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Abstract 
Cancer therapeutic vaccines are used to strengthen a patient's own immune system by 
amplifying existing immune responses. Intralesional administration of the bacteria-based 
emm55 vaccine together with the PD1 checkpoint inhibitor produced a strong anti-tumor effect 
against the B16 melanoma murine model. However, it is not trivial to design an optimal order 
and frequency of injections for combination therapies. Here, we developed a coupled ordinary 
differential equations model calibrated to experimental data and used the mesh adaptive direct 
search method to optimize the treatment protocols of the emm55 vaccine and anti-PD1 
combined therapy. This method determined that early consecutive vaccine injections combined 
with distributed anti-PD1 injections of decreasing separation time yielded the best tumor size 
reduction. The optimized protocols led to a twofold decrease in tumor area for the vaccine-alone 
treatment, and a fourfold decrease for the combined therapy. Our results reveal the tumor 
subpopulation dynamics in the optimal treatment condition, defining the path for efficacious 
treatment design. Similar computational frameworks can be applied to other tumors and other 
combination therapies to generate experimentally testable hypotheses in a fairly unrestricted 
and inexpensive setting. 
 
 
 
 
1. Introduction  
While the immune system provides the first line of defense against foreign bodies, such as 
viruses or cancer cells, the patient’s own activated T cells are rarely effective in killing large 
tumors. Thus, additional methods for boosting patients' immune systems are desired. One of 
such methods is administering therapeutic cancer vaccines designed to eradicate cancer cells by 
strengthening a patient's own immune system by either inducing new or amplifying existing 
immune responses [1-4]. When such vaccines are injected into a tumor, they transfect tumor 
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cells and induce signals that activate the immune system response, resulting in increased tumor 
infiltration by the T cells. 
Bacterial-based vaccines have been known for over a century to stimulate the immune system 
[5, 6]. One of the first studies of immunotherapy in the treatment of malignant tumors, which 
began in 1891 by William B. Coley, introduced streptococcal organisms into a cancer patient to 
stimulate the immune system [5]. Administration of attenuated mycobacteria, specifically Bacillus 
Calmette–Guérin (BCG) vaccine, is still successfully used in the clinical treatment of superficial 
bladder cancer [7, 8]. Studies have shown that anti-tumor immunity can be induced by activating 
TLRs in dendritic cells [9-11]. The addition of microbial extracts containing TLR ligands has been 
shown to induce tumor antigen presentation to T cells by activated dendritic cells, resulting in 
anti-tumor immunity [12, 13]. 
 
The cancer vaccine under consideration here is plasmid encoding the emm55 protein (emm55 
vaccine), which is a serotyping protein normally expressed on the surface of the bacterium 
Streptococcus pyogenes [14, 15]. It has been shown that the lytic activity of S. pyogenes and a 
single application of live bacteria into established Panc02 tumors resulted in complete tumor 
regression [16]. This study also confirmed the leukocyte infiltration within the tumors with 
elevated IFN-γ production upon re-stimulation with tumor cells. This indicates that S. pyogenes, 
or its related proteins, are highly antigenic and may act as adjuvants for priming or activating 
tumor-specific T cells. In fact, the intralesional (IL) injection of plasmid DNA vaccine expressing 
emm55 induced a tumor-specific immune response and yielded clinical efficacy [14]. IL 
therapies have significant advantages as they can be used to treat tumors that are not 
resectable and allow avoidance of the off-target effects that are induced by standard therapies 
such as radiation and chemotherapy. Thus, IL treatment with therapeutic vaccines shows 
promise for strengthening a patient’s own immune systems to fight tumors.  
 
However, the dynamics of interactions between native cytotoxic T cells, tumor cells, and 
therapeutic vaccine are quite complex. As a result of transfection of tumor cells by the vaccine, 
tumor-associated antigens are released that are captured by the dendritic cells (DCs), which, in 
turn, prime the T cells. The activated T cells infiltrate the tumor, bind to and kill the target cancer 
cells. This again leads to the release of specific antigens by the dying cancer, and this cancer-
immune cycle is repeated [17]. However, the transfected tumor cells often have highly 
upregulated co-inhibitory ligands such as PD-L1, which may engage in binding to PD1 on T cells, 
resulting in exhaustion and deactivation.  
 
The combination of emm55 cloned into a DNA plasmid vaccine and a monoclonal antagonistic 
antibody targeting PD1 was investigated in a murine model of melanoma [18]. A specific 
administration protocol consisting of one weekly injection of vaccine and two anti-PD1 injections 
per week was tested for three weeks, leading to significant tumor size reduction (~70% smaller 
than the control case), but the tumor was not eradicated [18]. This was a motivation for our 
study to investigate more effective administration protocols using the mathematical optimization 
of and ordinary differential equations (ODE) model hierarchically calibrated with experimental 
data. 
 
While general topics in the mathematical modeling of immunotherapy have been widely explored 
[19-23], the modeling of therapeutic cancer vaccines is still quite limited and includes the 
modeling of dendritic cell activation [24], the direct stimulation of T cells [25-28], and dendritic 
vaccines [29-31]. To our knowledge, the model presented here is the first to address the emm55 
vaccine with the aim of finding the optimal treatment protocols. In general, various methods have 
been applied for scheduling anti-cancer treatments, including direct simulation studies [32-34], 
design optimization methods with fast convergence properties [35, 36], and optimal control 
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methods for time-dependent objective functions [37, 38]. In our study, we use the Mesh Adaptive 
Direct Search (MADS) algorithm [39, 40], which has rigorous convergence properties and can 
handle a large number of optimization variables.  
2. Methods 
For this study, we have developed a continuous ordinary differential equations (ODE) model of 
native T cells interacting with tumor cells, exposed to a PD1 checkpoint blockade and a 
therapeutic emm55 vaccine. This in silico model was calibrated in a hierarchical fashion with 
experimental data on murine melanoma [18] and was used to predict the optimal administration 
protocols for this combination therapy. All of the computational methods used in our study are 
presented below.  
 
2.1 Mathematical Model  
The mathematical model describes temporal changes in the volumes of untransfected tumor 
cells (�), vaccine-transfected tumor cells (�), dead tumor cells (�), active infiltrating T cells (�), 
inactive/exhausted T cells (�), a therapeutic vaccine (�), and a PD1 checkpoint blockade (�). 
The vaccine is injected into the lesion at the schedule ��	
�, cleared from the tumor at a rate ��, 
and induced transfection of tumor cells at a rate �. The transfected tumor cells induced 
recruitment of the tumor-specific active T lymphocytes at a rate �. Active T cells induced death 
of both types of tumor cells at a rate ��. However, T cell activity can be suppressed by the 
viable tumor cells at a rate ��, leading to T cell exhaustion. This process can be inhibited by 
anti-PD1 treatment that was injected at a schedule ��	
�, cleared at a rate ��, and blocked PD1 
receptors expressed on T cells at a rate ��. The viable tumor cells and active T cells can 
proliferate at rates � and ��, respectively. This model is presented graphically in the flowchart in 
Figure 1 and is formulated as a system of ordinary differential equations (1)-(7), where � � � �� � � � � � � is the total volume of tumor and immune cells.                       
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The initial tumor contains only untransfected tumor cells with the volume equal to the averaged 
experimental data⎯that is, �	0� � ��, �	0� � 0, �	0� � 0, �	0� � 0, �	0� � 0. Initially, there is 
no vaccine and no PD1 checkpoint inhibitor⎯that is, �	0� � 0 and �	0� � 0⎯then, their 
injections ��  and �� followed the experimental schedule. 
2.2 Optimization Procedures 
Two types of optimization problems were solved here: calibration of model parameters to fit 
experimental data and scheduling of an efficient treatment combination.  
 
For the calibration problem, the goal is to determine model parameter values ) that minimize the 
least mean square error (*+,, equation (8)) between model outputs -�

�� !   and experimental 

data -�
"#! provided at + specific time points (. � 1 . . . +).  

	8�  *+, � 1
+ 1 2-�

�� ! � -�
"#!3$%

�&'
 

This may be subjected to specific constrains 4'. The generalized form of the optimization 
problem formulated for model parameter calibration is shown in equation (9).  

	9�                                                        
minimize

(
*+,

where ) � ;. . . <subject to 4':  . . .
 

 
The entire model has nine parameters, as described in equations (1)-(7) that were calibrated in 
a hierarchical fashion. This means that the parameters fitted to a simpler model are fixed and 
carried in the more complex models. This process is described in detail in Section 3.1.  
For the scheduling problem, the goal is to determine the injection schedule E� that minimizes 
the tumor area at the end of treatment. The treatment doses are fixed and equal to the amount 
used in the experiments, so only the timing of the injections is optimized. The daily injections of 
vaccine or PD1 inhibitor are represented as binary vectors )) of cardinality equal to the 
treatment window (19 days). The vector element is equal to 1 if an injection is administered on 
the corresponding day and 0 if there is no injection on that day, with the exemption of weekend 
days, for which the vector elements are set to zero. This optimization problem may be subjected 
to specific constrains 4'. The generalized form of optimization formulated for determining the 
optimal schedule is shown in equation (10), and the details are described in Sections 3.2 and 
3.3. 
   

	10�                                                   
minimize

(�
Tumor Area

where )) � ;. . . <subject to 4':  . . .
 

 
Both types of optimization problems were solved using the MADS approach. This derivative-free 
method does not require the evaluation of output gradients to proceed with the optimization 
search. This feature is useful for both types of optimization problems in this study. In the case of 
the calibration problem, it is expensive to compute the derivative of the *+, with respect to all 
model parameters at each iteration. In the case of the scheduling problem, the objective 
function (tumor area) is nondifferentiable with respect to the binary scheduling vectors. 
Therefore, the MADS algorithm was selected especially for these advantages and because of 
the rigorous convergence properties of this method. All optimization problems were solved using 
the NOMAD software package [41, 42] with MATLAB interface to provide communication 
between the optimization algorithm and the ODE model. 
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3. Results  
To find optimal and experimentally feasible treatment schedules, we first calibrated the ODE 
mathematical model using previously published experimental data (Section 3.1). Next, the 
model was used to design optimal administration protocols for the vaccine alone (Section 3.2) 
and for a combination of the vaccine and the PD1 checkpoint blockade (Section 3.3). Finally, we 
compared the dynamics of all cell subpopulations for the optimized and experimental protocols 
(Section 3.4). 
 
3.1 Mathematical Model Calibration to Baseline Experimental Data 
The development of our mathematical model and current optimization studies were motivated 
by a recent publication showing the anti-tumor efficacy of the plasmid encoding emm55 vaccine 
in a murine model of B16 melanoma [18]. In that paper, mice were injected subcutaneously with 
B16 tumor cells and the tumor was allowed to grow for 7 days before the treatment started. 
Next, mice with palpable tumors received injections of the emm55 vaccine on days 7, 14, and 
21. For combination therapy, mice also received injections of anti-PD1 blocking antibody twice 
per week, starting on day 8. Additionally, a control experiment with untreated tumors was 
performed over the same time period. Tumor measurements in all three experiments were 
recorded 2⎯3 times per week ([18], Figure 5D). The vaccine therapy yielded a 40% lower tumor 
area on day 25 compared to the control group, and the combined vaccine + anti-PD1 therapy 
resulted in a tumor area 69% smaller than in the control case. These longitudinal data, together 
with the final immunohistochemistry images ([18], Figure 2B), were used to hierarchically 
parameterize the ODE model equations (1)-(7). 
 
The hierarchical parameterization approach separates model parameters into groups that are 
appropriate for each set of experimental data. In this method, parameters calibrated using 
simpler models keep their fixed values in more complex models, and these models are used to 
calibrate the remaining parameters. This approach requires minimizing multiple *+, errors, 
however using a lower number of parameters at each calibration step in contrast to the case 
when all parameters are calibrated at once. A scheme of the hierarchical calibration framework 
is shown in Figure 2. 
 
Due to the different units used in the experimental measurements (an injected emm55 vaccine 
is reported as volume and tumor sizes are reported as areas), we recalibrated all modeled 
quantities as volumes (mm3). However, to make comparisons with experimental data in 
optimization procedures, the total tumor volume was scaled back to the area of the tumor cross-
section, assuming that the tumor had a spherical shape.  
 
In the submodel 1 (Figure 2), we calibrated the tumor growth parameter � by fitting the equation 
(1) (with parameters � and �� set to zero) to experimental data from an untreated mouse 
cohort. Experimental data were collected on days 7, 9, 11, 15, 18, 22, and 25 post the 
melanoma tumor initiation in the mice. We solved the following simple optimization problem:  
 minimize

(
*+,

where ) � ;�<
subject to 4': 0 I E I 5 	day*'�

 

 
with the objective of finding a value of the parameter � that minimizes the *+, error between 
the exponential model of tumor growth and the average tumor size from mice in the control 
group, with number of data + � 7, and with the parameter � restricted to be between 0 and 5 
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	4'). This resulted in � � 0.28 day*'. This value of � will be held fixed in all subsequent 
calibrations. The result of model calibration is shown in Figure 3A. 
 
In submodel 2 (Figure 2), we used equations (1)-(6), with parameters �� and �� set to 0 and 
parameter � fixed to 0.28, as previously calibrated. The remaining six parameters were fitted to 
experimental data from a cohort of mice treated with the emm55 vaccine. This vaccine was 
injected weekly for three weeks, starting on day 7 post tumor installation. The parameter values 
were restricted to be between 0.01 and 5 	4'). According to the experimental results, the 
vaccine was able to transfect less than half of the tumor cells 	4$� and at least 90% of the 
injected vaccine was cleared from the tumor microenvironment within 1 day of injection 	4+�. An 
additional constraint came from the analysis of histology images from untreated and vaccine-
treated mice that were stained for T cell intensities ([18], Figure 2B). This yielded the 
percentage of tumor area occupied by T cells at the end of the treatment to be around 15.4% 
(4,�. Thus, we solved the following optimization problem: 
 minimize

(
*+,

where ) � ;� , �� , ��,� , �� , ��<
with Lixed � � 0.28 day*'

subject to 4': 0.01 I E I 5 	day*'�
4$: � I �

4+: �./�0' I 0.1�./�

4,: 0.8 N 15.4% I �"/1 � �"/1�"/1

I 1.2 N 15.4%

 

 

 
to find the values of the parameters � , �� , ��,� , �� , ��, which minimize the *+,  between the 
submodel 2 equations and the average tumor size from mice in the vaccine-treated group. The 
optimal values of all calibrated parameters are listed in Table 1. The results of the submodel 
calibration are shown in Figure 3B.  
 
In submodel 3 (Figure 2), we used the full set of equations (1)-(7) to calibrate the remaining 
parameters, �� and ��, by fitting the model outcome to the experimental data from a cohort of 
mice treated with a combination of the emm55 vaccine and a PD1 checkpoint inhibitor. As 
before, the vaccine was injected weekly for three weeks and anti-PD1 twice weekly starting on 
day 8. All other model parameters were fixed to the previously calibrated values (compare Table 
1). The only optimization constraint was to restrict the parameter values to be between 0.01 and 
5 	4'). Thus, we solved the following optimization problem: 
 minimize

(
*+,

where ) � ; �� , ��<
with Lixedsubject to

�, � , �� , ��,� , �� , ��4': 0.01 I E I 5 	day*'�
 

 
The optimal values of all calibrated parameters are listed in Table 1. The results of the model 
calibration are shown in Figure 3C. 
 
3.2 Optimizing the Vaccine Administration Protocol 
The emm55 vaccine treatment was used to enhance infiltration of cytotoxic lymphocytes into the 
tumor and thus to increase T cell-induced death of tumor cells. While the experimental vaccine 
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injection protocol resulted in the diminished tumor size (Figure 3B) in comparison to the 
untreated tumor (Figure 3A), the extent of tumor reduction may depend on the timing and 
frequency of emm55 treatment. In this section, we used the MABS optimization method to 
determine more efficient vaccination protocols. 
  
The experimental protocol for the vaccine treatment was a single weekly injection for 3 weeks 
(protocol V1 in Figure 4). This treatment reduced the total tumor area to 59% of that in the 
untreated group (Figure 3A). To search for a more efficient vaccination protocol, we used 
mathematical optimization with an objective function to minimize the tumor area at the end of 
the treatment period (i.e., at day 25). The optimization problem was formulized as follows: 
 minimize

(�
Tumor Area

where )� � PE�,.Q 
subject to 4': E�,. � 0 for S � T6, 7, 13, 14U

 

 
where )� � PE�,.Q is a binary variable with length 19 corresponding to the number of possible 
treatment days, for which values were set to 1 on the days the vaccine injections were 
scheduled or 0 if the injections were not administered. However, no injections took place on 
weekends, therefore, the elements of )� that fell on weekend days were set to zero⎯this 
condition is included as constraint 4' in the above formulation. Thus, the design space for 
vaccine injections is composed of 215 candidate protocols.  
  
The employed MADS optimization method identified the optimal protocol (V5 in Figure 4), which 
consists of daily injections (except weekends and the last day of the protocol). This protocol 
resulted in a reduction of tumor area to 36% of that in the experimental protocol (V1 in Figure 4). 
However, such frequent vaccine administration may induce a toxic risk or undesirable immune 
responses; thus we investigated an additional set of protocols in an attempt to find near-optimal 
ones but with less frequent injections, and thus with less toxicity. These are presented in Figure 
4A and summarized in Table 2.  
  
First, we examined the effect of a protocol with the same number of injections as the 
experimental protocol but with all injections scheduled within the first week (Monday, 
Wednesday, Friday; protocol V2 in Figure 4). This alteration of the baseline protocol reduced 
the tumor area to 75% of that from the experimental protocol (V1) and 44% of the size of the 
untreated tumor (Table 2). Next, we examined an extension of protocol V2 by continuing this 
schedule during the second week (protocol V3). Although the number of injections doubled, the 
reduction in tumor area only improved by 10% (compare protocols V2 and V3 in Table 2). This 
shows that most of the tumor reduction occurred in response to the vaccine injected during the 
first week. This conclusion is further emphasized by comparing protocols V3 and V4. Protocol 
V4 has one less injection than protocol V3, but all injections are administered during the first 
week (Figure 4), resulting in a significantly reduced tumor area at day 25 (49% vs. 65% of the 
tumor area in the untreated case; compare Table 2). This suggests that protocols with early 
repetitive vaccine injections are more effective and that adding more injections later has a 
limited effect. Moreover, the performance of protocol V4 was similar to the optimal protocol V5 
when they were both compared to the final size of the untreated tumor (control case). There 
was only a 7% improvement in V5 vs. V4 (Table 2); however, schedule V5 required more 
injections over a longer time than protocol V4.  
 
3.3 Optimizing Anti-PD1 Administration Protocols 
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The anti-PD1 treatment was used to block binding between tumor cells and T cells, and thus to 
enable more effective killing of tumor cells by T cells. The experimental protocol combining the 
emm55 vaccine and anti-PD1 treatment resulted in a significant reduction in tumor size (Figure 
2C) when compared to the untreated tumor (Figure 2A). However, this final tumor was larger 
than the tumors predicted by our two best, optimized vaccination protocols. Therefore, in this 
section, we used optimization methods to determine a more efficient protocol that combines 
vaccination and anti-PD1. 
  
The experimental protocol for the combined emm55 vaccine and anti-PD1 treatment was a 
single weekly vaccine injection (Mondays) accompanied by two weekly anti-PD1 injections 
(Tuesdays and Fridays) for 3 weeks (protocol VA1 in Figure 5). This protocol reduced the tumor 
area to 34% of that in the untreated group (Figure 3A) and to 50% of that in the vaccine-treated 
group without anti-PD1 treatment (Figure 3B). It is, however, possible that the different timings 
of both injections may have a therapeutic benefit. To search for a more efficient combination 
protocols, we considered the three vaccine protocols from Section 3.2 (V2−V4), and optimized 
the anti-PD1 protocol for each case, with an objective function to minimize tumor area at the 
end of the treatment period (i.e., at day 25). The optimization problem was formulized as 
follows: 
 minimize

(�wherewith Lixed
Tumor Area)� � PE�,.Q)�subject to 4': E�,. � 0 for S � T6,7,13,14U

4$: 1 E�,. I 2 for V � T1,2,3U 
2/*$

.&2/*3

 

 
where, vector W� � Tx�,.U is a binary variable of length 19 representing the duration of treatment. 
An element x�,. was set up to 0 if no anti-PD1 injection was scheduled on day S, and was equal 
to 1 otherwise. Again, no injections were scheduled on the weekends (constraint 4'). In 
addition, a maximum of tqo anti-PD1 injections were allowed per week due to toxicity concerns 
(constraint 4$). For each fixed vaccination schedule W� (for protocols V2−V4), the MADS 
optimization method was used to optimize the corresponding schedule W� (protocols VA2−VA4). 
This is presented in Figure 5 and summarized in Table 3.  
  
The first optimized schedule of anti-PD1 treatment was performed for vaccine schedule V2, in 
which all vaccine injections were scheduled in the first week. The employed MADS optimization 
method identified the optimal protocol (VA2 in Figure 5), which consisted of irregularly 
scheduled anti-PD1 injections on Wednesday and Friday of the first week, then on Monday and 
Wednesday of the second week, and finally on Monday and Tuesday of the last week. Both 
protocols (VA2 and VA1) consist of the same number of injections (vaccine and checkpoint 
inhibitor) but differ in the details of the schedule. In protocol VA2, all vaccine injections are 
scheduled in the first week only, and the first anti-PD1 injection is delayed to allow for an initial T 
cell expansion. The subsequent two anti-PD1 injections are meant to boost T cells' response. 
This protocol resulted in a half reduction of tumor area when compared to the experimental 
protocol for combination therapy (VA1 in Figure 5 and Table 3).   
  
Next, we considered the case in which three more vaccine injections were added in the second 
week (protocol V3). The MADS optimization method determined the optimal anti-PD1 schedule 
(protocols VA3 in Figure 5), which, surprisingly, was not different from the previous case 
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(protocol V2). However, the addition of these three vaccine injections in week 2 enhanced tumor 
reduction as compared to protocol VA2, but this improvement was minimal (Table 3). Finally, we 
considered vaccination protocol V4, which consists of five daily vaccine injections in the first 
week only. With this schedule fixed, we optimized the anti-PD1 injection protocol (VA4 in Figure 
5), which resulted in first-week injections on Tuesday and Thursday, and the second- and third-
week schedules identical to the previous cases. As a result, this protocol led to the lowest total 
tumor area among all the other simulated protocols, as shown in Figure 5B. The final tumor size 
reached only 8% of the untreated tumor, and 25% of the experimental tumor from protocol VA1 
(Table 3). 
 
3.4 Comparison of Optimized and Experimental Protocols  
Of all the protocols that we investigated, the VA4 schedule was the most effective. The five daily 
vaccine injections in the first week (green plot, panel V of Figure 6) allowed for the early 
recruitment of T cells (green plot, panel T of Figure 6) by transfecting tumor cells in large 
amounts (compare green plots in panel I vs. U in Figure 6). Moreover, the addition of two doses 
of the anti-PD1 treatment earlier in VA4 than in the experimental protocol VA1, ensured better T 
cell activity and less exhaustion (compare green and black plots in panels T and J in Figure 6). 
The presence and activity of T cells in the first week were able to control the tumor size increase 
during this initial time period. This is in striking difference to the experimental protocol, in which 
the amount of untransfected cells steadily increased in size (black plot, panel U of Figure 6). In 
both cases, the amount of dead cells was similar in this early stage of treatment (panel W of 
Figure 6), showing that a reduction in tumor cell proliferation rather than tumor cell death was 
responsible for this observed effect. Over the first weekend (treatment holiday), T cells became 
inhibited; thus, there was a decline in the T plot and a rise in the J plot in Figure 6 (green lines). 
However, the second week started with two anti-PD1 injections (on Monday and Wednesday) to 
reactivate the inhibited T cells and to protect the free ones. This resulted in an increase in active 
T cells and a decrease in exhausted T cells over that time (green lines, panels T and J of Figure 
6). The last week in protocol VA4 was very distinct from VA1. It consisted of two consecutive 
anti-PD1 injections at the beginning of the week (Monday and Tuesday; plot A in Figure 6) to 
reactivate the maximal number of T cells that were blocked during the weekend. This led to a 
significantly smaller total tumor area compared with the final tumor size after administration of 
the experimental protocol. Note that in the final period of VA4 treatment, the amount of dead 
cells was lower than in the VA1 protocol, but this was because the overall amount of 
untransfected and transfected tumor cells in VA4 was much lower than in VA1 (compare the 
green and black plots in panels W, U, and I of Figure 6). Among all the simulated protocols, the 
VA4 schedule resulted in the lowest total tumor area (Figure 5B).  
 
In summary, our simulations suggest that injecting multiple doses of vaccine in the first week 
instead of spreading the injections over the entire three weeks will be beneficial in reducing 
tumor size. Our study also identified that keeping the same weekly schedule for anti-PD1 
injections is not optimal. Instead, our recommendations for anti-PD1 injections are to 
administered them a day after vaccine injection in the first week to allow T cells to adequately 
infiltrate the tumor, and early in weeks 2 and 3 to maximize T cell reactivation. 
 
4. Discussion  
In this paper, we developed an ordinary differential equation model of a combination therapy 
consisting of a therapeutic anti-cancer emm55 vaccine and an anti-PD1 inhibitor. This model 
was calibrated to experimental data from a preclinical model of melanoma showing a time 
evolution of the tumor growth with and without the treatment. This model calibration process 
was performed in a three-stage hierarchical way by progressively fitting data from untreated 
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tumors, tumors treated with the vaccine, and tumors treated with both the vaccine and 
checkpoint inhibitor. This allowed us to reduce the number of parameters that were fitted in 
each case by keeping fixed those that had already been calibrated in the previous model. 
Parameter fitting was performed using the fast MADS optimization method with rigorous 
convergence properties. Once calibrated, the model was used to determine the optimal 
treatment protocols for vaccine monotherapy and for the combined therapy of the vaccine and 
checkpoint inhibitor. As such, we were able to generate experimentally testable hypotheses for 
treatment scheduling. In the future, this method can be adjusted to model other vaccines and 
combination therapies, and can be applied to other cancers.  
The goal of therapeutic cancer vaccines is to stimulate the patient's immune system by 
providing priming antigens for the induction of a tumor-specific T cell response [3, 4]. The aim is 
to increase T cell infiltration into the tumor and to enhance T cell activity that may result in the 
eradication of minimal residual disease or in control of the growth of larger tumors, such as 
those discussed in this paper. However, the elevated numbers of tumor-reactive lymphocytes 
within the tumor tissue are also a desired feature in the novel immuno-oncology 
treatment⎯adoptive cell therapy (ACT) [43-45]. In this approach, the first step is to resect the 
patient's tumor and expand tumor-infiltrating lymphocytes (TIL). Next, TIL that are reactive to the 
tumor are rapidly expanded and, finally, reinfused into the patient. If T cell infiltration into the 
tumor before its resection can be enhanced, the next steps of ACT will have a better chance of 
success. Therapeutic cancer vaccines may play this role. The emm55 vaccine discussed in this 
paper has shown anti-tumor efficacy toward melanoma in preclinical murine [18] and equine [46] 
studies. Moreover, the IL injection of the emm55-based vaccine was shown to be a feasible 
procedure in patients with metastatic melanoma in a recent clinical trial [47], which warrants 
further clinical studies. In these studies, well-designed treatment protocols with optimized drug 
administration schedules will be required to maximize treatment efficacy and the computational 
methods, like those discussed in this paper, may provide fast personalized approach to predict 
such protocols.  
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Figure 1: Mathematical model interaction diagram. Vaccine � is injected with a protocol ����� 
and transfects tumor cells �. The transfected tumor cells � recruit the specific T cells � that kill 
both untrasfected and transfected tumor cells generating dead cells 	. T cells can become 
exhausted 
 as a result of blocking their PD1 receptors by tumor cells. Anti-PD1 checkpoint 
blockade � is injected with a protocol ����� and protects active T cells from being blocked, as well 
as reactivates the blocked T cells. In the diagram, filled circles refer to live or active cell 
populations, while hollow circles refer to dead or inactive cells; solid lines refer to the transfer 
between cell populations and dotted lines refer to feedback: either positive (arrows) or negative 
(flat ends). 

 
 
 

 
Figure 2: Hierarchical calibration framework. The entire model has been divided into three 
submodels: (1) the untreated tumor, (2) a tumor treated with the vaccine, and (3) a tumor treated 
with the combined vaccine and anti-PD1. These submodels are successively calibrated to 
corresponding experimental data of by minimizing LMS. The parameters calibrated in each 
submodel are listed in the corresponding boxes; the previously calibrated parameters listed along 
the arrows are kept constant and equal to the value calibrated in the previous submodel.  
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Figure 3: Model calibration with melanoma data. A. The tumor growth curve (dashed line) 
from submodel 1 was fitted to experimental data from an untreated mouse cohort (dots). B. The 
submodel 2 outcome (dashed line) was fitted to vaccine-treated mouse data (dots) with weekly 
injections of the emm55 vaccine indicated by arrows. C. The submodel 3 (full model) outcome 
(dashed line) was fitted to data from mice treated with combination therapy (dots); emm55 
injection times are indicated by green arrows, and the anti-PD1 injections by read arrows. Error 
bars represent the standard error of the mean. 

 
 
 

 
Figure 4: Comparison of vaccine protocols designed by computational optimization. A. 
Timelines of five protocols with arrows representing vaccine injections. The numbers represent 
the days after melanoma initiation in the mouse model. All treatments start on day 7. Injections 
are only performed on weekdays (M, T, W, R, and F), and no injections are done on weekends (S 
and U). B. Tumor growth curves corresponding to each of the five protocols (V1-V5). The final 
tumor areas on day 25 are listed in the color corresponding to the protocol. The black curve 
represents the experimental protocol, with error bars illustrating the standard mean of the error. 
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Figure 5: Optimized anti-PD1 protocols. A. Timelines of four protocols with arrows 
representing injections of a vaccine (green) and anti-PD1 (red). The vaccine protocols were 
previously designed (V1−V4) and held fixed here. The anti-PD1 protocols were optimized for 
each vaccine schedule. The numbers represent the days after melanoma initiation in the mouse 
model. All treatments started on day 7. Injections were administered only on weekdays (M, T, W, 
R, and F), and no injections were done on weekends (S and U). B. Tumor growth curves 
corresponding to each of the four protocols: VA1−VA4. The final tumor areas on day 25 are listed 
in the corresponding colors. The black curve represents the experimental protocols with error 
bars illustrating the standard mean of the error. 

 
 

 

Figure 6: Comparison of optimized and experimental combination protocols. Each panel 
shows the time evolution of a different population of cells or treatments: V: vaccine, A: anti-PD1 
treatment, T: active T cells, J: exhausted T cells, U: untrasfected tumor cells, I: transfected tumor 
cells, W: dead tumor cells. The course of an optimized protocol VA4 is shown in green, and 
experimental protocol VA1 in black. The blue circle in panel A highlights two consecutive 
injections in protocol VA4. The blue arrows represent important differences induced by the VA4 
protocol leading to a reduced total tumor area.  
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Table 1: Calibrated model parameters. Parameter values from equations (1)-(7) were 
calibrated in the hierarchical way (Figure 2), with those calibrated in the indicated submodel 
shown in bold, and other parameters fixed to the values calibrated in the previous model(s). 
Parameter and Description submodel 1 submodel 2 submodel 3 � Proliferation rate of tumor cells (day-1) 0.28 0.28 0.28 

� Transfection rate of tumor cells (day-1) - 0.49 0.49 

�� Rate of tumor cell death by t cells (day-1) - 5.00 5.00 

�� Proliferation rate of T cells (day-1) - 0.01 0.01 

� Rate of T cell recruitment (day-1) - 0.13 0.13 

�� Rate of T cell blocking by PD1 (day-1) - 1.31 1.31 

�� Clearance rate of vaccine (day-1) - 3.94 3.94 

�� Rate of PD1 inhibition - - 1.06 

�� Clearance rate of anti-PD1 (day-1) - - 1.83 

 
Table 2: Results of the simulated vaccine protocols. For each of the five protocols (V1-V5), 
the corresponding 3-week schedule �� is shown together with final simulated tumor area (��), 
tumor area in relation to an untreated tumor (��/���������), and tumor area in relation to the 
experimental protocol (��/��	
�) to show area reduction in the simulated schedules.  

Vaccine-only treatment �� simulated 
�� 

��

������	�


 
��

����

 

Protocol V1 
(experimental) 

1 0 0 0 0 0 0  
1 0 0 0 0 0 0 
0 0 0 0 0___         

138 mm2 59% -- 

Protocol V2 1 0 1 0 1 0 0  
0 0 0 0 0 0 0 

 0 0 0 0 0____ 

103 mm2 44% 75% 

Protocol V3 1 0 1 0 1 0 0  
1 0 1 0 1 0 0  
0 0 0 0 0___ 

90 mm2 39% 65% 

Protocol V4 1 1 1 1 1 0 0 
 0 0 0 0 0 0 0 
 0 0 0 0 0___ 

67 mm2 29% 49% 

Protocol V5 
optimized 

1 1 1 1 1 0 0 
1 1 1 1 1 0 0 

 1 1 1 1 0____ 

50 mm2 22% 36% 

 
Table 3: Results of simulated combinations of vaccine and anti-PD1 protocols. For each of 
the four protocols (VA1−VA4), the corresponding 3-week schedule of vaccine �� and anti-PD1 �� 
are shown together with the final simulated tumor area (��), tumor area in relation to an 
untreated tumor (��/���������), and tumor area in relation to the experimental protocol (��/
��	
�) to show area reduction in the simulated schedules.  

Vaccine+anti-PD1 
treatment 

Given �� 
(equation (I10)) 

Optimized �� 
(equation (I10)) 

�� ��

������	�


 
��

����

 

Protocol VA1 
(experimental) 

1 0 0 0 0 0 0  
1 0 0 0 0 0 0 
 0 0 0 0 0___ 

0 1 0 0 1 0 0  
0 1 0 0 1 0 0  
1 1 0 0 0___ 

79 mm2 34% - 

Protocol VA2 
optimized for V2 

1 0 1 0 1 0 0  
0 0 0 0 0 0 0 
 0 0 0 0 0___ 

0 0 1 0 1 0 0  
1 0 1 0 0 0 0  
1 1 0 1 0___ 

40 mm2 17% 51% 

Protocol VA3 
optimized for V3 

1 0 1 0 1 0 0  
1 0 1 0 1 0 0  
0 0 0 0 0___ 

0 0 1 0 1 0 0  
1 0 1 0 0 0 0  
1 1 0 0 0___ 

33 mm2 14% 42% 

Protocol VA4 
optimized for V4 

1 1 1 1 1 0 0 
 0 0 0 0 0 0 0 
 0 0 0 0 0___ 

0 1 0 1 0 0 0  
1 0 1 0 0 0 0  
1 1 0 0 0___ 

19 mm2 8% 24% 
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