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Abstract 

Objective:  Non-alcoholic steatohepatitis (NASH) has become a global medical problem. Currently, there is no 
approved pharmacologic treatment for this condition. Previous studies have suggested that in the pathogenesis of 
this disease, regulatory pathways associated with de novo lipogenesis and β-oxidation pathways genes are misregu-
lated. Capparis spinosa (CS) belongs to the family of Capparidaceae and is a traditional plant used to treat various 
diseases, particularly dyslipidemia. The compounds and extracts of this plant in In vivo and in vitro studies resulted 
in a reduction in lipid profiles and glucose. However, the mechanism of these effects remains unknown. This study 
aimed to evaluate the effects of (CS) fruit extract on NASH compared to fenofibrate and explored the related molecu-
lar mechanism.

Results:  In the rats (n = 40) model of NASH, biochemical and histopathological examinations showed that liver 
steatosis, inflammation, and hepatic fibrosis were markedly attenuated in response to CS and fenofibrate interven-
tions. At the molecular level, CS treatment down-regulated sterol regulatory element-binding protein-1c (SREBP-1c) 
(p < 0.001), acetyl-CoA carboxylase (ACC) (p < 0.001), and up-regulated Carnitine palmitoyltransferase I (CPT1) expres-
sion (p < 0.001). In conclusion, CS has favorable therapeutic effects for NASH, which was associated with ameliorating 
steatosis and fibrosis via regulation of the DNL and β-oxidation pathway genes.
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Introduction
Non-alcoholic fatty liver disease (NAFLD) is among the most 
common types of liver disease and is becoming an important 
public health problem all over the world [1]. Hepatic injury 
in NAFLD results in the release of plasma aminotransferases 
(AST and ALT]) into the circulation, and these are routinely 
determined as the classic markers of NAFLD. Nonalcoholic 
steatohepatitis (NASH) is a progressive type of NAFLD [2]. 
Disorders related to metabolic syndrome including obesity 
and insulin resistance lead to hepatic accumulation of tri-
glycerides and free fatty acids that contribute to the devel-
opment of liver inflammation and NASH [3]. Several key 
transcription factors including Sterol Regulatory Element 
Binding Proteins (SREBP) such as SREBP-1a, SREBP-1c, and 
SREBP-2, control various genes involved in regulating cho-
lesterol homeostasis and lipid metabolism [4]. Acetyl-CoA 
carboxylase gene is a major downstream target of SREBP-1c 
and plays a key role in de novo lipogenesis (DNL) [5]. Also, 
peroxisome proliferator-activated receptors (PPARs) have 
pivotal roles in glucose and lipid hemostasis and intrahe-
patic lipid accumulation. PPAR-α is expressed dominantly 
in rat and human liver [6] Numerous genes are regulated by 
PPAR-α such as carnitine palmitoyltransferase1A (CPT1A) 
which is an important metabolic enzyme [7].

Currently, there are no approved therapeutic drugs 
available for use in patients with NAFLD/ NASH. Thus, 
there is an urgent need for developing novel medications. 
Medicinal plants have great potential for discovering new 
drugs for NASH treatment.

Capparis spinosa (Caper) belongs to the family of Cap-
paridaceae and is a common medicinal plant used in 
many parts of the world to treat various diseases [8–10]. 
Administration of Caper fruit extract has been associated 

with inhibition of gluconeogenesis and fat accumulation 
in streptozotocin-induced diabetic rats, thus it might 
have positive effects on liver health and fatty liver [11]. 
However, its usefulness in NAFLD/ NASH and the possi-
ble underlying mechanisms have not yet been elucidated, 
and it warrants further investigations.

In this study, we evaluated the hepatoprotective effects 
of CS fruit extract in a rat model of HFD-induced NASH 
and possible mechanisms. Since fibrates are commonly 
used in the clinic to treat dyslipidemia, and several stud-
ies have shown their preventive efficacy in NAFLD pro-
gression to NASH [12], we compared the effects of CS 
with fenofibrate.

Main text
Methods
Providing CS aqueous extract
Capparis spinosa fruits were picked from wild plants 
growing in the Shooshtar region in Khuzestan province, 
southwest Iran. More details are in Additional file 1.

Providing high‑fat emulsion
As mentioned by Yuhong Zou et  al. high-fat emulsion 
(HF) was provided [13]. More details are in Additional 
file 1.

Providing chemicals
Fenofibrate was bought from the Sinadarou Company 
(Tehran, Iran). More details are in Additional file 1.

Animals and treatments
The male Wistar rats (n = 40) aged 6–7  weeks 
(180 ± 20 g) were prepared by the Experimental Animal 
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Center, Ahvaz Jundishapur University of Medical Sci-
ences. At first, animals were divided into two groups: the 
normal control group (NC group, n = 10) and the high-
fat emulsion (HF group, n = 30). After 6 weeks, HF group 
was divided into three groups (n = 8), high-fat emulsion 
(HF group), high-fat emulsion plus fenofibrate 100 mg/kg 
body weight (HF + FENO group), or CS 20 mg/kg body 
weight (HF + CS group), respectively. More details are in 
Additional file 1.

Biochemical measurements
All detailed procedures of biochemical measurements are 
described in Additional file 1.

Gene expression analysis
The expression of SREBP1-c, acetyl-CoA carboxylase 
(ACC), PPARα, and carnitine palmitoyltransferase 1 
(CPT1) mRNA was assessed by the real-time PCR tech-
nique. More detailed procedures are described in Addi-
tional file 1.

Histopathological evaluations
The sections of liver tissue were immediately obtained 
after the rats were sacrificed. The tissue specimens were 
fixed in 10% formalin solution. More details are in Addi-
tional file 1.

Statistical analysis
Quantitative data were noted as mean ± SD, and qualita-
tive variables were noted as percentages. One-way analy-
sis of variance (ANOVA) and Tukey’s post hoc tests were 
used to compare quantitative variables. For the categori-
cal data, the Chi-square test was done. The significance 
level for all tests was regarded at p ≤ 0.05. The analyses 
were handled by applying the GraphPad Prism software 
version 8.0.2.

Results
The impacts of treatments on liver index 
and histopathological parameters
Based on Fig.  1a, after 12  weeks, HF group rats had a 
mean body weight of 334.71 ± 4.71  g in comparison 
with 243.57 ± 6.77  g in control rats, showing a con-
siderable increase in body weight of HF group rats in 
comparison with the control group (p < 0.001). CS and 

fenofibrate treatment almost normalized this increase in 
body weight in HF + CS and HF + FENO groups. More-
over, liver weights in the HF group were significantly 
increased (p < 0.001) in comparison with the NC group. 
The treatment with CS for 42 consecutive days signifi-
cantly decreased the liver weight in comparison with the 
HF group. Hence, there was no considerable difference 
between the fenofibrate treatment group, and the HF 
group found in the liver weight (Fig. 1b). Also, CS treat-
ment considerably attenuated this liver index in com-
parison with the HF group (p < 0.05). More details are in 
Additional file 1.

The impacts of treatments on the biochemical parameters
Liver performance tests
CS and fenofibrate treatments reversed the detrimental 
impacts of high-fat emulsion and normalized AST and 
ALT activity to levels in comparison with those in the NC 
group; thus, CS treatment showed more effectiveness in 
this regard in comparison with the fenofibrate (Table 1).

Serum lipid profile
Serum levels of TC, TG, LDL-C, and FFA in the HF 
group were significantly increased in comparison with 
the NC group, except for HDL-C. Treatment with CS and 
fenofibrate for six weeks in addition to the high-fat emul-
sion led to a diminution of these lipid parameters signifi-
cantly (P < 0.001). In addition, the interventions improved 
the HDL-C levels (Table1).

Glycemic indices
Glycemic indices including fasting blood glucose and 
HOMA-IR decreased in response to CS but insulin was 
not affected by CS treatment. More details are in Addi-
tional file 1.

Hepatic mRNA expression of SREBP‑1c, ACC, PPARα, 
and CPT1
Regarding qPCR mRNA expression analysis in the 
post-treatment livers, we noticed the increased hepatic 
SREBP1c and ACC mRNA expression in the HF group 
in comparison with the NC group (Fig.  1e). Fenofibrate 
treatment significantly reduced the SREBP-1 expres-
sion in comparison with the HF group (p < 0.05). Hence, 
CS treatment could significantly and more effectively 

Fig. 1  Effect of Capparis spinosa fruit extract and fenofibrate on the body weight (a), liver weight (b), liver index (c), liver TG content (d), sterol 
regulatory element-binding protein 1c (SREBP1c) (e), acetyl-CoA carboxylase (ACC) (f), peroxisome proliferator-activated receptor α (PPARα) (g), 
carnitine palmitoyltransferase 1 (CPT1) (h) mRNA expression in NASH model rats during 12 weeks of treatment. Bars represent the mean ± SD of 
the variables in each group (n = 8). NC, normal control; HF, high fat; CS, Capparis spinosa; FENO, fenofibrate. *p < 0.05; **p < 0.01; ***p < 0.001 and 
ns: nonsignificant. I Significantly different from NC at end of week 6; II Significantly different from NC after 12 weeks and III significantly different 
between NC, HF + FENO, and HF + CS vs. HF at end of week 12 (p < 0.001)

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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than fenofibrate reduce the elevated mRNA expression 
of SREBP-1c following 12  weeks of high-fat emulsion 
feeding (p < 0.001). Based on Fig. 1f, while a considerable 
reduction in the hepatic mRNA expression of ACC was 
found in the CS-treated rats (p < 0.001), it was not influ-
enced considerably in the fenofibrate group in compari-
son with the HF group.

The high-fat emulsion feeding did not change the 
mRNA expression of PPARα and CPT1 and no consid-
erable difference between the NC group. 6 weeks of the 
intervention with PPARα agonist fenofibrate improved 
the hepatic mRNA levels of PPARα and its downstream 
target gene CPT1 considerably compared to the HF 
group (Fig.  1g). Thus, a considerable impact of CS on 
PPARα expression was not seen. Based on Fig. 1h, though 
the CPT1 expression answering to CS treatment was not 
as much as fenofibrate, it was considerably regarded in 
comparison with the HF group (p < 0.001) (Fig. 2).

Discussion
In this study, we evaluated that CS improves non-alco-
holic steatohepatitis through down-regulating SREBP-
1c and a PPARα-independent pathway in high-fat 
diet-fed rats. Traditional herbal medicine has recently 
drawn much attention to the treatment of human dis-
eases, including fatty liver [14–16]. We observed signifi-
cant improvement in steatosis and triglyceride content 
of the liver tissue of the HF-fed rats treated with the 
CS (Fig. 2). A major predisposing factor in the pathogen-
esis of steatosis and triglyceride accumulation in the liver 
is insulin resistance which is associated with increased 
flux of fatty acid from adipose tissue to the liver [3]. In 

our study, the treatment of high fat-fed rats with CS 
decreased the HOMA-IR index which can describe the 
observed decrease in serum-free fatty acid in these ani-
mals. These findings indicate the protective and benefi-
cial therapeutic effects of CS on liver damages associated 
with NASH. In comparison with CS, which improved 
glycemic parameters in our NASH model, fenofibrate 
did not represent beneficial effects on these parameters. 
This difference suggests that CS and fenofibrate may 
involve distinct mechanisms to improve NASH. How-
ever, in a previous study, we showed an important part 
of these mechanisms in which we observed that FGF21 
increased in response to CS treatment thereby reducing 
steatosis, inflammation, and fibrosis in the NASH animal 
model [17]. To more elucidate the mechanism by which 
CS ameliorates steatosis, we analyzed the CS effects on 
the expression of the key regulatory genes of hepatic fat 
content. Among the involved genes, we investigated the 
changes in PPARα, CPT-1, SREBP-1c, and ACC expres-
sion. SREBP-1c is a crucial transcription factor involved 
in the regulation of lipid metabolism in the liver. There is 
credible evidence that a high-fat diet activates SREBP1c, 
and this activation plays an important role in the devel-
opment and progression of NAFLD. Therefore, inhibition 
of SREBP1c is considered a therapeutic target for pre-
venting and treatment of NAFLD [18, 19]. In the present 
study, high-fat diet feeding induced SREBP-1c while CS 
treatment inhibited its expression in our NASH model. 
These findings suggest the down-regulation of SREBP1c 
expression as an underlying mechanism by which CS can 
ameliorate NASH. To confirm the effect of CS on SREBP-
1c function, we investigated the expression of acetyl-CoA 

Table 1  Effect of daily administration of CS (20 mg/kg) and fenofibrate (100 mg/kg) on Serum biochemistry parameters of fatty liver 
rats

Values are expressed as the mean ± SD of parameters analyzed by one-way ANOVA and Tukey post hoc tests (n = 7 in each group)

AST aspartate aminotransferase, ALT alanine aminotransferase, TG triacylglycerol, TC total cholesterol, HDL-c high-density lipoprotein cholesterol, LDL-c low-density 
lipoprotein cholesterol, FFA free fatty acid, FBS fasting blood glucose, HOMA-IR homeostatic model assessment for insulin resistance, NC normal control, HF high fat, CS 
capparis spinosa, FENO fenofibrate

Parameters NC HF HF + FENO HF + CS P-Value

HF VS. NC HF + FENO VS. HF HF + CS VS. HF HF + CS VS. 
HF + FENO

AST (U/L) 36.21 ± 4.15 91.00 ± 18.06 73.41 ± 7.14 47.00 ± 5.11  < 0.001 0.0117  < 0. 001 0. 002

ALT (U/L) 28.75 ± 3.93 73.12 ± 6.43 51.68 ± 11.17 38.38 ± 5.72  < 0.001 0.0047  < 0. 001 0.0244

TG (mg/dl) 44.57 ± 8.14 115.10 ± 16.32 38.29 ± 09.66 48.25 ± 07.13  < 0.001  < 0. 001  < 0. 001 ns

TC (mg/dl) 71.57 ± 2.63 125.12 ± 7.59 83.37 ± 11.04 82.44 ± 7.90  < 0.001  < 0. 001  < 0. 001 ns

HDL-c (mg/dl) 44.00 ± 2.82 27.71 ± 5.03 32.86 ± 7.84 37.75 ± 4.68  < 0.001 ns 0.0071 ns

LDL-c (mg/dl) 25.66 ± 3.33 71.40 ± 7.25 48.06 ± 11.57 35.83 ± 6.51  < 0.001  < 0. 001  < 0. 001 0.0041

FFA (mg/dl) 9.99 ± 3.04 29.52 ± 4.37 36.63 ± 6.08 19.86 ± 4.01  < 0.001  < 0. 001 0.0014  < 0. 001

FBG (mg/dl) 105.70 ± 7.54 254.30 ± 8.95 160.1 ± 20.22 120.10 ± 8.72  < 0.001  < 0. 001  < 0. 001  < 0. 001

Insulin (mIU/L) 3.68 ± 1.07 3.079 ± 1.088 5.744 ± 0.79 3.327 ± 1.53 ns 0.0012 ns 0.0033

HOMA-IR 0.96 ± 0.26 1.925 ± 0.68 2.268 ± 0.41 1.04 ± 0.49 0.0059 ns 0.0130 0. 005
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carboxylase (ACC), as a downstream target of this tran-
scription factor, in response to CS. Previous studies have 
shown that inhibition of ACC can significantly ameliorate 
fatty liver. Thus, pharmacologic inhibition of ACC is con-
sidered an attractive strategy for NAFLD treatment [20]. 
However, it has also been reported that ACC inhibition 

might result in hypertriglyceridemia through decreasing 
polyunsaturated fatty acids which further led to SREBP1 
induction and decreased PPARα and CPT1 activity [21]. 
Our results demonstrated that CS treatment could down-
regulate ACC expression in HF-fed rats with a fatty liver 
that was associated with a decrease in plasma TG.

Fig. 2  Upper panel: Macroscopic observation of the livers of the HF group showed a grossly larger and beige in color compared with the NC group. 
Lower panel: Representative images of hematoxylin–eosin-stained sections of liver tissue in different groups at the end of treatments with 100X 
magnification. A: accumulation of RBCs; I: inflammation; S: steatosis. NC normal control, HF high fat, CS Capparis spinose, FENO fenofibrate
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PPARα is a dominant transcription factor in the liver, 
regulating numerous pathways involved in lipid metabo-
lism including fatty acid activation, transport of fatty 
acid to the mitochondria, β-oxidation, and lipogenesis 
[22, 23]. There is growing evidence that indicates PPARα 
activation can hinder fatty liver development. Hence, 
pharmacologic PPARα agonists such as fenofibrate are 
proposed as therapeutic options for NAFLD [24, 25]. In 
our study, HF feeding did not change PPARα expression 
as compared to the NC rats. Following the previous stud-
ies [26, 27], fenofibrate treatment increased PPARα gene 
expression. However, we did not find a significant altera-
tion in PPARα gene expression in response to CS treat-
ment in HF-fed rats. This finding suggests that alternative 
mechanisms independent of PPARα expression might be 
involved in the observed CS effects.

For further investigation of the PPARα pathway in stea-
tosis alleviation by the CS, we evaluated CPT1 expression 
as a target gene of PPARα. As a PPARα agonist, fenofi-
brate significantly increased CPT1 expression. Likewise, 
our results indicated that CS treatment could signifi-
cantly up-regulate CPT1 expression in HF-fed rats. But, 
considering the non-significant effect of CS on PPARα 
expression, it seems that alternative pathways other than 
PPARα such as the AMPK pathway might be involved in 
the CS-induced CPT1 expression.

ALT and AST are considered the most sensitive and 
specific indicators of hepatocellular injury [3, 28, 29]. 
We found high levels of these enzymes in the HF group 
while the administration of CS reduced the elevated 
serum levels of ALT and AST. Following the decrease in 
liver enzymes, we found CS markedly diminished the fat 
deposition and lipid accumulation in liver tissues based 
on histopathological evaluations. Our results confirmed 
that CS administration can ameliorate body weight, liver 
weight, and liver index in high fat-fed rats.

Conclusion
This study indicated that therapy with CS extract through 
the molecular mechanism, markedly improves hepatic 
lipid accumulation and steatohepatitis in NASH model 
rats and these beneficial effects were comparable to 
fenofibrate effects.

Limitations
This study has not determined which of the active com-
pounds of the CS is responsible for these effects, and it is 
necessary to examine in future studies.
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