPC development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007344 September 10, 2019 21 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s006
https://doi.org/10.1371/journal.pcbi.1007344


S6 Fig. A simulation example of EGF profiling before/after castration. Two slices are pre-

sented: Y = 40, and Y = 50. Y is the Y axis (0�Y�100).

(TIF)

S7 Fig. A simulation example of VEGF profiles before/after castration. Two slices are pre-

sented: Y = 40, and Y = 50. Y is the Y axis (0�Y�100).

(TIF)

S8 Fig. The flow chart of our study.

(TIF)

S9 Fig. Heterogeneous expressions of AR-related proteins under three conditions in data-

set GSE67980. Primary tumor represents that the human tumor tissues were from PCa

patients without treatment. CRPC (enzalutamide-naïve) indicates the human tumor tissues

were from the PCa patients with CRPC occurrence who had not received enzalutamide. CRPC

(progressed on enzalutamide represents the human tumor tissues were from the PCa patients

who had received enzalutamide treatment after CRPC occurrence.

(TIF)

S10 Fig. Parameter sensitivity analysis. Sensitivity analysis was performed by measuring the

impact of a small perturbation (5% increase) of individual 34 key parameters on the tumor cell

(PC) population.

(TIFF)

S11 Fig. Testing the impact of initial cell numbers on model variability. The fold change of

tumor growth on day 35 after castration was examined by a 5% or 10% increase in the ini-

tial PC or TAM population. “Control” denotes the simulation without perturbation. The

results are comparable with those in Fig 6L. The variability of the average value is in the range

of -1.1139% to 1.7024%.

(TIF)

S12 Fig. Testing the impact of cut-off values in the ABM rules on model variability. The

fold change of tumor growth on day 35 (5 weeks) after castration was examined by a 5%

increase or decrease in the individual cut-off value in the migration rules. “Control” denotes

the simulation without perturbation. The results are comparable with those in Fig 6L. The var-

iability of the average value for increase or decrease is in the range [-1.07%, 0.12%] and

[-1.94%, 1.26%], respectively.

(TIF)

S13 Fig. Time course simulation. (A) The fold change of TAM population after castration rel-

ative to pre-castration. (B) The fold change of CSF1 expression after castration relative to pre-

castration. (C-D) the fold change of IL10 and VEGF expressions after castration relative to

pre-castration. (E-F) The fold change of TAM population and VEGF expression after the treat-

ment with castration plus PLX comparted to castraton only. (G) The fold change of Treg popu-

lation in lymph nodes after castration relative to pre-castration. (H) The fold change of Treg

population in lymph nodes after the treatment with castration plus IL-2 neutralization com-

pared to castration only. (I-J) The fold change of CD8+ and Treg population in tumor space

after castration relative to pre-castration. (K) The fold change of tumor growth after castration

relative to pre-castration. (L) The fold change of tumor growth after treatment with castration

plus PLX compared to pre-castration. (M) The fold change of tumor growth after treatment

with castration plus EGFR inhibitor to castration only.

(TIF)
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S14 Fig. The stochastic simulation of cell behaviors.

(TIF)

S15 Fig. A sketch showing how spatial dispersal is implemented. A cell at position Xi
searches for the candidate locations within the distance R, and several empty positions (red dots)

are identified. The probability (M) of a cell moving from Xi to Xj was determined by: 1) the mov-

ing offset (|di|); 2) the number of occupied cells (blue dots) around the new position; and 3) the

type of the occupied cells. In our model, R equals 2 for migration, and 1 for proliferation.

(TIF)

S16 Fig. The strategy for generating sprouts during model initialization. If 0�x�14 or

86�x�100, ρ = 0; otherwise, ρ follows a normal distribution (14<x<86).

(TIFF)

S17 Fig. A schematic illustration of tumor growth and immune infiltration simulated by

our HMSM model.

(TIF)

S1 Table. Overexpressed ligands and receptors in PCs inferred from GSE46218 (P-

value<0.05).

(DOCX)

S2 Table. Overexpressed ligands and receptors in Tregs inferred from GSE38043 (P-

value<0.05).

(DOCX)

S3 Table. Enriched pathways associated with significantly expressed genes after WNT5A

treatment (Top 10 enriched pathways obtained from KEGG, P-value<0.05).

(DOCX)

S4 Table. Enriched genes of TAM and PCa cells identified from our RNA-seq data

(FC>1.3).

(DOCX)

S5 Table. The parameters in ODE system optimized by GA algorithm.

(DOCX)

S6 Table. The inferred parameters for agent-based model in HMSM.

(DOCX)

S7 Table. The sequences of the paired sense and antisense primers for human Antigen

receptor, TNF-10, FTZ1 and β-actin.

(DOCX)

S1 Data. The top-ranked enriched ligand or receptor-associated genes in LnCAP, 22RV1,

and TAM cells.

(XLSX)

S2 Data. The experimental observation and in silico prediction of HMSM model.

(DOCX)

Acknowledgments

The authors acknowledge the Texas Advanced Computing Center (TACC) at the University of

Texas at Austin (http://www.tacc.utexas.edu) and the DEMON high performance computing

Systematically modeling of CRPC development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007344 September 10, 2019 23 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s015
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s016
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s017
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s018
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s019
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s020
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s021
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s022
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s023
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s024
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s025
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s026
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007344.s027
http://www.tacc.utexas.edu/
https://doi.org/10.1371/journal.pcbi.1007344


(HPC) cluster at Wake Forest University School of Medicine for providing HPC resources that

have contributed to the research results reported within this paper.

Author Contributions

Conceptualization: Zhiwei Ji.

Data curation: Weiling Zhao.

Formal analysis: Zhiwei Ji.

Investigation: Zhiwei Ji, Weiling Zhao, Hui-Kuan Lin.

Methodology: Zhiwei Ji.

Project administration: Xiaobo Zhou.

Software: Zhiwei Ji.

Supervision: Xiaobo Zhou.

Validation: Zhiwei Ji, Weiling Zhao.

Visualization: Hui-Kuan Lin.

Writing – original draft: Zhiwei Ji.

Writing – review & editing: Weiling Zhao.

References

1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010; 60(5):277–300.

https://doi.org/10.3322/caac.20073 PMID: 20610543.

2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013; 63(1):11–30.

https://doi.org/10.3322/caac.21166 PMID: 23335087.

3. Fusi A, Procopio G, Della Torre S, Ricotta R, Bianchini G, Salvioni R, et al. Treatment options in hor-

mone-refractory metastatic prostate carcinoma. Tumori. 2004; 90(6):535–46.

WOS:000226741000001. PMID: 15762353

4. Devlin HL, Mudryj M. Progression of prostate cancer: multiple pathways to androgen independence.

Cancer Lett. 2009; 274(2):177–86. https://doi.org/10.1016/j.canlet.2008.06.007 PMID: 18657355.

5. Lamont KR, Tindall DJ. Minireview: Alternative activation pathways for the androgen receptor in pros-

tate cancer. Mol Endocrinol. 2011; 25(6):897–907. https://doi.org/10.1210/me.2010-0469 PMID:

21436259; PubMed Central PMCID: PMC3100605.

6. El-Amm J, Aragon-Ching JB. The changing landscape in the treatment of metastatic castration-resis-

tant prostate cancer. Ther Adv Med Oncol. 2013; 5(1):25–40. https://doi.org/10.1177/

1758834012458137 PMID: 23323145; PubMed Central PMCID: PMC3539272.

7. Ferraldeschi R, Welti J, Luo J, Attard G, de Bono JS. Targeting the androgen receptor pathway in cas-

tration-resistant prostate cancer: progresses and prospects. Oncogene. 2015; 34(14):1745–57.

https://doi.org/10.1038/onc.2014.115 PMID: 24837363; PubMed Central PMCID: PMC4333106.

8. Taplin ME, Rajeshkumar B, Halabi S, Werner CP, Woda BA, Picus J, et al. Androgen receptor muta-

tions in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J Clin

Oncol. 2003; 21(14):2673–8. https://doi.org/10.1200/JCO.2003.11.102 PMID: 12860943.

9. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profil-

ing of human prostate cancer. Cancer Cell. 2010; 18(1):11–22. https://doi.org/10.1016/j.ccr.2010.05.

026 PMID: 20579941; PubMed Central PMCID: PMC3198787.

10. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. Exome sequencing

identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012; 44

(6):685–9. https://doi.org/10.1038/ng.2279 PMID: 22610119; PubMed Central PMCID: PMC3673022.

11. Guo ZY, Yang X, Sun F, Jiang RC, Linn DE, Chen HG, et al. A Novel Androgen Receptor Splice Vari-

ant Is Up-regulated during Prostate Cancer Progression and Promotes Androgen Depletion-Resistant

Growth. Cancer Research. 2009; 69(6):2305–13. https://doi.org/10.1158/0008-5472.CAN-08-3795

WOS:000264541300022. PMID: 19244107

Systematically modeling of CRPC development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007344 September 10, 2019 24 / 29

https://doi.org/10.3322/caac.20073
http://www.ncbi.nlm.nih.gov/pubmed/20610543
https://doi.org/10.3322/caac.21166
http://www.ncbi.nlm.nih.gov/pubmed/23335087
http://www.ncbi.nlm.nih.gov/pubmed/15762353
https://doi.org/10.1016/j.canlet.2008.06.007
http://www.ncbi.nlm.nih.gov/pubmed/18657355
https://doi.org/10.1210/me.2010-0469
http://www.ncbi.nlm.nih.gov/pubmed/21436259
https://doi.org/10.1177/1758834012458137
https://doi.org/10.1177/1758834012458137
http://www.ncbi.nlm.nih.gov/pubmed/23323145
https://doi.org/10.1038/onc.2014.115
http://www.ncbi.nlm.nih.gov/pubmed/24837363
https://doi.org/10.1200/JCO.2003.11.102
http://www.ncbi.nlm.nih.gov/pubmed/12860943
https://doi.org/10.1016/j.ccr.2010.05.026
https://doi.org/10.1016/j.ccr.2010.05.026
http://www.ncbi.nlm.nih.gov/pubmed/20579941
https://doi.org/10.1038/ng.2279
http://www.ncbi.nlm.nih.gov/pubmed/22610119
https://doi.org/10.1158/0008-5472.CAN-08-3795
http://www.ncbi.nlm.nih.gov/pubmed/19244107
https://doi.org/10.1371/journal.pcbi.1007344


12. Drake CG. Prostate cancer as a model for tumour immunotherapy. Nat Rev Immunol. 2010; 10

(8):580–93. Epub 2010/07/24. https://doi.org/10.1038/nri2817 PMID: 20651745; PubMed Central

PMCID: PMC3082366.

13. Amato RJ, Stepankiw M. Clinical Efficacy of TroVax in the Treatment of Progressive Castration-resis-

tant Prostate Cancer. Clin Med Insights Oncol. 2012; 6:67–73. Epub 2012/01/19. https://doi.org/10.

4137/CMO.S7654 PMID: 22253556; PubMed Central PMCID: PMC3256982.

14. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus Ipilimu-

mab in Advanced Melanoma. N Engl J Med. 2015; 372(26):2521–32. Epub 2015/04/22. https://doi.

org/10.1056/NEJMoa1503093 PMID: 25891173.

15. Maia MC, Hansen AR. A comprehensive review of immunotherapies in prostate cancer. Crit Rev

Oncol Hematol. 2017; 113:292–303. Epub 2017/04/22. https://doi.org/10.1016/j.critrevonc.2017.02.

026 PMID: 28427519.

16. Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, et al. Ipilimumab versus pla-

cebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had pro-

gressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase

3 trial. Lancet Oncol. 2014; 15(7):700–12. Epub 2014/05/17. https://doi.org/10.1016/S1470-2045(14)

70189-5 PMID: 24831977; PubMed Central PMCID: PMC4418935.

17. Singh P, Pal SK, Alex A, Agarwal N. Development of PROSTVAC immunotherapy in prostate cancer.

Future Oncol. 2015; 11(15):2137–48. Epub 2015/08/04. https://doi.org/10.2217/fon.15.120 PMID:

26235179; PubMed Central PMCID: PMC4544699.

18. Redman JM, Gulley JL, Madan RA. Combining immunotherapies for the treatment of prostate cancer.

Urol Oncol. 2017; 35(12):694–700. Epub 2017/11/18. https://doi.org/10.1016/j.urolonc.2017.09.024

PMID: 29146441.

19. Pasero C, Gravis G, Guerin M, Granjeaud S, Thomassin-Piana J, Rocchi P, et al. Inherent and Tumor-

Driven Immune Tolerance in the Prostate Microenvironment Impairs Natural Killer Cell Antitumor

Activity. Cancer Res. 2016; 76(8):2153–65. Epub 2016/05/20. https://doi.org/10.1158/0008-5472.

CAN-15-1965 PMID: 27197252.

20. Escamilla J, Schokrpur S, Liu CN, Priceman SJ, Moughon D, Jiang ZY, et al. CSF1 Receptor Target-

ing in Prostate Cancer Reverses Macrophage-Mediated Resistance to Androgen Blockade Therapy.

Cancer Research. 2015; 75(6):950–62. https://doi.org/10.1158/0008-5472.CAN-14-0992

WOS:000351941400007. PMID: 25736687

21. Akins EJ, Moore ML, Tang S, Willingham MC, Tooze JA, Dubey P. In situ vaccination combined with

androgen ablation and regulatory T-cell depletion reduces castration-resistant tumor burden in pros-

tate-specific pten knockout mice. Cancer Res. 2010; 70(9):3473–82. https://doi.org/10.1158/0008-

5472.CAN-09-2490 PMID: 20406970; PubMed Central PMCID: PMC2866496.

22. Tang S, Moore ML, Grayson JM, Dubey P. Increased CD8(+) T-cell Function following Castration and

Immunization Is Countered by Parallel Expansion of Regulatory T Cells. Cancer Research. 2012; 72(8):

1975–85. https://doi.org/10.1158/0008-5472.CAN-11-2499 WOS:000302905700009. PMID: 22374980

23. Tridane A, Kuang Y. Modeling the interaction of cytotoxic T lymphocytes and influenza virus infected

epithelial cells. Math Biosci Eng. 2010; 7(1):171–85. https://doi.org/10.3934/mbe.2010.7.171 PMID:

20104954.

24. Eikenberry S, Thalhauser C, Kuang Y. Tumor-immune interaction, surgical treatment, and cancer

recurrence in a mathematical model of melanoma. PLoS Comput Biol. 2009; 5(4):e1000362. https://

doi.org/10.1371/journal.pcbi.1000362 PMID: 19390606; PubMed Central PMCID: PMC2667258.

25. Wang J, Zhang L, Jing C, Ye G, Wu H, Miao H, et al. Multi-scale agent-based modeling on melanoma

and its related angiogenesis analysis. Theor Biol Med Model. 2013; 10:41. Epub 2013/06/27. https://

doi.org/10.1186/1742-4682-10-41 PMID: 23800293; PubMed Central PMCID: PMC3694033.

26. Tang L, van de Ven AL, Guo D, Andasari V, Cristini V, Li KC, et al. Computational modeling of 3D

tumor growth and angiogenesis for chemotherapy evaluation. PLoS One. 2014; 9(1):e83962. https://

doi.org/10.1371/journal.pone.0083962 PMID: 24404145; PubMed Central PMCID: PMC3880288.

27. Peng H, Zhao W, Tan H, Ji Z, Li J, Li K, et al. Prediction of treatment efficacy for prostate cancer using

a mathematical model. Sci Rep. 2016; 6:21599. https://doi.org/10.1038/srep21599 PMID: 26868634;

PubMed Central PMCID: PMC4751505.

28. Gravina GL, Marampon F, Piccolella M, Biordi L, Ficorella C, Motta M, et al. Antitumor effects of car-

nertinib in castration resistant prostate cancer models: a comparative study with erlotinib. Prostate.

2011; 71(14):1481–91. Epub 2011/03/30. https://doi.org/10.1002/pros.21363 PMID: 21446006.

29. Huen NY, Pang AL, Tucker JA, Lee TL, Vergati M, Jochems C, et al. Up-regulation of proliferative and

migratory genes in regulatory T cells from patients with metastatic castration-resistant prostate cancer.

Int J Cancer. 2013; 133(2):373–82. Epub 2013/01/16. https://doi.org/10.1002/ijc.28026 PMID:

23319273; PubMed Central PMCID: PMC3695702.

Systematically modeling of CRPC development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007344 September 10, 2019 25 / 29

https://doi.org/10.1038/nri2817
http://www.ncbi.nlm.nih.gov/pubmed/20651745
https://doi.org/10.4137/CMO.S7654
https://doi.org/10.4137/CMO.S7654
http://www.ncbi.nlm.nih.gov/pubmed/22253556
https://doi.org/10.1056/NEJMoa1503093
https://doi.org/10.1056/NEJMoa1503093
http://www.ncbi.nlm.nih.gov/pubmed/25891173
https://doi.org/10.1016/j.critrevonc.2017.02.026
https://doi.org/10.1016/j.critrevonc.2017.02.026
http://www.ncbi.nlm.nih.gov/pubmed/28427519
https://doi.org/10.1016/S1470-2045(14)70189-5
https://doi.org/10.1016/S1470-2045(14)70189-5
http://www.ncbi.nlm.nih.gov/pubmed/24831977
https://doi.org/10.2217/fon.15.120
http://www.ncbi.nlm.nih.gov/pubmed/26235179
https://doi.org/10.1016/j.urolonc.2017.09.024
http://www.ncbi.nlm.nih.gov/pubmed/29146441
https://doi.org/10.1158/0008-5472.CAN-15-1965
https://doi.org/10.1158/0008-5472.CAN-15-1965
http://www.ncbi.nlm.nih.gov/pubmed/27197252
https://doi.org/10.1158/0008-5472.CAN-14-0992
http://www.ncbi.nlm.nih.gov/pubmed/25736687
https://doi.org/10.1158/0008-5472.CAN-09-2490
https://doi.org/10.1158/0008-5472.CAN-09-2490
http://www.ncbi.nlm.nih.gov/pubmed/20406970
https://doi.org/10.1158/0008-5472.CAN-11-2499
http://www.ncbi.nlm.nih.gov/pubmed/22374980
https://doi.org/10.3934/mbe.2010.7.171
http://www.ncbi.nlm.nih.gov/pubmed/20104954
https://doi.org/10.1371/journal.pcbi.1000362
https://doi.org/10.1371/journal.pcbi.1000362
http://www.ncbi.nlm.nih.gov/pubmed/19390606
https://doi.org/10.1186/1742-4682-10-41
https://doi.org/10.1186/1742-4682-10-41
http://www.ncbi.nlm.nih.gov/pubmed/23800293
https://doi.org/10.1371/journal.pone.0083962
https://doi.org/10.1371/journal.pone.0083962
http://www.ncbi.nlm.nih.gov/pubmed/24404145
https://doi.org/10.1038/srep21599
http://www.ncbi.nlm.nih.gov/pubmed/26868634
https://doi.org/10.1002/pros.21363
http://www.ncbi.nlm.nih.gov/pubmed/21446006
https://doi.org/10.1002/ijc.28026
http://www.ncbi.nlm.nih.gov/pubmed/23319273
https://doi.org/10.1371/journal.pcbi.1007344


30. Jiang N NY, Flores-Morales A. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46218.

2013.

31. Qiao W, Wang W, Laurenti E, Turinsky AL, Wodak SJ, Bader GD, et al. Intercellular network structure

and regulatory motifs in the human hematopoietic system. Molecular Systems Biology. 2014;10(7).

https://doi.org/10.15252/msb.20145141 WOS:000340295800003. PMID: 25028490

32. Ikeda T, Hirata S, Fukushima S, Matsunaga Y, Ito T, Uchino M, et al. Dual effects of TRAIL in suppres-

sion of autoimmunity: the inhibition of Th1 cells and the promotion of regulatory T cells. J Immunol.

2010; 185(9):5259–67. Epub 2010/10/06. https://doi.org/10.4049/jimmunol.0902797 PMID: 20921531.

33. Lee GT, Kang DI, Ha YS, Jung YS, Chung J, Min K, et al. Prostate cancer bone metastases acquire

resistance to androgen deprivation via WNT5A-mediated BMP-6 induction. Br J Cancer. 2014; 110

(6):1634–44. Epub 2014/02/13. https://doi.org/10.1038/bjc.2014.23 PMID: 24518599; PubMed Cen-

tral PMCID: PMC3960605.

34. Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH, et al. Skp2 targeting suppresses tumorigen-

esis by Arf-p53-independent cellular senescence. Nature. 2010; 464(7287):374–9. Epub 2010/03/20.

https://doi.org/10.1038/nature08815 PMID: 20237562; PubMed Central PMCID: PMC2928066.

35. Zhao Y, Tindall DJ, Huang H. Modulation of androgen receptor by FOXA1 and FOXO1 factors in pros-

tate cancer. Int J Biol Sci. 2014; 10(6):614–9. Epub 2014/06/21. https://doi.org/10.7150/ijbs.8389

PMID: 24948874; PubMed Central PMCID: PMC4062954.

36. Mukherjee R, McGuinness DH, McCall P, Underwood MA, Seywright M, Orange C, et al. Upregulation

of MAPK pathway is associated with survival in castrate-resistant prostate cancer. Br J Cancer. 2011;

104(12):1920–8. Epub 2011/05/12. https://doi.org/10.1038/bjc.2011.163 PMID: 21559022; PubMed

Central PMCID: PMC3111196.

37. Toren P, Kim S, Johnson F, Zoubeidi A. Combined AKT and MEK Pathway Blockade in Pre-Clinical

Models of Enzalutamide-Resistant Prostate Cancer. PLoS One. 2016; 11(4):e0152861. Epub 2016/

04/06. https://doi.org/10.1371/journal.pone.0152861 PMID: 27046225; PubMed Central PMCID:

PMC4821639.

38. Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the

tumor microenvironment. Cancers (Basel). 2014; 6(3):1670–90. https://doi.org/10.3390/

cancers6031670 PMID: 25125485; PubMed Central PMCID: PMC4190561.

39. Alvarez D, Vollmann EH, von Andrian UH. Mechanisms and consequences of dendritic cell migration.

Immunity. 2008; 29(3):325–42. Epub 2008/09/19. https://doi.org/10.1016/j.immuni.2008.08.006

PMID: 18799141; PubMed Central PMCID: PMC2818978.

40. Seyfizadeh N, Muthuswamy R, Mitchell DA, Nierkens S, Seyfizadeh N. Migration of dendritic cells to

the lymph nodes and its enhancement to drive anti-tumor responses. Crit Rev Oncol Hematol. 2016;

107:100–10. Epub 2016/11/09. https://doi.org/10.1016/j.critrevonc.2016.09.002 PMID: 27823637.

41. Shen CR, Yang WC, Chen HW. The fate of regulatory T cells: survival or apoptosis. Cell Mol Immunol.

2014; 11(1):11–3. https://doi.org/10.1038/cmi.2013.49 PMID: 24185711; PubMed Central PMCID:

PMC4002139.

42. Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune sys-

tem. Nat Rev Immunol. 2012; 12(3):180–90. Epub 2012/02/22. https://doi.org/10.1038/nri3156 PMID:

22343569.

43. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2

polarised population promoting tumour progression: Potential targets of anti-cancer therapy. European

Journal of Cancer. 2006; 42(6):717–27. https://doi.org/10.1016/j.ejca.2006.01.003

WOS:000237377100005. PMID: 16520032

44. Wyckoff J, Wang WG, Lin EY, Wang YR, Pixley F, Stanley ER, et al. A paracrine loop between tumor

cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research.

2004; 64(19):7022–9. https://doi.org/10.1158/0008-5472.CAN-04-1449 WOS:000224292400028.

PMID: 15466195

45. Karantanos T, Evans CP, Tombal B, Thompson TC, Montironi R, Isaacs WB. Understanding the

mechanisms of androgen deprivation resistance in prostate cancer at the molecular level. Eur Urol.

2015; 67(3):470–9. https://doi.org/10.1016/j.eururo.2014.09.049 PMID: 25306226; PubMed Central

PMCID: PMC5301306.

46. Mizokami A, Namiki M. Reconsideration of progression to CRPC during androgen deprivation therapy.

J Steroid Biochem Mol Biol. 2015; 145:164–71. https://doi.org/10.1016/j.jsbmb.2014.03.015 PMID:

24717975.

47. Mizokami A, Koh E, Fujita H, Maeda Y, Egawa M, Koshida K, et al. The adrenal androgen Androstene-

diol is present in prostate cancer tissue after androgen deprivation therapy and activates mutated

androgen receptor. Cancer Research. 2004; 64(2):765–71. https://doi.org/10.1158/0008-5472.Can-

03-0130 WOS:000188399300045. PMID: 14744796

Systematically modeling of CRPC development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007344 September 10, 2019 26 / 29

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46218
https://doi.org/10.15252/msb.20145141
http://www.ncbi.nlm.nih.gov/pubmed/25028490
https://doi.org/10.4049/jimmunol.0902797
http://www.ncbi.nlm.nih.gov/pubmed/20921531
https://doi.org/10.1038/bjc.2014.23
http://www.ncbi.nlm.nih.gov/pubmed/24518599
https://doi.org/10.1038/nature08815
http://www.ncbi.nlm.nih.gov/pubmed/20237562
https://doi.org/10.7150/ijbs.8389
http://www.ncbi.nlm.nih.gov/pubmed/24948874
https://doi.org/10.1038/bjc.2011.163
http://www.ncbi.nlm.nih.gov/pubmed/21559022
https://doi.org/10.1371/journal.pone.0152861
http://www.ncbi.nlm.nih.gov/pubmed/27046225
https://doi.org/10.3390/cancers6031670
https://doi.org/10.3390/cancers6031670
http://www.ncbi.nlm.nih.gov/pubmed/25125485
https://doi.org/10.1016/j.immuni.2008.08.006
http://www.ncbi.nlm.nih.gov/pubmed/18799141
https://doi.org/10.1016/j.critrevonc.2016.09.002
http://www.ncbi.nlm.nih.gov/pubmed/27823637
https://doi.org/10.1038/cmi.2013.49
http://www.ncbi.nlm.nih.gov/pubmed/24185711
https://doi.org/10.1038/nri3156
http://www.ncbi.nlm.nih.gov/pubmed/22343569
https://doi.org/10.1016/j.ejca.2006.01.003
http://www.ncbi.nlm.nih.gov/pubmed/16520032
https://doi.org/10.1158/0008-5472.CAN-04-1449
http://www.ncbi.nlm.nih.gov/pubmed/15466195
https://doi.org/10.1016/j.eururo.2014.09.049
http://www.ncbi.nlm.nih.gov/pubmed/25306226
https://doi.org/10.1016/j.jsbmb.2014.03.015
http://www.ncbi.nlm.nih.gov/pubmed/24717975
https://doi.org/10.1158/0008-5472.Can-03-0130
https://doi.org/10.1158/0008-5472.Can-03-0130
http://www.ncbi.nlm.nih.gov/pubmed/14744796
https://doi.org/10.1371/journal.pcbi.1007344


48. Labrie F, Dupont A, Belanger A. Complete androgen blockade for the treatment of prostate cancer.

Important Adv Oncol. 1985:193–217. PMID: 3916740.

49. Labrie F. Intracrinology Mol Cell Endocrinol. 1991; 78(3):C113–8. https://doi.org/10.1016/0303-7207

(91)90116-a PMID: 1838082.

50. Liao RS, Ma S, Miao L, Li R, Yin Y, Raj GV. Androgen receptor-mediated non-genomic regulation of

prostate cancer cell proliferation. Transl Androl Urol. 2013; 2(3):187–96. https://doi.org/10.3978/j.issn.

2223-4683.2013.09.07 PMID: 26816736; PubMed Central PMCID: PMC4708176.

51. Liu G, Vogel SM, Gao X, Javaid K, Hu G, Danilov SM, et al. Src phosphorylation of endothelial cell sur-

face intercellular adhesion molecule-1 mediates neutrophil adhesion and contributes to the mechanism

of lung inflammation. Arterioscler Thromb Vasc Biol. 2011; 31(6):1342–50. Epub 2011/04/09. https://

doi.org/10.1161/ATVBAHA.110.222208 PMID: 21474822; PubMed Central PMCID: PMC3548602.

52. Ji Z, Su J, Wu D, Peng H, Zhao W, Nlong Zhao B, et al. Predicting the impact of combined therapies

on myeloma cell growth using a hybrid multi-scale agent-based model. Oncotarget. 2017; 8(5):7647–

65. https://doi.org/10.18632/oncotarget.13831 PMID: 28032590.

53. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer

Research. 2006; 66(2):605–12. https://doi.org/10.1158/0008-5472.CAN-05-4005

WOS:000234915100003. PMID: 16423985

54. Fang LY, Izumi K, Lai KP, Liang L, Li L, Miyamoto H, et al. Infiltrating Macrophages Promote Prostate

Tumorigenesis via Modulating Androgen Receptor-Mediated CCL4-STAT3 Signaling. Cancer

Research. 2013; 73(18):5633–46. https://doi.org/10.1158/0008-5472.CAN-12-3228

WOS:000324806300005. PMID: 23878190

55. Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in immuno-oncol-

ogy. Nat Rev Drug Discov. 2015; 14(9):603–22. https://doi.org/10.1038/nrd4596 PMID: 26228631.

56. Bousso P. T-cell activation by dendritic cells in the lymph node: lessons from the movies. Nat Rev

Immunol. 2008; 8(9):675–84. https://doi.org/10.1038/nri2379 PMID: 19172690.

57. Chao DL, Davenport MP, Forrest S, Perelson AS. A stochastic model of cytotoxic T cell responses.

Journal of Theoretical Biology. 2004; 228(2):227–40. https://doi.org/10.1016/j.jtbi.2003.12.011

WOS:000221205400007. PMID: 15094017

58. Bauer CA, Kim EY, Marangoni F, Carrizosa E, Claudio NM, Mempel TR. Dynamic Treg interactions

with intratumoral APCs promote local CTL dysfunction. J Clin Invest. 2014; 124(6):2425–40. https://

doi.org/10.1172/JCI66375 PMID: 24812664; PubMed Central PMCID: PMC4089459.

59. Beyer M, Schultze JL. Regulatory T cells in cancer. Blood. 2006; 108(3):804–11. https://doi.org/10.

1182/blood-2006-02-002774 PMID: 16861339.

60. Owen DL, Mahmud SA, Vang KB, Kelly RM, Blazar BR, Smith KA, et al. Identification of Cellular

Sources of IL-2 Needed for Regulatory T Cell Development and Homeostasis. J Immunol. 2018; 200

(12):3926–33. Epub 2018/05/08. https://doi.org/10.4049/jimmunol.1800097 PMID: 29728511;

PubMed Central PMCID: PMC5988981.

61. Stokes CL, Lauffenburger DA. Analysis of the roles of microvessel endothelial cell random motility and

chemotaxis in angiogenesis. J Theor Biol. 1991; 152(3):377–403. https://doi.org/10.1016/s0022-5193

(05)80201-2 PMID: 1721100.

62. Anderson AR, Chaplain MA. Continuous and discrete mathematical models of tumor-induced angio-

genesis. Bull Math Biol. 1998; 60(5):857–99. https://doi.org/10.1006/bulm.1998.0042 PMID: 9739618.

63. Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D, et al. IL-2 regulates FOXP3 expression

in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the

expansion of these cells in vivo. Blood. 2006; 108(5):1571–9. https://doi.org/10.1182/blood-2006-02-

004747 PMID: 16645171; PubMed Central PMCID: PMC1895505.

64. Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, Yates KB, et al. The epigenetic landscape

of T cell exhaustion. Science. 2016; 354(6316):1165–9. https://doi.org/10.1126/science.aae0491

PMID: 27789799.

65. Su J, Zhang L, Zhang W, Choi DS, Wen J, Jiang B, et al. Targeting the biophysical properties of the

myeloma initiating cell niches: a pharmaceutical synergism analysis using multi-scale agent-based

modeling. PLoS One. 2014; 9(1):e85059. https://doi.org/10.1371/journal.pone.0085059 PMID:

24475036; PubMed Central PMCID: PMC3903473.

66. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, et al. Leukocyte complexity

predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov.

2011; 1(1):54–67. https://doi.org/10.1158/2159-8274.CD-10-0028 PMID: 22039576; PubMed Central

PMCID: PMC3203524.

67. Cathomas R, Rothermundt C, Klingbiel D, Bubendorf L, Jaggi R, Betticher DC, et al. Efficacy of cetuxi-

mab in metastatic castration-resistant prostate cancer might depend on EGFR and PTEN expression:

Systematically modeling of CRPC development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007344 September 10, 2019 27 / 29

http://www.ncbi.nlm.nih.gov/pubmed/3916740
https://doi.org/10.1016/0303-7207(91)90116-a
https://doi.org/10.1016/0303-7207(91)90116-a
http://www.ncbi.nlm.nih.gov/pubmed/1838082
https://doi.org/10.3978/j.issn.2223-4683.2013.09.07
https://doi.org/10.3978/j.issn.2223-4683.2013.09.07
http://www.ncbi.nlm.nih.gov/pubmed/26816736
https://doi.org/10.1161/ATVBAHA.110.222208
https://doi.org/10.1161/ATVBAHA.110.222208
http://www.ncbi.nlm.nih.gov/pubmed/21474822
https://doi.org/10.18632/oncotarget.13831
http://www.ncbi.nlm.nih.gov/pubmed/28032590
https://doi.org/10.1158/0008-5472.CAN-05-4005
http://www.ncbi.nlm.nih.gov/pubmed/16423985
https://doi.org/10.1158/0008-5472.CAN-12-3228
http://www.ncbi.nlm.nih.gov/pubmed/23878190
https://doi.org/10.1038/nrd4596
http://www.ncbi.nlm.nih.gov/pubmed/26228631
https://doi.org/10.1038/nri2379
http://www.ncbi.nlm.nih.gov/pubmed/19172690
https://doi.org/10.1016/j.jtbi.2003.12.011
http://www.ncbi.nlm.nih.gov/pubmed/15094017
https://doi.org/10.1172/JCI66375
https://doi.org/10.1172/JCI66375
http://www.ncbi.nlm.nih.gov/pubmed/24812664
https://doi.org/10.1182/blood-2006-02-002774
https://doi.org/10.1182/blood-2006-02-002774
http://www.ncbi.nlm.nih.gov/pubmed/16861339
https://doi.org/10.4049/jimmunol.1800097
http://www.ncbi.nlm.nih.gov/pubmed/29728511
https://doi.org/10.1016/s0022-5193(05)80201-2
https://doi.org/10.1016/s0022-5193(05)80201-2
http://www.ncbi.nlm.nih.gov/pubmed/1721100
https://doi.org/10.1006/bulm.1998.0042
http://www.ncbi.nlm.nih.gov/pubmed/9739618
https://doi.org/10.1182/blood-2006-02-004747
https://doi.org/10.1182/blood-2006-02-004747
http://www.ncbi.nlm.nih.gov/pubmed/16645171
https://doi.org/10.1126/science.aae0491
http://www.ncbi.nlm.nih.gov/pubmed/27789799
https://doi.org/10.1371/journal.pone.0085059
http://www.ncbi.nlm.nih.gov/pubmed/24475036
https://doi.org/10.1158/2159-8274.CD-10-0028
http://www.ncbi.nlm.nih.gov/pubmed/22039576
https://doi.org/10.1371/journal.pcbi.1007344


results from a phase II trial (SAKK 08/07). Clin Cancer Res. 2012; 18(21):6049–57. Epub 2012/09/15.

https://doi.org/10.1158/1078-0432.CCR-12-2219 PMID: 22977195.

68. Festuccia C, Gravina GL, Biordi L, D’Ascenzo S, Dolo V, Ficorella C, et al. Effects of EGFR tyrosine

kinase inhibitor erlotinib in prostate cancer cells in vitro. Prostate. 2009; 69(14):1529–37. Epub 2009/

06/30. https://doi.org/10.1002/pros.20995 PMID: 19562712.

69. Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, et al. Wnt5a signaling directly

affects cell motility and invasion of metastatic melanoma. Cancer Cell. 2002; 1(3):279–88. Epub 2002/

06/28. PMID: 12086864.

70. Huang CL, Liu D, Nakano J, Ishikawa S, Kontani K, Yokomise H, et al. Wnt5a expression is associated

with the tumor proliferation and the stromal vascular endothelial growth factor—an expression in non-

small-cell lung cancer. J Clin Oncol. 2005; 23(34):8765–73. Epub 2005/11/30. https://doi.org/10.1200/

JCO.2005.02.2871 PMID: 16314637.

71. Pukrop R, Krischer M. Changing views about personality disorders: Comment about the prospective

studies CIC, CLPS, and MSAD. J Pers Disord. 2005; 19(5):563–72; discussion 94–6. Epub 2005/11/

09. https://doi.org/10.1521/pedi.2005.19.5.563 PMID: 16274285.

72. Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T, et al. Expression of Wnt-5a is cor-

related with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res.

2006; 66(21):10439–48. Epub 2006/11/03. https://doi.org/10.1158/0008-5472.CAN-06-2359 PMID:

17079465.

73. Yamamoto H, Oue N, Sato A, Hasegawa Y, Yamamoto H, Matsubara A, et al. Wnt5a signaling is

involved in the aggressiveness of prostate cancer and expression of metalloproteinase. Oncogene.

2010; 29(14):2036–46. Epub 2010/01/27. https://doi.org/10.1038/onc.2009.496 PMID: 20101234.

74. Lunemann JD, Waiczies S, Ehrlich S, Wendling U, Seeger B, Kamradt T, et al. Death ligand TRAIL

induces no apoptosis but inhibits activation of human (auto)antigen-specific T cells. J Immunol. 2002;

168(10):4881–8. Epub 2002/05/08. https://doi.org/10.4049/jimmunol.168.10.4881 PMID: 11994437.

75. Song K, Chen Y, Goke R, Wilmen A, Seidel C, Goke A, et al. Tumor necrosis factor-related apoptosis-

inducing ligand (TRAIL) is an inhibitor of autoimmune inflammation and cell cycle progression. J Exp

Med. 2000; 191(7):1095–104. Epub 2000/04/05. https://doi.org/10.1084/jem.191.7.1095 PMID:

10748228; PubMed Central PMCID: PMC2193179.

76. Kimberley FC, Screaton GR. Following a TRAIL: update on a ligand and its five receptors. Cell Res.

2004; 14(5):359–72. Epub 2004/11/13. https://doi.org/10.1038/sj.cr.7290236 PMID: 15538968.

77. Wang SH, Chen GH, Fan Y, Van Antwerp M, Baker JR, Jr. Tumor necrosis factor-related apoptosis-

inducing ligand inhibits experimental autoimmune thyroiditis by the expansion of CD4+CD25+ regula-

tory T cells. Endocrinology. 2009; 150(4):2000–7. Epub 2008/11/15. https://doi.org/10.1210/en.2008-

1389 PMID: 19008314; PubMed Central PMCID: PMC2659286.

78. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Effect of MDV3100, an androgen

receptor signaling inhibitor (ARSI), on overall survival in patients with prostate cancer postdocetaxel:

Results from the phase III AFFIRM study. Journal of Clinical Oncology. 2012; 30(5).

WOS:000208892400002.

79. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical

genomics of advanced prostate cancer. Cell. 2015; 161(5):1215–28. Epub 2015/05/23. https://doi.org/

10.1016/j.cell.2015.05.001 PMID: 26000489; PubMed Central PMCID: PMC4484602.

80. Rathkopf DE, Smith MR, Ryan CJ, Berry WR, Shore ND, Liu G, et al. Androgen receptor mutations in

patients with castration-resistant prostate cancer treated with apalutamide. Ann Oncol. 2017; 28

(9):2264–71. Epub 2017/06/22. https://doi.org/10.1093/annonc/mdx283 PMID: 28633425; PubMed

Central PMCID: PMC5834046.

81. Prekovic S, van Royen ME, Voet AR, Geverts B, Houtman R, Melchers D, et al. The Effect of F877L

and T878A Mutations on Androgen Receptor Response to Enzalutamide. Mol Cancer Ther. 2016; 15

(7):1702–12. Epub 2016/05/20. https://doi.org/10.1158/1535-7163.MCT-15-0892 PMID: 27196756.

82. Miyamoto DT, Zheng Y, Wittner BS, Lee RJ, Zhu H, Broderick KT, et al. RNA-Seq of single prostate

CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science. 2015; 349

(6254):1351–6. Epub 2015/09/19. https://doi.org/10.1126/science.aab0917 PMID: 26383955;

PubMed Central PMCID: PMC4872391.

83. Tucker JA, Jochems C, Gulley JL, Schlom J, Tsang KY. Immunotherapy: shifting the balance of cell-

mediated immunity and suppression in human prostate cancer. Cancers (Basel). 2012; 4(4):1333–48.

https://doi.org/10.3390/cancers4041333 PMID: 24213509; PubMed Central PMCID: PMC3712722.

84. Solovyev A, Mi Q, Tzen YT, Brienza D, Vodovotz Y. Hybrid equation/agent-based model of ischemia-

induced hyperemia and pressure ulcer formation predicts greater propensity to ulcerate in subjects

with spinal cord injury. PLoS Comput Biol. 2013; 9(5):e1003070. https://doi.org/10.1371/journal.pcbi.

1003070 PMID: 23696726; PubMed Central PMCID: PMC3656105.

Systematically modeling of CRPC development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007344 September 10, 2019 28 / 29

https://doi.org/10.1158/1078-0432.CCR-12-2219
http://www.ncbi.nlm.nih.gov/pubmed/22977195
https://doi.org/10.1002/pros.20995
http://www.ncbi.nlm.nih.gov/pubmed/19562712
http://www.ncbi.nlm.nih.gov/pubmed/12086864
https://doi.org/10.1200/JCO.2005.02.2871
https://doi.org/10.1200/JCO.2005.02.2871
http://www.ncbi.nlm.nih.gov/pubmed/16314637
https://doi.org/10.1521/pedi.2005.19.5.563
http://www.ncbi.nlm.nih.gov/pubmed/16274285
https://doi.org/10.1158/0008-5472.CAN-06-2359
http://www.ncbi.nlm.nih.gov/pubmed/17079465
https://doi.org/10.1038/onc.2009.496
http://www.ncbi.nlm.nih.gov/pubmed/20101234
https://doi.org/10.4049/jimmunol.168.10.4881
http://www.ncbi.nlm.nih.gov/pubmed/11994437
https://doi.org/10.1084/jem.191.7.1095
http://www.ncbi.nlm.nih.gov/pubmed/10748228
https://doi.org/10.1038/sj.cr.7290236
http://www.ncbi.nlm.nih.gov/pubmed/15538968
https://doi.org/10.1210/en.2008-1389
https://doi.org/10.1210/en.2008-1389
http://www.ncbi.nlm.nih.gov/pubmed/19008314
https://doi.org/10.1016/j.cell.2015.05.001
https://doi.org/10.1016/j.cell.2015.05.001
http://www.ncbi.nlm.nih.gov/pubmed/26000489
https://doi.org/10.1093/annonc/mdx283
http://www.ncbi.nlm.nih.gov/pubmed/28633425
https://doi.org/10.1158/1535-7163.MCT-15-0892
http://www.ncbi.nlm.nih.gov/pubmed/27196756
https://doi.org/10.1126/science.aab0917
http://www.ncbi.nlm.nih.gov/pubmed/26383955
https://doi.org/10.3390/cancers4041333
http://www.ncbi.nlm.nih.gov/pubmed/24213509
https://doi.org/10.1371/journal.pcbi.1003070
https://doi.org/10.1371/journal.pcbi.1003070
http://www.ncbi.nlm.nih.gov/pubmed/23696726
https://doi.org/10.1371/journal.pcbi.1007344


85. Zhao W, Kridel S, Thorburn A, Kooshki M, Little J, Hebbar S, et al. Fatty acid synthase: a novel target

for antiglioma therapy. Br J Cancer. 2006; 95(7):869–78. Epub 2006/09/14. https://doi.org/10.1038/sj.

bjc.6603350 PMID: 16969344; PubMed Central PMCID: PMC2360524.

86. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformat-

ics. 2009; 25(9):1105–11. https://doi.org/10.1093/bioinformatics/btp120 PMID: 19289445; PubMed

Central PMCID: PMC2672628.

87. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly

and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell dif-

ferentiation. Nat Biotechnol. 2010; 28(5):511–5. https://doi.org/10.1038/nbt.1621 PMID: 20436464;

PubMed Central PMCID: PMC3146043.

88. Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, et al. B7-H4 expression identifies a novel

suppressive macrophage population in human ovarian carcinoma. J Exp Med. 2006; 203(4):871–81.

https://doi.org/10.1084/jem.20050930 PMID: 16606666; PubMed Central PMCID: PMC2118300.

89. Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009; 30

(5):636–45. Epub 2009/05/26. https://doi.org/10.1016/j.immuni.2009.04.010 PMID: 19464986.

90. Kaech SM, Ahmed R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a develop-

mental program in naive cells. Nat Immunol. 2001; 2(5):415–22. https://doi.org/10.1038/87720 PMID:

11323695; PubMed Central PMCID: PMC3760150.

91. van Stipdonk MJ, Lemmens EE, Schoenberger SP. Naive CTLs require a single brief period of anti-

genic stimulation for clonal expansion and differentiation. Nat Immunol. 2001; 2(5):423–9. https://doi.

org/10.1038/87730 PMID: 11323696.

92. Wodarz D, Thomsen AR. Effect of the CTL proliferation program on virus dynamics. Int Immunol.

2005; 17(9):1269–76. https://doi.org/10.1093/intimm/dxh303 PMID: 16103027.

93. Murali-Krishna K, Lau LL, Sambhara S, Lemonnier F, Altman J, Ahmed R. Persistence of memory

CD8 T cells in MHC class I-deficient mice. Science. 1999; 286(5443):1377–81. https://doi.org/10.

1126/science.286.5443.1377 PMID: 10558996.

94. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1):57–70. https://doi.org/10.

1016/s0092-8674(00)81683-9 PMID: 10647931.

95. Macklin P, McDougall S, Anderson ARA, Chaplain MAJ, Cristini V, Lowengrub J. Multiscale modelling

and nonlinear simulation of vascular tumour growth. Journal of Mathematical Biology. 2009; 58(4–

5):765–98. https://doi.org/10.1007/s00285-008-0216-9 WOS:000262482600011. PMID: 18781303

96. Paweletz N, Knierim M. Tumor-related angiogenesis. Crit Rev Oncol Hematol. 1989; 9(3):197–242.

PMID: 2480145.

97. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005; 438(7070):932–6. https://doi.

org/10.1038/nature04478 PMID: 16355210.

98. Sholley MM, Ferguson GP, Seibel HR, Montour JL, Wilson JD. Mechanisms of neovascularization.

Vascular sprouting can occur without proliferation of endothelial cells. Lab Invest. 1984; 51(6):624–34.

PMID: 6209468.

99. Geng Q, Liu J, Gong Z, Chen S, Chen S, Li X, et al. Phosphorylation by mTORC1 stablizes Skp2 and

regulates its oncogenic function in gastric cancer. Mol Cancer. 2017; 16(1):83. https://doi.org/10.1186/

s12943-017-0649-0 PMID: 28446188; PubMed Central PMCID: PMC5407005.

100. Bousso P, Bhakta NR, Lewis RS, Robey E. Dynamics of thymocyte-stromal cell interactions visualized

by two-photon microscopy. Science. 2002; 296(5574):1876–80. https://doi.org/10.1126/science.

1070945 PMID: 12052962.

101. De Angelis G, Rittenhouse HG, Mikolajczyk SD, Blair Shamel L, Semjonow A. Twenty Years of PSA:

From Prostate Antigen to Tumor Marker. Rev Urol. 2007; 9(3):113–23. PMID: 17934568; PubMed

Central PMCID: PMC2002501.

102. Qin J, Liu X, Laffin B, Chen X, Choy G, Jeter CR, et al. The PSA(-/lo) prostate cancer cell population

harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell. 2012;

10(5):556–69. https://doi.org/10.1016/j.stem.2012.03.009 PMID: 22560078; PubMed Central PMCID:

PMC3348510.

103. Mathew S, Sundararaj S, Mamiya H, Banerjee I. Regulatory interactions maintaining self-renewal of

human embryonic stem cells as revealed through a systems analysis of PI3K/AKT pathway. Bioinfor-

matics. 2014; 30(16):2334–42. Epub 2014/04/30. https://doi.org/10.1093/bioinformatics/btu209 PMID:

24778109; PubMed Central PMCID: PMC4176056.

Systematically modeling of CRPC development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007344 September 10, 2019 29 / 29

https://doi.org/10.1038/sj.bjc.6603350
https://doi.org/10.1038/sj.bjc.6603350
http://www.ncbi.nlm.nih.gov/pubmed/16969344
https://doi.org/10.1093/bioinformatics/btp120
http://www.ncbi.nlm.nih.gov/pubmed/19289445
https://doi.org/10.1038/nbt.1621
http://www.ncbi.nlm.nih.gov/pubmed/20436464
https://doi.org/10.1084/jem.20050930
http://www.ncbi.nlm.nih.gov/pubmed/16606666
https://doi.org/10.1016/j.immuni.2009.04.010
http://www.ncbi.nlm.nih.gov/pubmed/19464986
https://doi.org/10.1038/87720
http://www.ncbi.nlm.nih.gov/pubmed/11323695
https://doi.org/10.1038/87730
https://doi.org/10.1038/87730
http://www.ncbi.nlm.nih.gov/pubmed/11323696
https://doi.org/10.1093/intimm/dxh303
http://www.ncbi.nlm.nih.gov/pubmed/16103027
https://doi.org/10.1126/science.286.5443.1377
https://doi.org/10.1126/science.286.5443.1377
http://www.ncbi.nlm.nih.gov/pubmed/10558996
https://doi.org/10.1016/s0092-8674(00)81683-9
https://doi.org/10.1016/s0092-8674(00)81683-9
http://www.ncbi.nlm.nih.gov/pubmed/10647931
https://doi.org/10.1007/s00285-008-0216-9
http://www.ncbi.nlm.nih.gov/pubmed/18781303
http://www.ncbi.nlm.nih.gov/pubmed/2480145
https://doi.org/10.1038/nature04478
https://doi.org/10.1038/nature04478
http://www.ncbi.nlm.nih.gov/pubmed/16355210
http://www.ncbi.nlm.nih.gov/pubmed/6209468
https://doi.org/10.1186/s12943-017-0649-0
https://doi.org/10.1186/s12943-017-0649-0
http://www.ncbi.nlm.nih.gov/pubmed/28446188
https://doi.org/10.1126/science.1070945
https://doi.org/10.1126/science.1070945
http://www.ncbi.nlm.nih.gov/pubmed/12052962
http://www.ncbi.nlm.nih.gov/pubmed/17934568
https://doi.org/10.1016/j.stem.2012.03.009
http://www.ncbi.nlm.nih.gov/pubmed/22560078
https://doi.org/10.1093/bioinformatics/btu209
http://www.ncbi.nlm.nih.gov/pubmed/24778109
https://doi.org/10.1371/journal.pcbi.1007344

