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Abstract
Water	pollution	due	to	human	activities	produces	sedimentation,	excessive	nutrients,	
and	toxic	chemicals,	and	this,	in	turn,	has	an	effect	on	the	normal	endocrine	function-
ing	of	living	beings.	Overall,	water	pollution	may	affect	some	components	of	the	fit-
ness	 of	 organisms	 (e.g.,	 developmental	 time	 and	 fertility).	 Some	 toxic	 compounds	
found	in	polluted	waters	are	known	as	endocrine	disruptors	(ED),	and	among	these	are	
nonhalogenated	phenolic	chemicals	such	as	bisphenol	A	and	nonylphenol.	To	evaluate	
the	effect	of	nonhalogenated	phenolic	chemicals	on	the	endocrine	system,	we	sub-
jected	two	generations	(F0	and	F1)	of	Drosophila melanogaster	to	different	concentra-
tions	of	ED.	Specifically,	treatments	involved	wastewater,	which	had	the	highest	level	
of	 ED	 (bisphenol	 A	 and	 nonylphenol)	 and	 treated	 wastewater	 from	 a	 constructed	
Heliconia psittacorum	wetland	with	horizontal	subsurface	water	flow	(He);	the	treated	
wastewater	was	the	treatment	with	the	lowest	level	of	ED.	We	evaluated	the	develop-
ment	time	from	egg	to	pupa	and	from	pupa	to	adult	as	well	as	fertility.	The	results	
show	 that	 for	 individuals	 exposed	 to	 treated	wastewater,	 the	 developmental	 time	
from	egg	to	pupae	was	shorter	in	individuals	of	the	F1	generation	than	in	the	F0	gen-
eration.	Additionally,	the	time	from	pupae	to	adult	was	longer	for	flies	growing	in	the	
H. psittacorum	treated	wastewater.	Furthermore,	fertility	was	lower	in	the	F1	genera-
tion	than	in	the	F0	generation.	Although	different	concentrations	of	bisphenol	A	and	
nonylphenol	had	no	significant	effect	on	the	components	of	fitness	of	D. melanogaster 
(developmental	time	and	fertility),	there	was	a	trend	across	generations,	likely	as	a	re-
sult	of	selection	imposed	on	the	flies.	It	is	possible	that	the	flies	developed	different	
strategies	to	avoid	the	effects	of	the	various	environmental	stressors.
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1  | INTRODUCTION

Human-	mediated	 land-	use	 change,	 species	 introductions,	 pollution,	
and	ultimately	climate	change	have	caused	an	almost	irreversible	dete-
rioration	of	natural	environments	(Dawson,	Jackson,	House,	Prentice,	
&	Mace,	2011;	Hunter,	2007;	Pereira	et	al.,	2010).	In	particular,	human	
alteration	of	natural	environments	has	generated	a	massive	amount	of	
water	pollution,	which	may	contain	a	large	amount	of	sediments,	ex-
cess	nutrients,	and	toxic	chemicals	(Kareiva	&	Marvier,	2011).	Among	
the	many	toxic	and	carcinogenic	pollutants,	endocrine	disruptors	(ED)	
are	known	to	affect	the	physiological	pathways	associated	with	repro-
duction	and	development	of	animals	and	plants	(Guillette,	2006;	Liao,	
Yen,	&	Wang,	 2009;	Qiu,	Wang,	&	Zhou,	 2013;	Wang	 et	al.,	 2015).	
The	molecular	structure	of	ED	allows	them	to	behave	like	hormones	
or	 hormone	 precursors	 (Guillette	 &	 Gunderson,	 2001;	 Lee	 &	 Choi,	
2007).	As	such,	these	disruptors	have	been	shown	to	affect	not	only	
different	reproductive	stages	but	also	different	developmental	stages	
of	vertebrates	 (Guillette	&	 Edwards,	 2005;	 Segner	 et	al.,	 2003).	 For	
example,	it	has	been	shown	that	ED	can	cause	infertility	due	to	mal-
formations	 of	 the	 reproductive	 tract	 (Guillette,	 2006),	 impaired	 re-
lease	of	pheromones	(Anway	&	Skinner,	2008;	Colborn,	Vom	Saal,	&	
Soto,	1993;	Guillette	&	Edwards,	2005;	Segner	et	al.,	2003),	prema-
ture	release	of	progesterone	and	progestin	and	occasional	premature	
birth	 (Guillette,	2006;	Longnecker,	Klebanoff,	Zhou,	&	Brock,	2001),	
changes	 in	 the	 development	 of	 oocytes,	 thyroid	 abnormalities	 and	
changes	 during	molting	 (Depledge	&	Billinghurst,	 1999;	Ha	&	Choi,	
2008;	 Hutchinson,	 2002;	 Planelló,	 Martínez-	Guitarte,	 &	 Morcillo,	
2008;	 Rodríguez,	Medesani,	 &	 Fingerman,	 2007),	 and	 impaired	 im-
mune	functioning	(Martineau	et	al.,	1988).	Experiments	involving	ED	
are	complicated	due	to	the	fact	that	EDs	often	naturally	come	from	
multiple	sources	and	can	generate	additive	effects.	 In	particular,	we	
used	developmental	time	(from	egg	to	pupae	and	from	pupae	to	adult)	
and	fertility	as	components	of	fitness,	and	bisphenol	A	(BPA)	and	non-
ylphenol	(NP)	were	used	simultaneously	as	ED.	We	obtained	different	
concentrations	of	both	BPA	and	NP	by	passing	wastewater	 through	
different	Horizontal	Subsurface	Flow	Constructed	systems.	These	ED	
were	 chosen	 for	 the	experiments	because	 they	have	 characteristics	
(e.g.,	persistent,	lipophilic,	low	vapor	pressures)	which	facilitate	disper-
sion	in	liquid	environments;	as	such,	BPA	and	NP	have	been	known	to	
contaminate	groundwater	reservoirs	(Colborn	et	al.,	1993;	Kareiva	&	
Marvier,	2011;	Theis	&	Tomkin,	2012).

Although	several	studies	have	evaluated	the	effects	of	ED	on	an-
imal	fitness,	most	were	focused	on	understanding	the	consequences	
of	one	endocrine	disruptor	at	a	time,	and	very	few	have	looked	at	the	
combined	effects	of	multiple	ED	on	a	given	system.	This	is	important	
as	multiple	ED	are	often	 found	 together	 in	natural	environments	as	
a	result	of	various	sources	of	anthropogenic	water	pollution	(Kareiva	
&	Marvier,	 2011;	Theis	&	Tomkin,	2012).	 In	 addition,	 it	 is	 unknown	
whether	organisms	can	evolve	as	a	response	to	ED	present	in	their	en-
vironment.	Given	the	complexity	of	treating	contaminated	waters	to-
gether	with	the	long	term	persistence	of	ED,	changes	in	development	
and	reproduction	time	might	likely	be	the	only	solution	for	organisms	
that	face	permanent	(and	potentially	increased)	water	contamination.	

Therefore,	 in	 this	work	we	evaluated	 the	 impact	 that	different	 con-
centrations	of	ED	have	on	Drosophila	development	and	reproduction.

2  | MATERIALS AND METHODS

2.1 | Experimental design

Twenty	 pairs	 of	Drosophila melanogaster	 ebony	 mutation	 (Figure	1)	
were	used	as	the	parental	generation	for	the	whole	experiment.	The	
flies	came	from	lineages	that	have	been	maintained	for	almost	20	years	
at	the	Universidad	del	Valle	(Sección	de	Genética,	Departamento	de	
Biología,	Colombia).

The	flies	were	kept	in	a	temperature	controlled	room	at	25	±	3°C	
with	a	natural	12L:12D	photoperiod	and	were	fed	on	a	standard	ba-
nana	medium	prepared	with	150	ml	of	sterilized	water	from	each	of	
the	following	five	experimental	treatments	(Figure	2).	(1)	Wastewater	
from	a	natural	environment,	this	wastewater	came	from	the	aqueduct	
of	the	city	of	Ginebra	(Valle	del	Cauca,	Colombia)	and	had	a	concen-
tration	 of	 8.8	±	6.4	μg/L	 (mean	±	1	 SD)	 of	 bisphenol	A	 (BPA)	 and	 a	
concentration	 of	 1670.9	μg/L	±	837.6	g/L	 	 (mean	±	1	 SD)	 of	 nonyl-
phenol	(NP).	Endocrine	disrupting	chemicals	(EDCs)	were		determined	
using	stir	bar	sorptive	extraction	in	line	with	thermal	desorption	and	
gas	chromatography/mass	spectrometry	(TDU-	GC–MS)	at	University	
of	 Texas	 at	 El	 Paso.	 (2)	 Treated	 wastewater	 from	 a	 constructed	
Heliconia psittacorum	wetland	with	horizontal	 subsurface	water	 flow	
(HSSF-	CW;	Ascuntar	Ríos,	Toro	Vélez,	Peña,	&	Madera	Parra,	2009;	
Toro-	Vélez	et	al.,	2016).	Heliconia psittacorum	 is	a	native	plant	of	the	
Caribbean	and	South	America	that	is	known	to	have	a	high	phytore-
mediation	 capacity	 and	 is	 commonly	 used	 to	 treat	 domestic	waste-
water	 in	 Colombia	 (Peña-	Salamanca,	 Madera-	Parra,	 Sánchez,	 &	
Medina-	Vásquez,	2013).	Likewise,	this	treated	wastewater	had	a	BPA	

F IGURE  1 Photograph	of	a	female	specimen	of	Drosophila 
melanogaster	(ebony	mutation)	from	the	Drosophila melanogaster	lab	
at	the	Universidad	del	Valle,	(Cali,	Colombia)
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concentration	 of	 1.4	±	0.71	μg/L	 (mean	±	SD)	 and	 a	 NP	 concentra-
tion	of	629.3		±	318.4	μg/L	(mean	±	SD)	which	is	79.3%	less	BPA	and	
62.8%	less	NP	than	that	of	wastewater.	(3)	Treated	wastewater	from	
a	 HSSF-	CW	with	 Phragmites australis,	 P. australis	 is	 a	 cosmopolitan	
perennial	plant	commonly	used	in	the	treatment	of	domestic	waste-
water	(Zhi	&	Ji,	2012).	Water	from	this	treatment	had	a	BPA	concen-
tration	 of	 1.58	±	0.85	μg/L	 (mean	±	SD)	 and	 a	 NP	 concentration	 of	
735.9		 ±	283.6	μg/L	 (mean	±	SD)	which	 is	 76%	 less	BPA	 and	25.3%	
less	NP	than	that	of	wastewater.	(4)	Treated	wastewater	from	a	gravel	
HSSF-	CW	that	had	a	BPA	concentration	2.64	±	0.65	μg/L	(mean	±	SD)	
and	a	NP	concentration	of	1252.5	±	540.62	μg/L	 (mean	±	SD)	which	
is	70%	less	BPA	and	25%	less	NP	than	that	of	WW.	(5)	Distilled	water	
(without	EDCs	and	non-polluted	sources).

2.2 | Developmental time

The	20	pairs	of	flies	were	left	to	reproduce	in	10	bottles	containing	
standard	banana	medium.	After	4	days,	adults	were	discarded	and	all	
the	eggs	from	all	the	flies	were	collected	and	mixed.	We	randomly	se-
lected	800	eggs	that	were	transferred	to	40	bottles	(Figure	2),	which	
is	eight	bottles	per	experimental	treatment,	each	with	20	eggs.	All	bot-
tles	were	kept	at	25	±	3°C	with	a	natural	12L:12D	photoperiod.

Developmental	 time	was	estimated	as	 the	 time	 in	days	 it	 takes	
an	egg	 to	become	pupae	and	 the	 time	 it	 takes	a	pupae	 to	become	
adult.	 Every	 day	 the	 number	 of	 pupae	 in	 each	 bottle	was	 counted	
and,	 to	prevent	 counting	 the	 same	 individual	 twice,	 a	mark	on	 the	
bottle	was	made.	The	number	of	emerging	adults	was	counted	on	a	
daily	basis	until	no	more	adults	emerged.	The	pair	that	emerged	first	

from	each	bottle	and	treatment	was	used	for	the	fertility	experiment.	
The	remaining	flies	from	each	experimental	treatment	were	allowed	
to	reproduce	in	10	bottles	with	the	corresponding	experimental	me-
dium	(Figure	2).	After	4	days,	all	eggs	(i.e.,	F1	generation)	from	each	
treatment	 (160	each	 treatment)	were	 collected	 and	mixed	 in	order	
to	maintain	 randomness	 in	each	treatment.	These	were	then	trans-
ferred	to	eight	new	bottles,	and	developmental	times	were	estimated	
as	before.

2.3 | Fertility

The	first	emerging	adult	couple	from	each	bottle	from	each	treatment	
was	allowed	to	reproduce	in	a	new	bottle	with	the	corresponding	ex-
perimental	medium.	After	9	days,	 the	couple	was	discarded	and	the	
number	of	adults	was	counted	until	no	more	adults	emerged.	This	was	
repeated	for	the	F1	generation.

2.4 | Statistical analyses

Two-	way	ANOVAs	were	used	to	evaluate	how	experimental	treat-
ment,	 generation,	 and	 their	 interaction	 affected	 developmental	
time	 (egg	 to	 pupae	 and	 pupae	 to	 adult).	 Data	 per	 bottle	 were	
averaged	 before	 analyses	 and	 response	 variables	 were	 log10-	
transformed	to	meet	parametric	assumptions	of	homoscedasticity	
and	normality.	Each	experimental	 treatment	had	eight	 independ-
ent	replicates.	Nonsignificant	terms	were	removed	from	the	final	
model.	Tukey’s	HSD	was	employed	as	a	posteriori	test.	A	general-
ized	linear	model	with	a	quasi-	Poisson	error	was	used	to	evaluate	

F IGURE  2 Experimental	design	and	treatment	scheme.	The	experimental	treatments	were:	DW	(Distilled	water),	He	(Treated	wastewater	
from	a	HSSF-	CW	with	Heliconia psittacorum),	Ph	(Treated	wastewater	from	a	HSSF-	CW	with	Phragmites australis),	WG	(Treated	wastewater	from	
a	gravel	HSSF-	CW),	WW	(Wastewater)
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how	 experimental	 treatment,	 generation,	 and	 their	 interaction	
	affected	fertility.	All	analyses	were	carried	out	 in	R	v3.1.3	 (Team	
R	Core,	2015).

3  | RESULTS

3.1 | Developmental time

Developmental	time	from	egg	to	pupae	was	not	affected	by	the	inter-
action	between	experimental	treatment	and	generation	(F4,70	=	0.40,	
p = .808)	 nor	 was	 it	 affected	 by	 the	 experimental	 treatment	 itself	
(F4,74	=	1.79,	 p = .140).	 However,	 developmental	 time	 from	 egg	 to	
pupae	was	shorter	for	 individuals	of	the	F1	generation	(F1,74	=	7.73,	
p = .007)	(Table	1;	Figure	3a).

Although	 developmental	 time	 from	 pupae	 to	 adults	 was	 not	
affected	 by	 the	 interaction	 between	 experimental	 treatment	 and	
generation	(F4,70	=	0.23,	p = .922)	nor	was	it	affected	by	generation	
alone	 (F1,74	=	0.001,	p = .990),	 it	was	 affected	 by	 the	 experimental	
treatment	 (F4,74	=	2.98,	p = .025).	 In	 particular,	 developmental	 time	
was	 longer	 for	 flies	 growing	 in	 the	 H. psittacorum-treated	 water	
(Figure	3b).

3.2 | Fertility

Fertility	 was	 not	 affected	 by	 the	 interaction	 between	 experimen-
tal	 treatment	 and	 generation	 (χ2

[4]
	=	234.1,	 p = .072).	 Fertility	 was	

also	not	affected	by	experimental	 treatment	 (χ2
[1]
	=	125.7,	p = .341).	

However,	 fertility	 was	 higher	 in	 the	 F0	 generation	 (χ2
[1]
	=	167.7,	

p = .014)	(Figure	3c).

4  | DISCUSSION

Water	pollution	as	a	result	of	anthropogenic	activities	(e.g.,	sediment,	
excess	nutrients,	and	toxic	chemicals)	can	negatively	alter	freshwater	
ecosystems.	Endocrine	disruptors	(ED)	are	known	to	interfere	in	dif-
ferent	ways	with	the	normal	synthesis,	secretion,	transport,	and	ac-
tion	of	hormones	(Guillette,	2006;	Segner	et	al.,	2003).	Furthermore,	
some	 studies	 have	 indicated	 that	 the	 biodiversity	 of	 freshwater	
ecosystems	 is	 particularly	 vulnerable	 to	ED	 (Cardinale	 et	al.,	 2012;	
Kareiva	&	Marvier,	2011).	Here,	we	evaluated	 the	 impact	 that	dif-
ferent	 concentrations	 of	 ED	 have	 on	 components	 of	 Drosophila 
melanogaster’s	 fitness	 (developmental	 time	 and	 fertility)	 over	 two	
generations.	Our	results	show	that:	(1)	the	developmental	time	from	
egg	 to	 pupae	was	 shorter	 for	 individuals	 of	 the	 F1	 generation,	 (2)	
developmental	time	from	pupae	to	adult	was	longer	for	flies	growing	
in	H. psittacorum	 treated	wastewater,	 and	 (3)	 fertility	was	 lower	 in	
the	F1	generation.

A	major	 selective	 force	 in	 nature	 is	 exposure	 to	 environmental	
perturbations	(Bijlsma	&	Loeschcke,	2005;	Hoffmann	&	Hercus,	2000;	
Hoffmann	&	 Parsons,	 1991).	Animals	 have	 evolved	 several	 strate-
gies,	from	genetic	(e.g.,	Alvarez,	Espinoza,	Inostroza	B,	&	Arce,	2015;	
Hebbelmann	et	al.,	 2012;	 Lardies,	Arias,	&	Bacigalupe,	2010;	Silva,	
Bacigalupe,	Luna-	Rudloff,	&	Figueroa,	2012;	Sørensen	&	Loeschcke,	
2004),	 to	 physiological	 (e.g.,	 Bozinovic,	 Catalán,	 &	 Kalergis,	 2013;	
Castañeda	et	al.,	2011;	Chapin,	Autumn,	&	Pugnaire,	2012;	Hermes-	
Lima	&	Zenteno-	Savìn,	2002;	Uy,	Leduc,	Ganote,	&	Price,	2015)	and	
behavioral	 (e.g.,	Kitaysky,	Wingfield,	&	Piatt,	 2001;	Koolhaas	et	al.,	
1999;	 Ruiz-	Aravena	 et	al.,	 2014;	 Wingfield	 &	 Kitaysky,	 2002)	 to	
deal	with	or	avoid	the	effects	of	such	stressors.	Additionally,	fitness-	
related	traits	are	not	an	exception	and	are	also	affected	by	environ-
mental	stress	(Bijlsma	&	Loeschcke,	2005).	Nevertheless,	there	is	no	
clear	pattern	regarding	whether	fitness	should	increase	or	decrease	
in	 the	 face	 of	 environmental	 stress.	 Our	 experimental	 treatments	
with	 different	 concentrations	 of	BPA	 and	NP	did	 not	 produce	 any	
effect	 on	 the	 D. melanogaster	 fitness	 components.	 However,	 the	
means	of	the	measured	fitness	components	(developmental	time	and	
fertility)	were	significantly	different	between	generation	F0	and	F1;	
this	observed	response	was	likely	a	result	of	the	selection	imposed	
on	the	flies.

Although	 several	 studies	 have	 shown	 that	 developmental	 time	
in	Drosophila	species	is	affected	by	environmental	stress	(Castañeda	
&	 Nespolo,	 2013;	 Sørensen	 &	 Loeschcke,	 2004),	 there	 is	 no	 clear	
pattern	regarding	the	effect	of	ED.	While	some	studies	have	shown	
that	 developmental	 time	 increases	 from	 pupae	 to	 adult	when	 flies	
are	 exposed	 to	 ED	 (Akins,	 Schroeder,	 Brower,	 &	 Aposhian,	 1992;	
Cohn,	Widzowski,	&	Cory-	Slechta,	1992;	Liu,	Li,	Prasifka,	Jurenka,	&	
Bonning,	2008),	 other	 studies	 report	 that	developmental	 time	 from	
pupae	to	adult	decreases	(Atli,	2010;	Memmi	&	Atlı,	2009).	Our	results	
do	not	provide	any	new	insight	regarding	the	consequences	of	expo-
sure	to	ED	on	components	of	fitness	measured	here:	Developmental	
time	 was	 not	 significantly	 influenced	 by	 wastewater.	 Furthermore,	
there	was	no	consistent	pattern	(i.e.,	in	treatment	and/or	generation)	
between	developmental	time	from	egg	to	pupae	and	developmental	

TABLE  1 Summary	of	the	statistical	analyses	evaluating	
differences	in	Drosophila melanogaster	development	and	
reproduction.	Individuals	were	exposed	to	one	of	five	experimental	
treatments	over	two	generations	(F0	and	F1).	Significant	values	are	
in	bold	(p	<	.05)

S.S df M.S F p- Value

Developmental	time	(Egg—Pupae)

 Treatment 0.0231 4 0.0058 1.7300 .1532

 Generation 0.0250 1 0.0250 7.4780 .0079

 Interaction 0.0054 4 0.0013 0.4010 .8075

 Residuals 0.2341 70 0.0033 — —

Developmental	time	(Pupae—Adult)

 Treatment 0.0236 4 0.0059 2.8540 .0299

 Generation 0.0000 1 0.0000 0.0002 .9898

 Interaction 0.0019 4 0.0005 0.2280 .9220

 Residuals 0.1445 70 0.0021 — —

Fertility

 Treatment 8,246 4 2,061 1.2820 .2853

 Generation 11,045 1 11,045 6.8710 .0107

 Interaction 15,184 4 3,796 2.3610 .0601

 Residuals 112,531 70 1,608 — —
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time	 from	pupae	 to	adult	 (Figure	3).	The	 reasons	 for	 that	unconsis-
tency	 remain	unclear.	As	 the	 second	emerging	 couples	 (i.e.,	 second	
shortest	developmental	time)	were	the	parents	of	the	F1	generation,	
developmental	 time	 from	 egg	 to	 pupae	was	 only	 shorter	 in	 the	 F1	
generation.	In	contrast	to	the	results	found	here,	some	studies	have	
shown	that	exposure	 to	ED	 in	 invertebrates	causes	overall	 reduced	
growth	rates	and	thus,	overall	 increases	 in	developmental	 time	 (Hill	
et	al.,	 2002;	 Izumi,	 Yanagibori,	 Shigeno,	 &	 Sajiki,	 2007;	 Marcial,	
Hagiwara,	&	Snell,	2003),	and	yet	other	studies	have	shown	the	oppo-
site	pattern	increased	growth	rates	and	decreased	development	time	
(Weiner	et	al.,	2014).

Wastewater	contains	other	estrogenic	EDs	such	as	ethinelestradiol	
(EE2)	and	phthalate	esters	(e.g.,	dibutyl	phthalate).	The	effect	of	these	
EDs	could	also	affect	the	generation	time	of	D. melanogaster	(Memmi	
&	Atlı,	2009)	or	of	other	invertebrates	such	as	Brachionus calyciflorus 
and	Haliotis diversicolor	(Huang,	Sun,	&	Song,	1999;	Zhao,	Xi,	Huang,	&	
Zha,	2009)	Zhao	et	al.,	2009).	Thus,	despite	H. pisttacorum′s	ability	to	
remove	ED	(Ascuntar	Ríos	et	al.,	2009;	Peña-	Salamanca	et	al.,	2013),	

the	treated	wastewater	could	still	contain	these	or	other	EDs	in	low	
amounts;	this	in	turn	would	explain	why	the	HSSF-	CW	H. psittacorum-	
treated	wastewater,	with	lower	levels	of	BPA	and	NP,	had	an	effect	on	
development	time.

Unfortunately,	the	patterns	are	not	clear	regarding	fertility:	Some	
studies	have	shown	that	exposure	to	ED	reduces	fertility	(Atli,	2013;	
Atli	&	Unlu,	2012;	Liu,	Li,	Zhao,	Zhang,	&	Gu,	2014;	Mihaich	et	al.,	
2009),	 increases	 fertility	 (Marcial	 et	al.,	 2003;	 Widarto,	 Krogh,	 &	
Forbes,	 2007)	 or	 has	 not	 produced	 any	 (significant)	 effect	 (Forbes,	
Warbritton,	Aufderheide,	Van	Der	Hoeven,	&	Caspers,	2008;	Forget-	
Leray,	 Landriau,	 Minier,	 &	 Leboulenger,	 2005).	 Again,	 our	 results	
do	 not	 offer	 a	 strong	 signal	 on	 the	 consequences	 of	 ED	exposure,	
as	 fertility	was	only	affected	by	generation	 (i.e.,	 lower	 in	F1	gener-
ation)	but	not	by	experimental	 treatment.	However,	our	 results	are	
in	 agreement	with	 a	 trade-	off	 between	 faster	 developmental	 rates	
and	 lower	 fertility	 (Nunney,	1996;	Roff,	2001).	 In	Drosophila,	 selec-
tion	for	faster	developmental	rates,	which	is	what	we	have	indirectly	
carried	 out	 in	 order	 to	 obtain	 the	 F1	 generation,	 usually	 results	 in	

F IGURE  3 Response	of	Drosophila melanogaster	exposed	to	five	experimental	treatments	over	two	generations	(F0	generation	with	black	
dots	and	F1	with	gray	dots).	(a)	Average	(±	SE)	developmental	time	from	egg	to	pupae	for	both	generations.	(b)	Average	(±	SE)	developmental	
time	from	pupae	to	adult	for	both	generations.	(c)	Fertility	is	represented	by	the	average	(±	SE)	number	of	offspring	produced	during	the	first	
9	days	in	each	generation.	The	experimental	treatments	are	shown	on	the	x-	axis,	DW:	Distilled	water,	He:	Treated	wastewater	from	a	HSSF-	CW	
with Heliconia psittacorum,	Ph:	Treated	wastewater	from	a	HSSF-	CW	with	Phragmites australis,	WG:	Treated	wastewater	from	a	gravel	HSSF-	CW,	
WW:	Wastewater
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the	evolution	of	smaller	body	size	as	adults	(Chippendale	&	Sorenson,	
1997;	 Chippindale,	 Chu,	 &	 Rose,	 1996).	 As	 body	 size	 is	 positively	
related	 to	 fertility	 (Roff,	 2001),	 individuals	 that	 develop	 faster	 are	
smaller	and	thus	have	less	offspring.

In	conclusion,	it	is	well-	known	that	anthropogenic	effects	on	eco-
systems,	 such	as	 contamination	of	water	with	 toxic	 chemicals,	 such	
as	EDs,	have	an	effect	on	the	fitness	of	individuals	(Anway	&	Skinner,	
2008;	 Colborn	 et	al.,	 1993;	 Depledge	 &	 Billinghurst,	 1999;	Weiner	
et	al.,	2014).	Despite	this,	the	present	study	did	not	find	a	significant	
effect	of	EDs	(i.e.,	BPA	and	NP)	on	the	developmental	time	or	fertil-
ity	of	 two	generations	of	D. melanogaster.	Overall,	more	 studies	 are	
needed	to	evaluate	the	generality	of	this	finding.	Studies	of	morpho-
logical	variation	and	studies	 involving	many	generations	will	help	 to	
determine	how	D. melanogaster	is	affected	by	EDs.
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