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Environmental stimuli commonly act via changes in gene regulation. Human-genome-scale

assays to measure such responses are indirect or require knowledge of the transcription

factors (TFs) involved. Here, we present the use of human genome-wide high-throughput

reporter assays to measure environmentally-responsive regulatory element activity. We

focus on responses to glucocorticoids (GCs), an important class of pharmaceuticals and

a paradigmatic genomic response model. We assay GC-responsive regulatory activity

across >108 unique DNA fragments, covering the human genome at >50×. Those assays

directly detected thousands of GC-responsive regulatory elements genome-wide. We then

validate those findings with measurements of transcription factor occupancy, histone mod-

ifications, chromatin accessibility, and gene expression. We also detect allele-specific

environmental responses. Notably, the assays did not require knowledge of GC response

mechanisms. Thus, this technology can be used to agnostically quantify genomic responses

for which the underlying mechanism remains unknown.
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The human genome encodes transcriptional responses to
environmental signals. Assaying those responses remains
challenging unless the response pathway is well known and

reagents have been developed to probe those mechanisms. For
example, chromatin immunoprecipitation (ChIP) relies on anti-
bodies against a known transcription factor (TF) to identify
environmentally responsive genomic sites. Alternatively, DNase-
sequencing (DNase-seq) and ATAC-seq to measure changes in
chromatin accessibility, or ChIP-seq for activation-associated
histone modifications can also reveal environmentally responsive
genomic loci. However, those measurements do not distinguish
primary from secondary responses1–4. In either case, changes in
TF occupancy or in chromatin state often correspond weakly with
changes in regulatory element activity5–7. In contrast, reporter
gene expression assays directly measure cis-regulatory activity of
DNA fragments without requiring knowledge of the response
mechanisms. Despite rapid advances in high-throughput reporter
assays, their scale has been limited to targeted regions of the
human genome7–9 or studies of steady-state cells10.

In this study, we present the use of high-throughput reporter
assays to measure environmentally responsive regulatory element
activity throughout the human genome. To measure regulatory
responses genome-wide, we develop a self-transcribing active
regulatory region-seq (STARR-seq) plasmid reporter library
containing >108 unique DNA fragments from the GM12878
genome. We use this library to quantify regulatory activity in
response to glucocorticoids (GCs), an important class of phar-
maceuticals and a paradigmatic genomic response model. Our
high-throughput reporter approach detect thousands of GC-
responsive regulatory elements genome-wide. We integrate these
results with complementary genomic datasets collected from the
same model system. Changes in regulatory element activity, as
measured by reporter assays, correlated with changes in gene
expression, histone modifications, and transcription factor occu-
pancy. We also report that stimulus-responsive regulatory activity
was only moderately correlated with changes in chromatin
accessibility, demonstrating that our approach is orthogonal to
existing genome-wide functional genomics assays. Additionally,
we were able to identify and validate instances of allele-specific
drug-responsive regulatory activity. These results demonstrate
that our high-throughput reporter assay approach provides
complementarity with widely used genomic assays and the means
to quantify en masse aspects of chromatin regulation unavailable
to existing technologies. Notably, the results of this study did not
require knowledge of GC response mechanisms. Thus, this study
provides a demonstration that high-throughput reporter assays
can agnostically and quantitatively measure environmentally
responsive regulatory element activity across the entire human
genome even when an underlying mechanism remains unknown.

Results
Whole-genome STARR-seq library. To quantify the genomic
responses to an environmental signal at high resolution, we
generated a genome-scale reporter library with ~560 million
unique ~400 bp fragments11 that covers the genome at 59×
(Fig. 1, Fig. 2a, and Supplementary Fig. 1a–c; Supplementary
Table 1; see Methods). The library uses the STARR-seq platform
in which candidate regulatory elements are cloned into the
3′-untranslated region (UTR) of a reporter gene (Fig. 1a)12. From
that position, the UTR-embedded elements regulate their own
transcription into messenger RNA, and targeted RNA-seq is used
to measure activity relative to input control libraries. While other
approaches rely on synthesis of candidate regulatory elements,
STARR-seq assays use sheared genomic DNA. That difference
means that STARR-seq libraries are typically more complex than

other high-throughput reporter assay systems, and thus rely on
aggregating signal across genomic regions rather than estimating
activity of individual DNA fragments. To allow for allele-specific
interpretation of our results, we generated the library from the
genome of GM12878 cells which has been a major focus of
whole-genome sequencing studies13,14 and functional genomics
studies15,16.

Measuring environmentally induced regulatory responses. We
used the whole-genome STARR-seq library to measure genomic
responses to an environmental signal. We focused on the
response to dexamethasone (dex), a commonly used anti-
inflammatory drug that acts via the GC response. Dex binds
the ligand-inducible GC receptor (GR), causing it to translocate
into the nucleus where it acts as a transcription factor to regulate
gene expression17–19. To investigate the dynamics of that
response, we measured regulatory activity in human A549 cells at
0, 1, 4, 8, and 12 h of treatment (Fig. 1b). We assayed five
replicates per time point, with ~3.3 × 107 cells per replicate
(Supplementary Table 1). In each replicate, we identified between
4900 and 9200 genomic regions with reporter activity at a false
discovery rate (FDR) ≤10% (Fig. 1c, Fig. 2b, and Supplementary
Fig. 2a). We then generated an inclusive set of 27,498 regions with
evidence of regulatory activity by taking the union of all per-
replicate region calls (Supplementary Data 1)20. As additional
replicate region sets were included in that union, the number of
observed regions increased linearly. That suggests we have yet to
comprehensively identify all regulatory regions (Supplementary
Fig. 2b). However, there was strong concordance between repli-
cates (R > 0.91) and a distinction between early (0, 1, and 4 h) and
late (8 and 12 h) time points by hierarchical clustering (Supple-
mentary Fig. 2c). Regions exhibiting regulatory activity in the
input and output libraries were covered by a median of 57 (SD ±
5) and 36 (SD ± 6) fragments, respectively (Supplementary
Fig. 2d, e). Importantly, the replicates provided largely indepen-
dent assessments of the activity of genomic regions: the majority
of fragments in each region were unique to a single replicate, and
only about 1% of fragments were assayed in all five replicates of
any time point (Supplementary Fig. 2f). Active regions identified
by STARR-seq are therefore comprised of output fragments from
many replicates demonstrating regulatory activity (Supplemen-
tary Fig. 2g).

Prior to identifying dex-induced cis-regulatory responses
genome-wide, we demonstrated that our genome-scale library
recapitulates localized responses. We compared our results to
that obtained from two independently constructed bacterial
artificial chromosome STARR-seq libraries representing five
GC-responsive loci totaling approximately 1Mb of the human
genome (Pearson's correlation coefficient, r > 0.83 and 0.91;
Supplementary Fig. 3a, b)7. To identify dex-induced changes in
regulatory activity genome-wide, we evaluated the null hypothesis
that dex did not change the activity of each candidate regulatory
element at each time point relative to 0 h of dex exposure
(Figs. 1d, 2c, d). We rejected that null hypothesis at 5695 genomic
regions with an FDR ≤5%, and we refer to those regions as dex-
responsive elements (DREs). Dex treatment increased the number
of unique fragments corresponding to induced DREs as well as
the coverage of those fragments relative to controls (Supplemen-
tary Fig. 3c, d). The number of DREs increased with longer
treatment, in agreement with RNA-seq data over the same time
course (Supplementary Fig. 4a)21. Dex responsiveness peaked at
8 h of treatment, even though additional sites had significant
responses only later (Supplementary Fig. 4b).

Of the DREs, 3552 (62%) were activated and 2143 (38%) were
repressed, similar to the genomic distribution of dex-responsive
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gene expression19. However, unlike for gene expression
responses, induced regions had a 1.2- to 1.5-fold greater response
to dex than repressed regions (Fig. 2d and Supplementary Fig. 4c).
Induced sites were rarely detected as having regulatory activity
prior to dex. However, that likely reflected reduced statistical
power to detect low pre-dex activity, and regulatory activity was
enriched at those sites overall (Mann–Whitney, P < 10−10;
Supplementary Fig. 4d).

Comparing STARR-seq and orthogonal genomic assays. Dex-
responsive reporter activity corresponded with transcriptional

responses across the genome (Fig. 2e–g). We compared the mean
fold change in expression for all differentially induced genes
within topological-associated domains (TADs)22 containing dex-
responsive or non-responsive active STARR-seq elements. Dif-
ferentially induced genes in TADs with induced DREs increased
expression more than genes in TADs without induced DREs
(Fig. 2g). As a negative control, no relationship was observed
between induced DREs and gene repression (Supplementary
Fig. 5a). We also observed that genes with induced DREs in their
promoters exhibited greater changes in gene expression than
genes with non-responsive regulatory elements in their promoters
(Supplementary Fig. 5b). These results suggest that GC-mediated
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activation is in part constrained by TAD boundaries22 and that
dex-responsive increases in reporter activity corresponded to
increases in gene expression.

Next, we evaluated whether changes in reporter activity reflect
changes in chromatin accessibility at the corresponding genomic
locations in A549 cells (Fig. 2e). Overall, 2993 (53%) DREs were
in a DNase I-hypersensitive site (DHS) observed at any time
point from 0 to 12 h of dex treatment (FDR ≤ 5%). Approxi-
mately a quarter of DREs in open chromatin (n= 728)
overlapped a dex-responsive DHS. The remaining 76% of DREs
in open chromatin had a greater dex-dependent change in
accessibility than non-responsive regulatory elements in DHS

(20% increase vs. 12% increase, respectively; Mann–Whitney, P <
2.13 × 10−64; Supplementary Fig. 6a). For STARR-seq assays that
overlap a DHS, the changes in activity observed correspond to the
expected changes in chromatin accessibility.

DREs that do not overlap a DHS are often latent regulatory
elements that are active in other environments. Specifically, 69%
of non-DHS STARR-seq regions overlap an element predicted to
be active by the Epigenomics Roadmap project in a different
cellular context (Supplementary Fig. 6b). These results highlight
the added value of interpreting whole-genome STARR-seq assay
results alongside chromatin accessibility data to distinguish active
from latent regulatory elements.
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Changes in chromatin accessibility in response to a stimulus
are often used as proxies for identifying regulatory regions5,23,24.
To determine if GC-induced changes in chromatin accessibility
corresponded to changes in regulatory activity, we compared
differential DNase-seq accessibility and differential reporter
activity in DREs. The overlap with differential DHS was more
prominent for induced than repressed DREs. Specifically, 19%
and 3% of induced and repressed DREs overlapped a differential
DHS, respectively. For induced regions, DNase-seq signal
increased 31% overall, whereas for repressed regions DNase-seq
signal decreased 1% overall (Mann–Whitney, P < 10−100; Supple-
mentary Fig. 6c). Though changes in chromatin accessibility can
nominate DREs, the quantitative changes in accessibility and
regulatory element activity do not agree well. Reporter activity in
response to dex at induced DREs was moderately correlated with
changes in chromatin accessibility (Pearson's correlation coeffi-
cient, DNase-seq: 0.13 < r < 0.29, ATAC-seq: 0.3 < r < 0.43; Sup-
plementary Fig. 6d, e). We also observed that 8% of induced
DREs (n= 298) were never called DHS, yet were bound by a TF
at some point during the time course and were enriched for the
transcriptional coactivator histone acetyltransferase EP300
(Fig. 2e, h; Mann–Whitney, P < 5.42 × 10−17; Supplementary
Fig. 6f). These results suggest that a fraction of DREs are bona
fide regulatory elements even though they were not called by
mapping accessible chromatin.

Regulatory activity is dependent on the binding of TFs at cis-
regulatory modules25. To identify TFs contributing to regulatory
element activity in A549 cells, we compared reporter activity to
ChIP-seq data from a time-course study of the same dex
response21. In that study, we performed ChIP-seq for seven TFs
(AP-1, BCL3, C/EBPβ, CTCF, EP300, GR, and HES2) and five
histone modifications (H3K4me1, H4K3me2, H3K4me3,
H3K9me3, and H3K27ac) at 12 time points ranging from 0 to
12 h of 100 nM dex exposures. As with DNase-seq results,
approximately 52% of DREs were bound by a TF or enriched for
modified histones following treatment. Eighty-nine percent of
those overlapping sites were also in DHS. DREs not bound by a
TF in our model system likely represent latent regulatory
elements that are occupied in other cellular contexts (Supple-
mentary Fig. 6b).

Induced and repressed DREs exhibited contrasting patterns of
modified histone enrichment and TF binding. The number of TF
ChIP-seq peaks overlapping induced DREs increased with
regulatory activity and was greater than that at repressed DREs
(Supplementary Fig. 7a, b). Following treatment, deposition of
histone modifications associated with active chromatin
(H3K427ac and H3K4 methylation) predominated at induced

DREs relative to other regulatory elements and accessibility-
matched DHS(Supplementary Fig. 7c–g). Induced DREs were
strongly associated with increased binding and co-occupancy of
the GR and EP300, as well as AP-1, BCL3, C/EBPβ, and HES2
(Fig. 2e, i and Supplementary Fig. 7d). Recruitment of the GR to
induced DREs persisted throughout the time course and preceded
detection of significant reporter activity at these sites (Fig. 2j). In
contrast, TF and modified histone enrichment and co-occupancy
was depleted at repressed DREs, and GR binding was comparable
to accessibility-matched controls (Fig. 2i and Supplementary
Fig. 7c–g). This gives further evidence that DREs identified by
episomal whole-genome reporter assays and in accessible
chromatin are faithful measurements of genomic regulatory
responses.

Unlike ChIP-seq assays, genome-wide reporter assays agnos-
tically query regulatory activity and can therefore detect
regulatory elements participating in the GC response that do
not directly bind the GR. Such sites may reflect secondary effects
due to direct regulation of other TFs by the GR. Throughout the
time course we observed a small but increasing percentage
(2.1–4.3%) of induced DREs in DHS that lacked GR motifs, GR
ChIP-seq peak calls, and for which GR ChIP-seq signal was
indistinguishable from genomic controls (Supplementary Fig. 8a).
Such DREs were enriched for motifs of known GR co-binding
TFs such as the AP-1 family (adj. P < 7.43 × 10−12) and STAT
family (adj. P < 9.25 × 10−3), and had empirical evidence for
binding by the AP-1 component JunB (Fisher’s exact test, P <
0.015). Members of both the AP-1 and STAT TF families
exhibited GC-mediated increases in expression. Upregulation of
these factors may contribute to the GR-independent activation of
sequences harboring their corresponding motifs (Supplementary
Fig. 8b, c; Supplementary Table 2). These results highlight the
potential for whole-genome reporter assays to identify secondary
regulatory events in a long-term environmental response.

Motif enrichment in DREs. We next investigated whether specific
TF-binding motifs were enriched in DREs (Fig. 3). Hierarchical
clustering on motif enrichment identified groups of motifs enriched
at induced or repressed regulatory elements. As expected, induced
DREs were associated with GR-binding motifs, especially at the
most strongly induced DREs. Those DREs were also enriched for
AP-1 motifs. However, AP-1 motifs were most strongly enriched at
moderately induced DREs where AP-1 is bound prior to dex
treatment (Supplementary Fig. 8d). Elevated AP-1 motif enrich-
ment in the less induced DRE quartiles is contrasted by increased
AP-1 binding at more active DREs upon recruitment of the GR

Fig. 2 Genome-wide high-throughput reporter assays measure environmentally responsive regulatory element activity. a Cumulative distribution of
coverage for the whole-genome STARR-seq library. The median per base coverage is 59× (dashed line). b The number of regulatory regions identified by
STARR-seq in each replicate increased with longer dex exposure (one way ANOVA followed by Tukey’s multiple comparison test; *P < 0.05, **P < 0.01). c
The number of called DREs (FDR <5%). d Distribution of regulatory responses to dex. The fold change in reporter activity for all regulatory regions is
plotted as a function of the mean sequencing coverage at that region. Significant responses are colored by time point. e Induced (dashed boxes) and
steady-state (solid box) regulatory regions detected by whole-genome reporter assays correspond to epigenomic features identified by complimentary
genomic assays at the dex-induced IP6K3 locus. STARR-seq input library coverage is displayed in the top track. ATAC-seq, DNase-seq, and ChIP-seq data
after 4 h of dex treatment. f IP6K3 RNA-seq was measured in transcripts per milion (TPM). g GC-responsive gene induction is greater in TADs containing
induced DREs compared to TADs containing non-responsive regulatory elements. The distribution of mean fold changes for all differentially induced genes
in the same TAD is plotted for all TADs containing an induced DRE or non-responsive regulatory element in DHS. Median fold changes were compared
with the Mann–Whitney U test. h Chromatin accessibility tracks for the 5 kb window centered on the upstream TF-bound induced DRE displayed in e (gray
box). i Aggregate profile plots of the mean fold changes in post-dex ChIP-seq signal across 10 kb windows centered on DHS+ regulatory element
midpoints. Induced (n= 1646) and repressed (n= 746) DREs are shown in red and blue, respectively. Non-responsive regulatory regions (n= 6531) are
displayed in gray and control regions (n= 1646) are shown in pale blue. Control regions are randomly selected 520 bp (median STARR-seq regions length)
regions filtered to matched to DHS+ induced DRE accessibility. j Heatmaps showing the average GR ChIP-seq signal in 10 kb windows centered on all
dynamic DRE midpoints. Rows are grouped according to the time point for which the DRE was first called significant
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(Fig. 2i and Supplementary Fig. 8d, e). These results support
previous studies demonstrating synergy between GR and AP-17

and suggest that when GR is bound to strong and multiple
consensus motifs it can recruit other TFs to neighboring lower
quality motifs. Patterns of motif enrichment at repressed DREs
supported the predominance of the GR in regulating the genomic
landscape. Repressed DREs were not associated with steroid hor-
mone receptor motifs (Fig. 3), suggesting that the marginal GR
occupancy observed at these elements reflects transitory binding at
weak motifs or tethered interactions to other TFs21. Repressed
DREs were more enriched for motifs corresponding to AP-1 and
HES factors than induced DREs (Fig. 3), despite AP-1 and HES2 TF
depletion at repressed regulatory elements (Fig. 2i). These findings
agree with previous studies demonstrating that AP-1 marks
enhancers in unstimulated A549 cells whereupon it is redistributed
following GC treatment (e.g. ref. 21). The enrichment of NF-ϰB
motifs at the most repressed DREs is supported by the eviction of
this factor after treating with GCs26. Dex treatment also repressed
regulatory activity from DREs enriched for p53 and interferon
factor motif families (Fig. 3). Enrichment of p53 and interferon
regulatory factor motifs in steady-state regulatory regions implicates
our episomal reporters in eliciting a stress response (Supplementary
Fig. 8f)27–29. However, the loss in reporter activity at regulatory
regions harboring cell-stress motifs following treatment with dex
supports the known role of the GR in attenuating the innate
immune response30.

Drug-responsive allele-specific regulatory activity. By con-
structing whole-genome STARR-seq assays from the deeply
sequenced genome of GM12878 cells, we have the opportunity for
allele-specific analyses to detect genetic effects on regulatory
element activity. In total, we tested for allele-specific dex-
responsive reporter activity at 10,669 heterozygous single-
nucleotide polymorphisms (SNPs) found within the genomic
regions active in our assay. Two common SNPs, rs7206321 and
rs10505411 (minor allele frequency >25%), had statistically sig-
nificant evidence for allele-specific drug response (Fig. 4a). Prior
to treatment, the alternate alleles of both SNPs were more active
in our assay. After treating with dex, the trend reversed such that
reporter activity at the reference alleles exceeded that at the
alternate alleles (FDR <5.0 × 10−4; Fig. 4b). Both SNPs were in
induced DREs and proximal to a GRE. However, only rs10505411
was associated with significant endogenous epigenomic activity
(Fig. 4c). As independent confirmation of the allele-specific dex
response in regulatory activity observed at rs10505411, we looked
for allele-specific TF binding at the corresponding genomic locus
in A549 cells, which are also polymorphic for rs10505411. TF
binding at the reference allele significantly exceeded that at the
alternate allele for several TFs (GR, AP-1, EP300; Wilcoxon's
signed-rank test, P < 0.05; Fig. 4d)21. Increased TF binding at the
reference allele may result from the presence of the variant at the
alternate allele converting a GATA3 motif (P < 8.37 × 10−5) to a
FOXG1 motif (P < 1.45 × 10−4; Supplementary Fig. 8g). Several
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GATA and FOX factors are expressed in A549 cells. This proof of
concept demonstrates that high-throughput reporter assays
can identify allele-specific genomic regulatory responses. We
anticipate the number of allelic responses that can be detected
would increase with inclusion of additional individuals and
deeper sequencing in subsequent studies.

In summary, we used high-throughput reporter assays to
agnostically and quantitatively measure drug regulatory responses
across the entire human genome. Our approach is complementary
to other widely used genomic assays, and enables new ways to

quantify gene regulatory responses to environmental stimuli.
Further, by focusing our analyses on drug-dependent effects, we
limit the potential for false positives due to technical biases in high-
throughput reporter assays. We demonstrated that whole-genome
STARR-seq can detect combinatorial interactions between TFs and
identify allele-specific changes in regulatory behavior in response to
stimulus. These results demonstrate that whole-genome reporter
assays are an effective and new method for studying genomic
responses to environmental conditions, particularly when the
underlying mechanisms of that response are not well known.
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Methods
Whole-genome STARR-seq input library construction. Total genomic DNA was
extracted from lymphoblastoid cells (GM12878) with the Qiagen DNeasy Blood
and Tissue Kit and sheared by sonication on the Covaris S2 system (Intensity: 3;
Duty Cycle: 5%, Cycles/Burst: 200; Time: 80 s; volume level: 12). We then per-
formed two-sided size selection with Corning solid-phase reverse immobilization
(SPRI) beads. We used 0.4× volume of SPRI beads to remove fragments larger than
~450 bp, followed by a 0.25× volume of SPRI beads to select fragments >350 bp. In
60 parallel reactions, 5 µg of size-selected DNA fragments was end-repaired, A-
tailed, and ligated to annealed Illumina TruSeq Universal Adapters using the
NEBNext DNA Library Prep Master Mix Kit12. Adapted libraries were purified
using SPRI beads (1.8× volume to retain most fragments) and subjected to 10
cycles of PCR enrichment using the NEB Q5 PCR Kit with GC buffer and STARR-
seq adaptor primers12 under the following conditions: 98 °C for 30 s, followed by
10 cycles of 98 °C for 10 s, 63 °C for 30 s, 72 °C for 30 s, with a final extension at 72
°C for 5 min. Amplified inserts were purified using SPRI beads (0.9× to remove
primer dimers) and pooled.

Purified PCR products were cloned directly into linearized STARR-seq
screening vector as described previously7,12 using the NEBuilder HiFi DNA
Assembly Cloning Kit. Following quenching with EDTA, reactions were purified
and concentrated with successive binding to SPRI beads (0.5× and 1.0×).
Assembled reporter plasmids were eluted in nuclease-free water and pooled prior
to transformation into freshly prepared ElectroMAX DH10B Cells (Thermo Fisher
Scientific). Each transformation contained 2 µg of assembled DNA and total of 72
transformation were performed. Following recovery for 1 h in SOC medium while
shaking (225 rpm, 37 °C) transformations were pooled four to a flask in 1 L of Luria
Broth and then grown for 14 h under carbenicillin selection while shaking (225
rpm, 37 °C).

Reporter input libraries were purified using the Promega Pure Yield Megaprep
Kit. The quality and diversity of individual pools of plasmid libraries were assessed
by sequencing on an Illumina MiSeq using 50 bp paired-end reads. Estimates of
library complexity were made using the PreSeq package11. Equimolar amounts of
each plasmid library were pooled to create the final whole-genome STARR-seq
plasmid library. Ten nanograms of the plasmid library was used as template to
construct 12 individual STARR-seq sequencing libraries. Plasmid templates were
amplified by PCR using Illumina TruSeq primers under the following conditions:
98 °C for 30 s, followed by 10 cycles of 98 °C for 10 s, 65 °C for 30 s, 72 °C for 30 s,
with a final extension at 72 °C for 5 min. Libraries were subjected to 50 cycles of
paired-end sequencing on the Illumina HiSeq 4000 platform.

Assaying the whole-genome STARR-seq reporter library. A549 cells (first
obtained at passage 87) were expanded under standard culture conditions using
Ham’s F-12K (Kaighn’s) medium, 10% (v/v) fetal bovine serum, and 1% (v/v)
penicillin–streptomycin for a total of seven passages. The whole-genome STARR-
seq library was transfected into twenty-five 500 cm2 plates of A549 cells at ~75%
confluence using Lipofectamine 3000 (Thermo Fisher Scientific) scaling the
manufacturer’s recommended protocol. Each plate served as a single biological
replicate. The media were changed after 24 and 48 h. Following the final media
change, cells were treated with 100 nM dex (Sigma) or an equal volume (0.02% v/v)
of EtOH for 0, 1, 4, 8, or 12 h. Five replicate treatments were performed for each
time point. Cells were rinsed with phosphate-buffered saline (PBS) (pH 7.4) and
subjected to extracellular DNase I digestion (Sigma), as described previously7, prior
to dissociation with Trypsin-EDTA 0.25% (v/v) (Life Technologies), neutralization,
and centrifugation. Cell pellets were washed with PBS and lysed in 2 mL of RLT
buffer (Qiagen) supplemented with 2-mercaptoethanol (Sigma). Lysates were
passed through a 18-gauge needle five times and stored at −80 °C.

Reporter output library construction. Total RNA was recovered from cell lysates
with the Qiagen RNeasy Midi Kit including the on-column DNase I digestion step.
Eluates were treated with 1 μL RNase Block (Aligent) prior to poly-A RNA iso-
lation with Dynabead Oligo-dT25 beads (Thermo Fisher Scientific) according to
the manufacturet’s recommended protocol. Eight individual captures from 75 μg of
total RNA were performed for each sample with subsequent processing steps
carried out separately. Poly-A RNAs were treated with Turbo DNase (2 U; Thermo
Fisher Scientific) and 1 μL RNase Block at 37 °C for 30 min before halting the
reaction with the DNase inactivation reagent. RNA was reverse transcribed for
2.5 h at 55 °C with the STARR-seq gene-specific primer12 using the SuperScript III
system (800 U; Thermo Fisher Scientific). Following enzyme inactivation, cDNAs
were treated with RNase A (Sigma) at 37 °C for 1 h, purified with SPRI beads
(2.0×), and subjected to PCR enrichment with reporter-specific primer as per-
viously described12 under the following conditions: 98 °C for 30 s, followed by 6
cycles of 98 °C for 10 s, 65 °C for 30 s, 72 °C for 30 s, with a final extension at 72 °C
for 5 min. PCR products were purified with SPRI beads (1.5×) and amplified again
by PCR using a standard Illumina TruSeq multiplexing oligos under the following
conditions: 98 °C for 30 s, followed by 10 cycles of 98 °C for 10 s, 65 °C for 30 s,
72 °C for 30 s, with a final extension at 72 °C for 5 min. Libraries from matched
samples were pooled and assessed by sequencing on an Illumina MiSeq, as above,
using 50 bp paired-end reads prior to deep sequencing on the Illumina HiSeq 4000.

Alignments and region calling. STARR-seq input library and output libraries were
individually aligned to the human genome assembly hg38 with Bowtie2 (version
2.2.4)31, using the following parameters: bowtie2 -X 2000 sensitive. Only properly
paired alignments with a MAPQ (mapping quality) score ≥30 outside hg38 cen-
tromeres, gap, and blacklist regions were retained in downstream analyses. Regions
were called individually for each sample using merged STARR-seq input alignments
as controls with the MACS2 package32 using the following parameters: -f BAMPE -g
hs–ratio–keep-dup all -q 0.10. The custom scaling ratio (–ratio) provided to MACS
was generated for each sample using the NCIS algorithm33. We generated a union set
of called regions after merging any overlapping regions with bedtools (v.2.25.0)34. We
tested for differential STARR-seq activity across the union region set by fitting
negative binomial models and performing quasi-likelihood F -tests with edgeR
(version 3.8.6)35. RPKM normalized STARR-seq read density was computed at single
base pair resolution using deepTools utility bamCoverage36.

Comparisons to other genomic datasets. We extensively compared our whole-
genome reporter assay results to Hi-C, RNA-seq, DNase-seq, ATAC-seq, and
ChIP-seq datasets from a time-course study of the same dex response in A549
cells21,22,37. Differentially expressed genes and topological associated domains were
previously identified21,22. Analysis of ChIP-seq, ATAC-seq, and DNase-seq signals
were performed using the bwtools package38. ChIP-seq read density (RPKM)
values represent input control RPKM subtracted values, truncating the difference
as zero. Post-dex averages of genomic signals represent the mean across the full dex
time course as reported in ref. 21 (0.5, 1, 2, 3, 4, 5, 6, 7, 8, 10, and 12 h of dex
treatment). ChIP-seq peak set intersections were visualized using the UpSetR
package39.

Motif enrichment analysis. We tested the set of 8-h DREs for enrichment of
RSAT-clustered40 JASPAR motifs41,42. To do so, we first binned the dynamic
regulatory elements by the magnitude of their response and controlled for baseline
activity. Relative motif enrichment analysis was performed with the AME tool43

from the MEME suite44 using randomly generated dinucleotide shuffled sequences
as a comparator. Motif enrichment was similarly performed on steady-state reg-
ulatory elements after separating elements into quintiles according to the reporter
activity. Motif analysis of the rs10505411 alleles was performed with the MAST
tool45 using a first-order Markov background model.

Allele-specific dex-responsive regulatory activity analysis. To identify allele-
specific dex-responsive regulatory activity, we used the mpileup tool in the sam-
tools package46 to identify alignments overlapping heterozygous SNPs in the
genome of GM12878 cells14. We further parsed variants requiring that they
overlapped a regulatory region identified in this study and were covered by at least
five fragments in at least five samples. In total, we tested 10,669 heterozygous alleles
for differential regulatory activity in response to dex using a negative binomial
model model implemented with the edgeR35 that included main effect and inter-
action terms for treatment and time. The DSS package was used to estimate
dispersion47.

Allele-specific ChIP analysis. We used bowtie48 to perform allele-specific analysis
of GR, EP300, and cJUN ChIP-seq reads. Reads were aligned (bowtie -v 0 -m 1) to
either the reference or alternate alleles of rs10505411, requiring no mismatches or
multiple matches16.

Data availability
Whole-genome STARR-seq sequencing data are publicly available through the
National Center for Biotechnology Information Gene Expression Omnibus (Series
GSE114063). Published ChIP-seq, RNA-seq, ATAC-seq, and DNase-seq21 as well
as Hi-C22 datasets are available through the NCBI BioProject (PRJNA356880) and
the ENCODE DCC portal (http://www.encodeproject.org).
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