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Abstract

Point-scanning imaging systems are among the most widely used tools for high-resolution cellular 

and tissue imaging, benefitting from arbitrarily defined pixel sizes. The resolution, speed, sample 

preservation, and signal-to-noise ratio (SNR) of point-scanning systems are difficult to optimize 

simultaneously. We show these limitations can be mitigated via the use of Deep Learning-based 
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supersampling of undersampled images acquired on a point-scanning system, which we term 

point-scanning super-resolution (PSSR) imaging. We designed a “crappifier” that computationally 

degrades high SNR, high pixel resolution ground truth images to simulate low SNR, low-

resolution counterparts for training PSSR models that can restore real-world undersampled 

images. For high spatiotemporal resolution fluorescence timelapse data, we developed a “multi-

frame” PSSR approach that utilizes information in adjacent frames to improve model predictions. 

In conclusion, PSSR facilitates point-scanning image acquisition with otherwise unattainable 

resolution, speed, and sensitivity. All the training data, models, and code for PSSR are publicly 

available at 3DEM.org.

Editor’s summary—Point-scanning super-resolution imaging uses deep learning to 

supersample undersampled images and enable time-lapse imaging of subcellular events. An 

accompanying “crappifier” rapidly generates quality training data for robust performance.

Introduction

An essential tool for understanding the spatiotemporal organization of biological systems, 

microscopy is nearly synonymous with biology itself. Microscopes suffer from the so-called 

“eternal triangle of compromise”, which dictates that image resolution, illumination 

intensity (and consequent sample damage), and imaging speed are all in tension with one 

another. In other words, it is impossible to optimize one parameter without compromising 

another. This is particularly problematic for point-scanning systems, e.g. scanning electron 

(SEM) and laser scanning confocal (LSM) microscopes, for which higher resolution images 

require higher numbers of sequentially acquired pixels to ensure proper sampling, thus 

increasing the imaging time and sample damage in direct proportion to the image resolution. 

Nonetheless, point-scanning systems remain perhaps the most common imaging modality in 

biological research due to their versatility and ease of use. Thus, the ability to effectively 

supersample undersampled point-scanning microscope images could be transformative.

Deep learning (DL) has been extensively used to “supersample” the pixels in 

computationally downsampled digital photographs1–4. For microscopy, DL has long been 

established as an invaluable method for image analysis and segmentation5. More recently, 

DL has been employed with spectacular results in restoring relatively low SNR or resolution 

acquisitions6–11. DL has also been used for accelerating single-molecule localization 

microscopy11–13. Similarly, low resolution or low SNR EM data has been restored using 

DL9,14–16. Finally, DL has been used to restore blurry, low optical resolution images to 

sharp, high “optical” resolution images via either supervised training of fluorescence 

samples11,17,18, or via more generalizable deconvolution algorithms19,20.

Increasing the xy pixel resolution of real-world undersampled point-scanning microscope 

images presents a unique set of both challenges and opportunities: Undersampling point-

scanning microscope images in the xy-plane while maintaining a constant pixel dwell time 

increases the imaging speed and decreases the sample damage, but also results in not just a 

lower pixel resolution image, but also lower signal-to-noise (SNR), since the total photons or 

electrons detected are in this case proportional to the number of pixels collected. Thus, 

restoring undersampled point-scanning microscope images with DL requires simultaneous 
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supersampling and denoising, a challenging task that requires large amounts of high quality 

training data.

To accomplish this, we developed a DL-based training workflow that uses a novel 

“crappifier” that simultaneously injects noise while downsampling the pixel resolution of 

high-resolution training data. This crappifier circumvents the need to acquire real-world 

image pairs for training, which is difficult and expensive for large datasets, and is practically 

impossible for live samples with quickly moving structures (e.g. subcellular organelles). 

These crappified images are then paired with their high-resolution counterparts to train 

models that can successfully supersample and denoise real-world undersampled, noisy 

images. Remarkably, we found crappifiers employing additive gaussian noise performed best 

for training models that effectively restore real-world images. We also found that DL 

restored fluorescence timelapse images of fast-moving subcellular organelles suffer from 

flickering artifacts when restoring very low resolution, low SNR images. To address this, we 

developed a “multi-frame” approach for high spatiotemporal resolution timelapse data, 

which reduces flickering artifacts and generates more accurate super-resolution images by 

using information from neighboring video frames in timelapse acquisitions. Thus, our Point-

Scanning Super-Resolution (PSSR) software provides a practical and powerful framework 

for simultaneously increasing the sensitivity, pixel resolution, “optical” resolution, and 

acquisition speed of any point-scanning imaging system.

Results

Three-dimensional electron microscopy (3DEM) is a powerful technique for determining the 

volumetric ultrastructure of tissues. In addition to serial section EM (ssEM)21 and focused 

ion beam SEM (FIB-SEM)22, one of the most common tools for high throughput 3DEM 

imaging is serial blockface scanning electron microscopy (SBFSEM)23, wherein a built-in 

ultramicrotome iteratively cuts ultrathin sections off the surface of a blockface after it was 

imaged with a scanning electron probe. This technology facilitates relatively automated, 

high-throughput 3DEM imaging with minimal post-acquisition image alignment. 

Unfortunately, higher electron doses cause sample charging, which renders the sample too 

soft to section reliably (Supplementary Video 1). Furthermore, the extremely long imaging 

times and large file sizes inherent to high-resolution volumetric imaging present a significant 

bottleneck. For these reasons, most 3DEM datasets are acquired with sub-Nyquist pixel 

sampling (e.g. pixel sizes ≥ 4nm), which precludes the reliable detection or analysis of 

smaller subcellular structures, such as ~35nm presynaptic vesicles. While low pixel 

resolution 3DEM datasets can be suitable for many analyses (e.g. cellular segmentation), the 

ability to mine targeted regions of pre-existing large datasets for higher resolution 

ultrastructural information would be extremely valuable. Unfortunately, many 3DEM 

imaging approaches are destructive, and high-resolution ssEM can be slow and laborious. 

Thus, the ability to increase the pixel resolution of these 3DEM datasets post hoc is highly 

desirable.

Frustrated by our inability to perform SBFSEM imaging with the desired 2nm pixel 

resolution and SNR necessary to reliably detect presynaptic vesicles, we decided to test 

whether a deep convolutional neural net model (PSSR) trained on 2nm pixel high-resolution 
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(HR) images could “super-resolve” 8nm pixel low-resolution (LR) images. We also wished 

to enable imaging with equal pixel dwell times as the HR images, facilitating a 16x increase 

in imaging speed, but at the cost of a 16x decrease in detected electrons, significantly 

lowering the SNR. Thus, our PSSR model would need to simultaneously increase the SNR 

and pixel resolution of the LR images. To train a DL model for this purpose, a very large 

number of perfectly aligned high- and low-resolution image pairs would be required. 

However, EM imaging of ultrathin sections results in non-linear distortions that are 

impossible to predict or control. Therefore, it is extremely difficult and sometimes 

impossible to perfectly align two sequential acquisitions of the same field of view. 

Furthermore, sequentially acquiring a large enough number of images for training data is 

time-intensive and cost-prohibitive. Thus, instead of manually acquiring high- and low-

resolution image pairs for training, we opted to generate training data by computationally 

“crappifying” high-resolution images to be paired with their high-resolution counterparts.

We hypothesized that to simulate real-world, low pixel resolution acquisitions with lower 

electron doses, our “crappifier” must add noise while also decreasing the pixel resolution. To 

create a suitable crappifier, we performed an ablation study, wherein we compared the 

performance of models trained with image pairs generated with different crappifiers, while 

all other factors were kept constant (Fig. 1a–e – see Methods for full details). Specifically, 

we compared models crappified with no noise (i.e., downsampling only), Poisson noise, 

Gaussian noise (independently and identically distributed), and Additive-Gaussian 

distributed noise, respectively. Among all models trained with crappified pairs, “Additive-

Gaussian” yielded the best results. The Additive-Gaussian model also outperformed the 

model trained with manually acquired training pairs (“Real-world”) across all metrics. We 

further compared “Additive-Gaussian” with “Additive-Gaussian (~80x)”, where we used 

approximately 80x more training data, which interestingly did not significantly increase the 

Peak-Signal-to-Noise Ratio (PSNR) or Structural Similarity (SSIM) measurements, but did 

further increase the resolution as measured by Fourier Ring Correlation (FRC) analysis. 

Notably, it would have taken >480 hours of imaging time, and cost >$16,000 to acquire the 

same amount of real-world training data pairs as was used in our 80x Additive-Gaussian 

model. But by using pre-existing gold standard high-resolution data that was already 

acquired for separate experimental purposes, we were able to generate training data in only 2 

hours, at a cost of only $16 (Fig. 1f). This highlights the utility of the crappifier method, 

which facilitates the generation of much larger amounts of training data at a fraction of the 

cost. Therefore, for our training data we “crappified” ~130GB training data of 2nm pixel 

transmission-mode scanning electron microscope (tSEM24) images of 40nm ultrathin 

sections of rat CA1 hippocampal tissue. We then trained our image pairs with a ResNet-

based U-Net architecture (Fig. 2a, Extended Data Fig. 1 – see Methods and Tables for full 

details). Using a Mean Squared Error (MSE) loss function yielded excellent results as 

determined by visual inspection as well as PSNR, SSIM, and FRC analyses. Overall, the 

PSSR-restored images from our semi-synthetic pairs contained more high-frequency 

information than our LR images, and yet displayed less noise than both our LR and HR 

images, making it easier to identify smaller objects, such as 35nm presynaptic vesicles (Fig. 

2b).
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We next tested whether our PSSR model was effective on real-world LR acquisitions. DL-

based models are notoriously sensitive to variations in training versus testing data, usually 

precluding the use of models generated from training images acquired in one condition on 

images acquired in another (i.e. data generated using a different sample preparation 

technique, type, or on a different microscope). Similarly, there is a risk that models trained 

on artificially injected noise will learn how to remove artificial noise yet fail to remove real-

world noise.

Our training images were generated from 40nm sections of rat CA1 tissue acquired with a 

tSEM detector. But for our testing data, we acquired HR and LR images of 80nm sections of 

dentate gyrus tissue from a mouse brain, imaged with a backscatter detector. Based on 

several metrics including PSNR, SSIM, FRC (Fig. 2b–c), NanoJ-SQUIRREL error mapping 

analysis (Extended Data Fig. 2)25, visual inspection, and comparison to the Block-Matching 

and 3D filtering (BM3D) denoising method (Extended Data Fig. 3)26, we found PSSR 

successfully restored real-world LR images (Fig. 2c). Thus, our PSSR model is effective for 

real-world data, and is not restricted to data acquired in the exact same fashion as the 

training set.

We next asked whether we could sufficiently restore 8nm SBFSEM datasets to 2nm using 

PSSR, since high quality 2nm SBFSEM imaging is currently difficult or impossible for us to 

achieve. Using the same PSSR model described above we were able to restore an 8nm pixel 

SBFSEM 3D dataset to 2nm (Fig. 3a, Supplementary Video 2). Remarkably, our PSSR 

model also worked very well on mouse, rat, and fly samples imaged on four different 

microscopes in four different labs (Fig. 3a–d). In addition to our SBFSEM and SEM 

imaging systems, PSSR processing appeared to restore images acquired on a ZEISS FIB-

SEM (from the Hess lab at Janelia Farms, Fig. 3c, Supplementary Video 3) and a Hitachi 

Regulus FE-SEM (from the Kubota lab at National Institute for Physiological Sciences, Fig. 

3d). PSSR processing also performed well on a 10×10×10nm resolution FIB-SEM fly brain 

dataset, resulting in a 2×2×10nm resolution dataset with higher SNR and resolution (Fig. 

3b). Thus, PSSR can provide 25x super-resolution with useful results, effectively increasing 

the lateral resolution and speed of FIB-SEM imaging by a factor of at least 25x.

The major concern with DL-based image processing is the possibility of false positives (aka 

“hallucinations”)5,9,27,28. To further test the accuracy and utility of the PSSR output within a 

more concrete, biological context, we next randomized LR-Bilinear, LR-PSSR, and HR 

images, then distributed them to two blinded human experts for manual segmentation of 

presynaptic vesicles, which are difficult to detect with 8nm pixel resolution images (see 

Supplementary Notes and Methods for full details). We found the LR-PSSR segmentation 

was significantly more accurate than the LR-Bilinear (Fig. 3e). Interestingly, while the LR-

PSSR output significantly reduced false negatives, the LR-PSSR output had a slightly higher 

number of “false positives” than the LR-Bilinear. However, the variance between the LR-

PSSR and HR results was similar to the variance between the two expert human results on 

HR data (Fig. 3e), which is the current gold standard. Notably, we found PSSR images were 

much easier to segment - a major bottleneck for analyzing 3DEM datasets (Supplementary 

Video 4).
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Similar to SBFSEM, laser scanning confocal microscopy also suffers from a direct 

relationship between pixel resolution and sample damage (i.e. phototoxicity/

photobleaching)29. This can be a major barrier for cell biologists who wish to study the 

dynamics of smaller structures such as mitochondria, which regularly undergo fission and 

fusion, but also show increased fission and swelling in response to phototoxicity 

(Supplementary Video 5, Extended Data Fig. 4).

Laser scanning microscopy also suffers from an inverse relationship between pixel 

resolution and imaging speed, making live cell imaging of faster processes (e.g. organelle 

motility in neurons) challenging if not impossible. Nonetheless, Nyquist sampling criteria 

often necessitates the use of smaller pixels to resolve smaller structures – this is particularly 

true for higher resolution imaging methods that depend on post-processing pixel 

reassignment and/or deconvolution. Thus, we sought to determine whether PSSR might 

enable acquisitions with decreased pixel resolution in order to optimize the imaging speed 

and SNR of live laser scanning confocal microscope imaging. Importantly, to train a DL 

model using image pairs of mitochondria in live cells is virtually impossible because they 

are constantly moving and changing their shape. Thus, our “crappification” approach is 

particularly useful generating training data for live cell imaging datasets.

To generate our ground truth training dataset we used a ZEISS LSM 880 in Airyscan mode 

(see Online Methods for more details). Similar to our EM model, an ablation study that 

compared crappifiers with different noise distributions was conducted (Extended Data Fig. 5 

– See Methods for full details). We found the crappifier injected with Salt & Pepper and 

Additive-Gaussian noise yielded overall best performance. For the real-world LR test data, 

we acquired images in confocal mode at 16x lower pixel resolution with a 2.5 AU pinhole 

on a PMT confocal detector, without any additional image processing. To ensure minimal 

phototoxicity, we also decreased the laser power for our LR acquisitions by a factor of 4 or 5 

(see Tables 1–2 for more details), resulting in a net laser dose decrease of ~64–80x. Thus, 

our PSSR model was trained to restore low-resolution, low SNR, low pixel resolution 

confocal images to high SNR, high pixel resolution, high “optical” (i.e. deblurred) resolution 

Airyscan-equivalent image quality. To start, we trained on live cell timelapse acquisitions of 

mitochondria in U2OS cells. As expected, imaging at full resolution resulted in significant 

bleaching and phototoxicity-induced mitochondrial swelling and fission (Supplementary 

Video 5). However, the LR acquisitions were extremely noisy and pixelated due to 

undersampling. However, the LR scans showed far less photobleaching (Extended Data Fig. 

4). Similar to our EM data, LR-PSSR images had higher SNR and resolution compared to 

LR acquisitions, as determined by testing on both semi-synthetic and real-world low- versus 

high-resolution image pairs. Notably, LR-PSSR images also had higher SNR than HR 

images (Fig. 4d).

We observed significant “flickering” in LR-PSSR timelapses (Supplementary Video 6, 

Figure 4b) due to noise-induced variations in signal detection and image reconstruction, 

causing both false breaks and merges in mitochondrial networks (Fig. 4c, white boxes, Fig. 

4d, red and yellow arrows), making it impossible to accurately detect bona fide 

mitochondrial fission or fusion events. This temporal inconsistency was reflected in 

neighboring-frame cross-correlation analysis (Fig. 4b, see Methods for full details). One 
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strategy for increasing the SNR of images is to average multiple scans, e.g. “frame 

averaging” – this method can also be used to reduce “flickering” effects in videos (Fig. 4b). 

However, this approach is problematic for live imaging of quickly moving objects: If objects 

move greater than half the distance of the desired spatial resolution between individual 

frames, temporal Nyquist criteria are no longer satisfied, resulting in blurring artifacts and 

loss of both spatial and temporal resolution30,31. This loss of information is compounded if 

spatial Nyquist criteria are also unmet, i.e. when subsampling pixels, as is the case in LR 

acquisitions. However, although simple frame averaging approaches may lose resolution in 

exchange for higher SNR, more sophisticated computational approaches can take advantage 

of multi-frame acquisitions to increase the resolution of individual frame 

reconstructions32–35.

We hypothesized that the PSSR network could learn the additional information contained in 

sequential video frames, even when grossly undersampled in both space and time, and could 

thus be used to reduce flickering artifacts, while also improving the restoration accuracy and 

resolution of PSSR-processed timelapse videos. To test this hypothesis, we exploited the 

multi-dimensional capabilities of our PSSR Res-UNet architecture by training on 5 

sequential timepoint inputs for each single timepoint output (multi-frame PSSR, or “PSSR-

MF”, Fig. 4a). As measured by PSNR, SSIM, FRC, and NanoJ-SQUIRREL error mapping, 

as well as compared with the BM3D denoising algorithm, PSSR-MF processing of LR 

acquisitions (LR-PSSR-MF) showed significantly increased resolution and SNR compared 

to the raw input (LR), 16x bilinear interpolated input (LR-Bilinear), and single-frame PSSR 

(LR-PSSR-SF) (Fig. 4d, 4f, Extended Data Fig. 7–8). Since it is conceivable that simply 

averaging 5 frames would yield similar improvements due to reduced flickering and 

increased SNR, we tested whether using a 5-frame rolling average over the LR-PSSR-SF 

output (LR-PSSR-SF-RA) could yield similar results to LR-PSSR-MF. Although LR-PSSR-

SF-RA output displayed reduced flickering (Fig. 4b–c), we found that LR-PSSR-SF-RA 

performed significantly worse than LR-PSSR-MF in terms of both resolution and accuracy 

(Fig. 4c, Extended Data Fig. 6, Supplementary Video 6). We also compared PSSR models 

with Content-Aware Image Restoration (CARE), a gold-standard DL-based image 

restoration algorithm (Fig. 4b–c, Extended Data Fig. 6 – see Methods for full details). 

Specifically, CARE trained results (LR-CARE) and its Rolling Average post-processed 

version (LR-CARE-RA) were compared with multi-frame PSSR (LR-PSSR-MF), singe-

frame PSSR (LR-PSSR-SF) and its Rolling Average post-processed results (LR-PSSR-SF-

RA). As expected, the LR-CARE and LR-PSSR-SF results were similar. However, we found 

the multi-frame PSSR approach yielded better results than CARE, both before and after the 

Rolling Average processing (Extended Data Fig. 6). We therefore concluded multi-frame 

PSSR significantly enhances the fidelity and resolution of LR images beyond any standard 

frame-by-frame image restoration approach.

For all time-lapse PSSR we used PSSR-MF and refer to it as PSSR for the remainder of this 

article. The improved speed, resolution, and SNR enabled us to detect mitochondrial fission 

events that were not detectable in the LR or LR-Bilinear images (yellow arrows, Fig. 4e, 

Supplementary Video 7). Additionally, the relatively high laser dose during HR acquisitions 

raises questions as to whether observed fission events are artifacts of phototoxicity. We 

validated the accuracy of our fission event detection with semi-synthetic data quantified by 
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two expert humans (Fig. 4g–h). We found a significant improvement in detecting fission 

events with relatively minor increases in false positives (Fig. 4h–k). We again found the 

variance between the PSSR and HR results was similar to the variance between the two 

expert human results on HR data. Thus, our PSSR model provides an opportunity to detect 

very fast mitochondrial fission events with fewer phototoxicity-induced artifacts than 

standard high-resolution Airyscan imaging using normal confocal optics and detectors.

As mentioned above, in addition to phototoxicity issues, the slow speed of HR scanning 

confocal imaging often results in temporal undersampling of fast-moving structures such as 

motile mitochondria in neurons (Supplementary Fig. 1, Supplementary Videos 8–9). 

However, relatively fast LR scans do not provide sufficient pixel resolution or SNR to 

resolve fission or fusion events, or individual mitochondria when they pass one another 

along a neuronal process, which can result in faulty analysis or data interpretation 

(Supplementary Video 8). Thus, we next tested whether PSSR provided sufficient restoration 

of undersampled time-lapse imaging of mitochondrial trafficking in neurons.

As measured by PSNR, SSIM, FRC, and NanoJ-SQUIRREL error mapping, the overall 

resolution and SNR improvement provided by PSSR enabled us to resolve adjacent 

mitochondria as well as fission and fusion events (Fig. 5a–c, Extended Data Fig. 9–10, 

Supplementary Video 9). Since our LR acquisition rates are 16x faster than HR, 

instantaneous motility details were preserved in LR-PSSR whereas in HR images they were 

lost (Fig. 5d, Supplementary Fig. 1, Supplementary Video 9). The overall total distance 

mitochondria travelled in neuronal processes was the same for both LR and HR (Fig. 5f). 

However, we were able to obtain unique information about how they translocate when 

imaging at a 16x higher frame rate (Fig. 5g). Interestingly, a larger range of velocities was 

identified in LR-PSSR than both LR and HR images. Overall, LR-PSSR and HR provided 

similar values for the percent time mitochondria spent in motion (Fig. 5h). Smaller distances 

travelled were easier to detect in our LR-PSSR images, and therefore there was an overall 

reduction in the percent time mitochondria spent in the paused position in our LR-PSSR data 

(Fig. 5i). Taken together, these data show PSSR provides a means to detect critical biological 

events that would not be possible with conventional HR or LR imaging.

Discussion

We have demonstrated DL-based pixel super-resolution can be a viable strategy of particular 

value for both optical and electron point-scanning microscopes. Acquiring suitably aligned 

pairs of high- and low-quality images for training is incredibly expensive and difficult (Fig. 

1f). Thus, we introduced a novel “crappifier” for generating noisy, low-resolution training 

data from high-resolution, high SNR ground truth data. This enables the use of large, pre-

existing gold standard datasets for training new models without acquiring any new data. We 

hope the open-source availability of our crappifier will be reciprocated by open-source 

sharing of high-quality imaging data, which can then be used to train new DL models. We 

did not fully explore all possibilities for a crappifier and believe this is an open and fruitful 

area for future studies.
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We discovered that DL-based restoration of noisy timelapses suffers from temporal 

inconsistency (“flickering”) artifacts due to noise-induced randomness in pixel values 

between frames. To address this, we introduced a multi-frame super-resolution approach that 

leverages the information in previous and future timepoints to better infer the frame of 

interest. We found this multi-frame approach not only reduces flickering artifacts, but also 

provides better overall image restoration for each independent frame. Notably, this approach 

would be impossible without the crappifier, which provides the ability to generate training 

data from videos of rapidly moving structures in live cells for which it is impossible to 

acquire perfectly aligned image pairs.

Any output from a DL super-resolution model is a prediction, is never 100% accurate, and is 

always highly dependent on sufficient correspondence between the training versus 

experimental data5,9,28,36. Whether the level of accuracy of a given model for a given dataset 

is satisfactory is ultimately dependent on the tolerance for error in the measurement being 

made. For example, our EM PSSR model was validated by segmenting vesicles in 

presynaptic boutons. But we did not rule out the possibility that other structures or regions in 

the same sample may not be restored by our model with the necessary accuracy for any 

arbitrary measurement. Thus, it is essential to validate the accuracy of the model for the 

specific task at hand before investing further. Similarly, we observed that no single 

performance metric reliably captures the “best” model. Thus, model performance must be 

evaluated by a combination of metrics, segmentation, and, of course, visual inspection by 

human experts. An important future direction may be to develop better metrics for 

evaluating models.

Though the accuracy of DL approaches such as PSSR is technically imperfect, real-world 

limitations on acquiring ground truth data may render PSSR the best option. Our results 

show the PSSR approach can in principle enable higher speed and resolution imaging with 

the fidelity necessary for biological research. The ability to use DL to supersample 

undersampled images provides an opportunity that extends to any point-scanning system, 

including ion-based imaging systems37,38 or high-resolution cryoSTEM39.

For future uses of PSSR, we propose an acquisition scheme wherein a relatively limited 

number of “ground truth” HR images are acquired for fine-tuning pre-trained models. More 

importantly, the performance of generalized, unsupervised or “self-supervised” denoising 

approaches7,10 as well as DL-enabled deconvolution approaches19,20 suggests we may one 

day be able to generate a more generalized model for a specific imaging system, instead of a 

specific sample type.

Structured illumination microscopy, single-molecule localization microscopy, and pixel 

reassignment microscopy demonstrate the power of configuring optical imaging schemes 

with a specific post-processing computational strategy in mind. The power of deep 

convolutional neural networks for post-processing image data presents a new opportunity for 

redesigning imaging systems to exploit these capabilities to minimize costs traditionally 

considered necessary for extracting meaningful imaging data. Similarly, automated real-time 

corrections to the images and real-time feedback to the imaging hardware are now within 
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reach. This is an exciting area of active investigation in our laboratory and others (Lu Mi, 

Yaron Meirovitch, Jeff Lichtman, Aravinthan Samuel, Nir Shavit, personal communication).

Online Methods

Semi-synthetic Training Image Generation

HR images were acquired using scanning electron or Airyscan confocal microscopes. Due to 

the variance of image properties (e.g. format, size, dynamic range and depth) in the acquired 

HR images, data cleaning is indispensable for generating training sets that can be easily 

accessed during training. In this article, we differentiate the concept of “data sources” and 

“data sets”, where data sources refer to uncleaned acquired high-resolution images, while 

data sets refer to images that are generated and preprocessed from data sources. HR data sets 

were obtained after preprocessing HR images from data sources, LR data sets were 

generated from HR data sets using a “crappifier” function.

Preprocessing.—Tiles of predefined sizes (e.g. 256 × 256 and 512 × 512 pixels) were 

randomly cropped from each frame in image stacks from HR data sources. “Refection 

padding” was used if the image size in the data sources is smaller than the predefined tile 

size. All tiles were saved as separate images in .tif format, which together formed a HR data 

set.

Image Crappification.—A “crappifier” was then used to synthetically degrade the HR 

data sets to LR images, with the goal of approximating the undesired and unavoidable pixel 

intensity variation in real-world low-resolution and low SNR images of the same field of 

view directly taken under an imaging system. These HR images together with their 

corrupted counterparts served as training pairs to facilitate “deCrappification”. The 

crappification function can be simple, but it materially improves both the quality and 

characteristics of PSSR outputs.

Image sets were normalized from 0 to 1 before being 16x downsampled in pixel resolution 

(e.g. a 1000 × 1000 pixel image would be downsampled to 250 × 250 pixels). To mimic the 

image quality degradation caused by 16x undersampling on a real-world point-scanning 

imaging system, salt-and-pepper noise, and Gaussian additive noise with specified local 

variance were randomly injected into the high-resolution images. The degraded images were 

then rescaled to 8-bit for viewing with normal image analysis software.

EM Crappifier: Random Gaussian-distributed additive noise (μEM = 0,  σEM = 3) was 

injected. The degraded images were then downsampled using spline interpolation of order 1.

MitoTracker and Neuronal Mitochondria Crappifier: The crappification of MitoTracker 

and neuronal mitochondria data followed a similar procedure. Salt-and-pepper noise was 

randomly injected in 0.5% of each image’s pixels replacing them with noise, which was 

followed by the injection of random Gaussian-distributed additive noise 

(μLSM = 0,  σLSM = 5). The crappified images were then downsampled using spline 

interpolation of order 1.

Fang et al. Page 10

Nat Methods. Author manuscript; available in PMC 2021 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Data Augmentation.—After crappified low-resolution images were generated, we used 

data augmentation techniques such as random cropping, dihedral affine function, rotation, 

random zoom to increase the variety and size of our training data40.

Multi-frame Training Pairs.—Unlike imaging data of fixed samples, where we use 

traditional one-to-one high- and low-resolution images as training pairs, for time-lapse 

movies, five consecutive frames (HRi,  i ∈ t − 2,  t + 2 ) from a HR Airyscan time-lapse 

movie were synthetically crappified to five LR images (LRi,  i ∈ t − 2,  t + 2 ), which 

together with the HR middle frame at time t  HRt , form a five-to-one training “pair”. The 

design of five-to-one training “pairs” leverages the spatiotemporal continuity of dynamic 

biological behaviors. (Fig. 4a).

Crappifier comparison

EM crappifier comparison.—Four crappifiers including “No noise”, “Poisson”, 

“Gaussian” and “Additive Gaussian” were used to generate semi-synthetic training pairs 

from the same set of HR SEM images. The “No noise” crappifier simply downsampled HR 

image pixel sizes by a factor of 16x (4×4) without adding any noise, while the “Poisson”, 

“Gaussian” and “Additive Gaussian” crappifiers added random Poisson noise, random 

Gaussian noise (μEM = 0,  σEM = 0.15) and random Gaussian-distributed additive noise 

(μEM = 0,  σEM = 3) respectively, before applying pixel downsampling. “Additive Gaussian 

(~80x)” used the same crappifier as “Additive Gaussian”, but with ~80x more training data. 

We also compared the models described above with “Real-world”, a model trained with real-

world pairs, whose HR images are the same as the HR images of the semi-synthetically 

generated training pairs, but whose LR images were manually acquired at the microscope.

MitoTracker crappifier comparison.—Five crappifiers including “No noise”, “Salt & 

Pepper”, “Gaussian”, “Additive Gaussian” and “Salt & Pepper + Additive Gaussian” were 

used to generate semi-synthetic training pairs from the same set of HR Airyscan 

MitoTracker time-lapse videos. The “No noise” crappifier downsampled HR image pixel 

sizes by a factor of 16x (4×4) without adding any noise, while the “Salt & Pepper”, 

“Gaussian”, “Additive Gaussian”, and “Salt & Pepper + Additive Gaussian” crappifiers 

added random Salt & Pepper noise (0.5%), random Gaussian noise 

(μLSM = 0,  σLSM = 0.025), random Gaussian-distributed additive noise 

(μLSM = 0,  σLSM = 5), and the combination of “Salt & Pepper” and “Additive Gaussian” 

respectively, before the bilinear downsampling.

Neural Networks

Single-frame Neural Network (PSSR-SF).—A ResNet-based U-Net was used as our 

convolutional neural network for training41. Our U-Net is in the form of encoder-decoder 

with skip-connections, where the encoder gradually downsizes an input image, followed by 

the decoder upsampling the image back to its original size. For the EM data, we utilized 

ResNet pretrained on ImageNet as the encoder. For the design of the decoder, the traditional 

handcrafted bicubic upscaling filters are replaced with learnable sub-pixel convolutional 

layers42, which can be trained specifically for upsampling each feature map optimized in 
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low-resolution parameter space. This upsampling layer design enables better performance 

and largely reduces computational complexity, but at the same time causes unignorable 

checkerboard artifacts due to the periodic time-variant property of multirate upsampling 

filters43. A blurring technique44 and a weight initialization method known as “sub-pixel 

convolution initialized to convolution neural network resize (ICNR)”45 designed for the sub-

pixel convolution upsampling layers were implemented to remove checkerboard artifacts. In 

detail, the blurring approach introduces an interpolation kernel of the zero-order hold with 

the scaling factor after each upsampling layer, the output of which gives out a non-periodic 

steady-state value, which satisfies a critical condition ensuring a checkerboard artifact-free 

upsampling scheme44. Compared to random initialization, in addition to the benefit of 

removing checkerboard artifacts, ICNR also empowers the model with higher modeling 

power and higher accuracy45. A self-attention layer inspired by Zhang et al.46 was added 

after each convolutional layer.

Multi-frame Neural Network (PSSR-MF).—A similar yet slightly modified U-Net was 

used for time-lapse movie training. The input layer was redesigned to take five frames 

simultaneously while the last layer still produced one frame as output.

Training Details

Loss Function.—MSE loss was used as our loss function.

Optimization Methods.—Stochastic gradient descent with restarts (SGDR)47 was 

implemented. Aside from the benefits we are able to get through classic stochastic gradient 

descent, SGDR resets the learning rate to its initial value at the beginning of each training 

epoch and allows it to decrease again following the shape of a cosine function, yielding 

lower loss with higher computational efficiency.

Cyclic Learning Rate and Momentum.—Instead of having a gradually decreasing 

learning rate as the training converges, we adopted cyclic learning rates48, cycling between 

upper bound and lower bound, which helps oscillate towards a higher learning rate, thus 

avoiding saddle points in the hyper-dimensional training loss space. In addition, we followed 

The One Cycle Policy49, which restricts the learning rate to only oscillate once between the 

upper and lower bounds. Specifically, the learning rate linearly increases from the lower 

bound to the upper bound as the momentum decreases from its upper bound to the lower 

bound linearly. In the second half of the cycle, the learning rate fits a cosine annealing 

decreasing from the upper bound to zero while the momentum increases from its lower 

bound to the upper bound following the same annealing. This training technique achieves 

superior regularization by preventing the network from overfitting during the middle of the 

learning process, as well as enables super-convergence50 by allowing large learning rates 

and adaptive momentum.

Progressive Resizing (used for EM data only).—Progressive resizing was applied 

during the training of the EM model. Training was executed in two rounds with HR images 

scaled to xy pixel sizes of 256 × 256 and 512 × 512 and LR images scaled to 64 × 64 and 

128 × 128 progressively. The first round was initiated with an ImageNet pretrained ResU-
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Net, and the model trained from the first round served as the pre-trained model for the 

second round. The intuition behind this is it quickly reduces the training loss by allowing the 

model to see lots of images at a small scale during the early stages of training. As the 

training progresses, the model focuses more on picking up high-frequency features reflected 

through fine details that are only stored within larger scale images. Therefore, features that 

are scale-variant can be recognized through the progressively resized learning at each scale.

Discriminative Learning Rates (used for EM data only).—To better preserve the 

previously learned information, discriminative learning was applied during each round of 

training for the purpose of fine-tuning. At the first stage of training, only the parameters 

from the last layer were trainable after loading a pretrained model, which either came from a 

large-scaled trained publicly available model (i.e., pretrained ImageNet), or from the 

previous round of training. The learning rate for this stage lr1 was fixed. Parameters from all 

layers were set as learnable in the second stage. A linearly spaced learning rate range lr2 was 

applied. The learning rate gradually increased across the layers of the entire network 

architecture. The number of training epochs at each round is noted as N1,   N2 , where N1
and N2 denote the epoch number used at stage one and stage two separately (Table 3).

Best Model Preservation (used for fluorescence data only).—Instead of saving the 

last model after training a fixed number of epochs, at the end of each training epoch, PSSR 

checks if the validation loss goes down compared to the loss from the previous epoch and 

will only update the best model when a lower loss is found. This technique ensures the best 

model will not be missed due to local loss fluctuation during the training.

Elimination of Tiling Artifacts.—Testing images often need to be cropped into smaller 

tiles before being fed into our model due to the memory limit of graphic cards. This creates 

tiling edge artifacts around the edges of tiles when stitching them back to the original 

images. A Gaussian blur kernel (μtile = 0,  σtile = 1) was applied to a 10-pixel wide rectangle 

region centered in each tiling edge to eliminate the artifacts.

Technical specifications.—Final models were generated using fast.ai v1.0.55 library 

(https://github.com/fastai/fastai), PyTorch on two NVIDIA TITAN RTX GPUs. Initial 

experiments were conducted using NVIDIA Tesla V100s, NVIDIA Quadro P6000s, 

NVIDIA Quadro M5000s, NVIDIA Titan Vs, NVIDIA GeForce GTX 1080s, or NVIDIA 

GeForce RTX 2080Ti GPUs.

Evaluation Metrics

PSNR and SSIM quantification.—Two classic image quality metrics, PSNR and SSIM, 

known for their properties of pixel-level data fidelity and perceptual quality fidelity 

correspondingly, were used for the quantification of our paired testing image sets.

PSNR is inversely correlated with MSE, numerically reflecting the pixel intensity difference 

between the reconstruction image and the ground truth image, but it is also famous for poor 

performance when it comes to estimating human perceptual quality. Instead of traditional 
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error summation methods, SSIM is designed to consider distortion factors like luminance 

distortion, contrast distortion and loss of correlation when interpreting image quality51.

SNR quantification.—SNR was quantified for LSM testing images (Fig. 4b and Fig. 5a) 

by:

SNR =  
IMAX − μbg

σbg

where IMAX represents the maximum intensity value in the image, μbg and σbg represent the 

mean and the standard deviation of the background, respectively17.

Fourier-Ring-Correlation (FRC) analysis.—NanoJ-SQUIRREL25 was used to 

calculate image resolution using FRC method on real-world testing examples with two 

independent acquisitions of fixed samples (Fig. 2b–c, 4c and Fig. 5b).

Resolution Scaled Error (RSE) and Resolution Scaled Pearson’s coefficient 
(RSP).—NanoJ-SQUIRREL25 was used to calculate the RSE and RSP for both semi-

synthetic and real-world acquired low (LR), bilinear interpolated (LR-Bilinear), and PSSR 

(LR-PSSR) images versus ground truth high-resolution (HR) images. Difference error maps 

were also calculated (Extended Data Fig. 2, 7 and 10).

EM Imaging and Analysis

tSEM high-resolution training data acquisition.—Tissue from a perfused 7-month 

old Long Evans male rat was cut from the left hemisphere, stratum radiatum of CA1 of the 

hippocampus. The tissue was stained, embedded, and sectioned at 45nm using previously 

described protocols52. Sections were imaged using a STEM detector on a ZEISS Supra 40 

scanning electron microscope with a 28kV accelerating voltage and an extractor current of 

102μA (gun aperture 30μm). Images were acquired with a 2nm pixel size and a field size of 

24576 × 24576 pixels with Zeiss ATLAS. The working distance from the specimen to the 

final lens was 3.7mm, and the dwell time was 1.2μs.

EM testing sample preparation and image acquisition.—EM data sets were 

acquired from multiple systems at multiple institutions for this study.

For our testing ground truth data, paired LR and HR images of the adult mouse hippocampal 

dentate gyrus middle molecular layer neuropil were acquired from ultrathin sections (80nm) 

collected on silicon chips and imaged in a ZEISS Sigma VP FE-SEM21. All animal work 

was approved by the Institutional Animal Care and Use Committee (IACUC) of the Salk 

Institute for Biological Studies. Samples were prepared for EM according the NCMIR 

protocol53. Pairs of 4 × 4μm images were collected from the same region at pixels sizes of 

both 8nm and 2nm using Fibics ATLAS software (InLens detector; 3kV; dwell time, 5.3μs; 

line averaging, 2; aperture, 30μm; working distance, 2mm).

Serial block face scanning electron microscope images were acquired with a Gatan 3View 

system installed on the ZEISS Sigma VP FE-SEM. Images were acquired using a pixel size 
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of 8nm on a Gatan backscatter detector at 1kV and a current of 221pA. The pixel dwell time 

was 2μs with an aperture of 30μm and a working distance of 6.81mm. The section thickness 

was 100nm and the field of view was 24.5 × 24.5μm.

Mouse FIB-SEM data sample preparation and image acquisition settings were previously 

described in the original manuscript the datasets were published22. Briefly, the images were 

acquired with 4nm voxel resolution. We downsampled the lateral resolution to 8nm, then 

applied our PSSR model to the downsampled data to ensure the proper 8-to-2nm 

transformation for which the PSSR was trained.

Fly FIB-SEM data sample preparation and image acquisition settings were previously 

described in the original manuscript the datasets were published54. Briefly, images were 

acquired with 10nm voxel resolution. We first upsampled the xy resolution to 8nm using 

bilinear interpolation, then applied our PSSR model to the upsampled data to ensure the 

proper 8-to-2nm transformation for which the PSSR model was originally trained.

The rat SEM data sample was acquired from an 8-week old male Wistar rat that was 

anesthetized with an overdose of pentobarbital (75 mg kg−1) and perfused through the heart 

with 5 – 10ml of a solution of 250 mM sucrose 5mM MgCl2 in 0.02 M phosphate buffer (pH 

7.4) (PB) followed by 200 ml of 4% paraformaldehyde containing 0.2% picric acid and 1% 

glutaraldehyde in 0.1 M PB. Brains were then removed and oblique horizontal sections 

(50μm thick) of frontal cortex/striatum were cut on a vibrating microtome (Leica VT1200S, 

Nussloch, Germany) along the line of the rhinal fissure. The tissue was stained and cut to 

50nm sections using ATUMtome (RMC Boeckeler, Tucson, USA) for SEM imaging using 

the protocol described in the original publication for which the data was acquired55. The 

Hitachi Regulus rat SEM data was acquired using a Regulus 8240 FE-SEM with an 

acceleration voltage of 1.5kV, a dwell time of 3μs, using the backscatter detector with a pixel 

resolution of 10 × 10nm. We first upsampled the xy resolution to 8nm using bilinear 

interpolation, then applied our PSSR model to the upsampled data to ensure the proper 8-

to-2nm transformation for which the PSSR model was originally trained.

EM segmentation and analysis.—Image sets generated from the same region of 

neuropil (LR-Bilinear; LR-PSSR; HR) were aligned rigidly using the ImageJ plugin Linear 

stack alignment with SIFT56. Presynaptic axonal boutons (n = 10) were identified and 

cropped from the image set. The bouton image sets from the three conditions were then 

assigned randomly generated filenames and distributed to two blinded human experts for 

manual segmentation of presynaptic vesicles. Vesicles were identified by having a clear and 

complete membrane, being round in shape, and of approximately 35nm in diameter. For 

consistency between human experts, vesicles that were embedded in or attached to obliquely 

sectioned axonal membranes were excluded. Docked and non-docked synaptic vesicles were 

counted as separate pools. Vesicle counts were recorded and unblinded and grouped by 

condition and by expert counter. Linear regression analyses were conducted between the 

counts of the HR images and the corresponding images of the two different LR conditions 

(LR-Bilinear; LR-PSSR) to determine how closely the counts corresponded between the HR 

and LR conditions. Linear regression analysis was also used to determine the variability 

between counters.
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Fluorescence Imaging and Analysis

U2OS cell culture.—U2OS cells were purchased from ATCC. Cells were grown in 

DMEM supplemented with 10% fetal bovine serum at 37 °C with 5% CO2. Cells were 

plated onto either 8-well #1.5 imaging chambers or #1.5 35 mm dishes (Cellvis) coated with 

10 μg/mL fibronectin in PBS at 37 °C for 30 minutes prior to plating. 50nm MitoTracker 

Deep Red or CMXRos Red (ThermoFisher) was added for 30 minutes then washed for at 

least 30 minutes to allow for recovery time before imaging in FluoroBrite (ThermoFisher) 

media.

Airyscan confocal imaging of U2OS cells.—To generate our ground truth training 

and testing dataset we used a ZEISS Airyscan LSM 880, an advanced confocal microscope 

that uses a 32-detector array and post-processing pixel reassignment to generate images 

~1.7x higher in resolution (~120nm) and ~8x higher SNR than a standard confocal system. 

All HR ground truth training data were acquired with a 63x objective with at least 2x 

Nyquist sampling pixel sizes (~50±10nm pixels), then Airyscan processed (deconvolved) 

using ZEISS Zen software. For the real-world LR test data, we acquired images at 16x lower 

pixel resolution (~200nm pixel sizes) with a 2.5 AU pinhole on a PMT confocal detector, 

without any additional image processing. We maintained equal pixel dwell times for the HR 

versus LR testing acquisitions, resulting in overall 16x shorter exposure times for the LR 

images. To ensure minimal phototoxicity, we also decreased the laser power for our LR 

acquisitions by a factor of 4 or 5 (see Tables 1–2 for more details), resulting in a net laser 

dose decrease of ~64–80x (e.g., 5x lower laser power and 16x shorter exposure time yields a 

80x lower laser dose). Furthermore, our LR testing data was not deconvolved and used a 

much larger effective pinhole size than the HR Airyscan ground truth data, resulting in a 

blurrier image with lower optical resolution. Cells were imaged with a 63× 1.4 NA oil 

objective on a ZEISS 880 LSM Airyscan confocal system with an inverted stage and heated 

incubation system with 5% CO2 control. For both HR and LR images, equal or lower (when 

indicated) laser power and equal pixel dwell time of ~1 μs/pixel was used. For testing PSSR-

MF, at least 10 sequential frames of fixed samples were acquired with high- and low-

resolution settings in order to facilitate PSSR-MF processing.

Neuron preparation.—Primary hippocampal neurons were prepared from E18 rat 

(Envigo) embryos as previously described. Briefly, hippocampal tissue was dissected from 

embryonic brain and further dissociated to single hippocampal neuron by trypsinization with 

Papain (Roche). The prepared neurons were plated on coverslips (Bellco Glass) coated with 

3.33μg/mL laminin (Life Technologies) and 20μg/mL poly-L-Lysine (Sigma) at the density 

of 7.5 × 104 cells/cm2. The cells were maintained in Neurobasal medium supplemented with 

B27 (Life Technologies), penicillin/streptomycin and L-glutamine for 7 – 21 days in vitro. 

Two days before imaging, the hippocampal neurons were transfected with Lipofectamine 

2000 (Life Technologies).

Temporal consistency analysis.—Given a preprocessed time-lapse movie with N total 

number of frames, the cross-correlation coefficient (∅ Xi,  Xi + 1 ,  iϵ 1,   N ) was calculated 

for two neighboring frames (Xi and Xi + 1) repeatedly across each movie with a step size of 

i = 1 (Fig. 4b). To ensure comparisons between PSSR output and ground truth data were not 
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biased by high frequency artifacts and noise, each time-lapse was first preprocessed with a 

Gaussian blur filter (σ = 5 .  

Fission event detection and analysis.—Given fission events cannot be precisely 

defined across different evaluators, a HR timelapse of mitotracker stained cells was first 

given to two human experts as a pilot experiment to examine and correct the inspection 

performance of all experts. Three conditions (LR-Bilinear; LR-PSSR; HR) of the same 

Airyscan timelapses (n = 6) were then sequentially assigned to two blinded human experts 

for mitochondria fission event detection. Fission event counts were recorded and unblinded 

and grouped by condition and by expert counter. Linear regression analyses were conducted 

between the counts of the HR images and the corresponding images of the two different LR 

conditions (LR-Bilinear; LR-PSSR) to determine how closely the counts corresponded 

between the HR and LR conditions. Linear regression analysis was used to determine the 

variability between counters.

Neuronal mitochondria imaging and kymograph analysis.—Live-cell imaging of 

primary neurons was performed using a Zeiss LSM 880 confocal microscope, enclosed in a 

temperature control chamber at 37 °C and 5% CO2, using a 63x (NA 1.4) oil objective in 

SR-Airyscan mode (i.e. 0.2 AU virtual pinhole). For low-resolution conditions, images were 

acquired with a confocal PMT detector with a pinhole size of 2.5 AU at 440 × 440 pixels at 

0.5x Nyquist (170nm/pixel) every 270.49ms using a pixel dwell time of 1.2μs and a laser 

power ranging between 1 – 20 μW. For high-resolution conditions, images were acquired at 

1764 × 1764 pixels at 2x Nyquist (~42nm/pixel) every 4.33s using a pixel dwell time of 

1.2μs and a laser power of 20μW. Imaging data were collected using Zen Black software. 

High-resolution images were further processed using Zen Blue’s 2D-SR Airyscan 

processing. Kymograph analysis of the time-lapse movies were conducted using ImageJ 

plugin Kymolyzer as described previously57.

Fluorescence photobleaching quantification.—Normalized mean intensity over time 

was measured using Fiji software. Given a time-lapse movie with N frames, a background 

region was randomly selected and remained unchanged across frames. The normalized mean 

intensity (I−norm
i ) can be expressed as:

I−norm
i =

I−img
i − I−bg

i

MAX I−img
i − I−bg

i ,  i ∈ 1, N

where i represents the frame index, I−bg
i

 represents the mean intensity of the selected 

background region at frame i and I−img
i  represents the intensity mean of the entire frame i.

Comparing PSSR with other methods

Block-matching and 3D filtering (BM3D) denoising algorithm.—We compared 

PSSR with BM3D, on both EM and fluorescence MitoTracker data. Application of BM3D 

before (LR-BM3D-Bilinear) and after (LR-Bilinear-BM3D) bilinear upsampling of pixel 
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sizes were both tested. A wide range of Sigma (σ ∈ 0,  95 ), the key parameter that defines 

the assumed zero-mean white Gaussian noise in the images, was thoroughly explored. The 

exact same test set was used for quantification of PSSR vs. BM3D results.

Content-aware Image Restoration (CARE) and Rolling Average (RA) methods.
—A semi-synthetically crappified dataset of MitoTracker data was used to train both CARE 

and PSSR networks (PSSR-SF and PSSR-MF) in a consistent manner. We applied the 

trained models to semi-synthetically generated low-resolution testing time-lapses. Testing 

data were similarly crappified as training data. Five-frame rolling average processing was 

further applied to CARE and single-frame testing output.

Data Availability

Example training data and pretrained models are included in the GitHub release (https://

github.com/BPHO-Salk/PSSR). The entirety of our training and testing data sets and data 

sources are available at Texas Data Repository (https://doi.org/10.18738/T8/YLCK5A).

Code Availability

PSSR source code and documentation are available for download on GitHub (https://

github.com/BPHO-Salk/PSSR) and are free for use under the BSD 3-Clause License.

Reporting summary

Further information on research design is available in the Life Sciences Reporting Summary 

linked to this article.
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Extended Data

Extended Data Fig. 1. PSSR Neural Network architecture.
Shown is the ResNet-34 based U-Net architecture. Single-frame PSSR (PSSR-SF) and 

multi-frame PSSR (PSSR-MF) have 1 or 5 input channels, separately.
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Extended Data Fig. 2. NanoJ-SQUIRREL error-maps of EM data.
NanoJ-SQUIRREL was used to calculate the resolution scaled error (RSE) and resolution 

scaled Pearson’s coefficient (RSP) for both semi-synthetic and real-world acquired low 

(LR), bilinear interpolated (LR-Bilinear), and PSSR (LR-PSSR) images versus ground truth 

high-resolution (HR) images. For these representative images from Fig. 2, the RSE and RSP 

images are shown along with the difference images for each output.
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Extended Data Fig. 3. Comparison of PSSR vs. BM3D on EM data.
PSSR restoration was compared to the Block-matching and 3D filtering (BM3D) denoising 

algorithm. BM3D was applied to low-resolution real-world SEM images before (LR-BM3D-

Bilinear) and after (LR-Bilinear-BM3D) bilinear upsampling. A wide range of Sigma 

(σ ∈ 0,  95 , with step size of 5), the key parameter that defines the assumed zero-mean 

white Gaussian noise in BM3D method, was thoroughly explored. Images of the same 

region from the LR input, bilinear upsampled, PSSR restored, and Ground truth is displayed 

in (a). Results of LR-BM3D-Bilinear (b, top row) and LR-Bilinear-BM3D (b, bottom row) 

with sigma ranging from [10, 15, … , 35] are shown. PSNR and SSIM results of LR-BM3D-

Bilinear and LR-Bilinear-BM3D across the explored range of sigma are plotted in (c) and 
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(d). Metrics for bilinear-upsampled and PSSR-restored images of the same testing set are 

shown as dashed lines in orange (LR-Bilinear: PSNR=26.28±0.085; SSIM=0.767±0.0031) 

and blue (LR-PSSR: PSNR=27.21±0.084; SSIM=0.802 ±0.0026). n=12 independent images 

for all conditions. Values are shown as mean ± SEM.

Extended Data Fig. 4. Undersampling significantly reduces photobleaching.
U2OS cells stained with mitotracker were imaged every 2 seconds with the same laser power 

(2.5μW) and pixel dwell time (~1μs), but with 16x lower resolution (196 × 196nm xy pixel 
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size) than full resolution Airyscan acquisitions (~49 × 49nm xy pixel size). Mean intensity 

plots show the relative rates of fluorescence intensity loss over time (i.e. photobleaching) for 

LR, LR-PSSR, and HR images.

Extended Data Fig. 5. Evaluation of crappifiers with different noise injection on mitotracker 
data.
Examples of crappified training images, visualized results and metrics (PSNR, SSIM and 

FRC resolution) of PSSR-SF models that were trained on high- and low-resolution pairs 

semi-synthetically generated by crappifiers with different noise injection were presented. a, 
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Shown is an example of crappified training images generated by different crappifiers, 

including “No noise” (no added noise, downsampled pixel size only), Salt & Pepper, 

Gaussian, Additive Gaussian, and a mixture of Salt & Pepper plus Additive Gaussian noise. 

High-resolution version of the same region is also included. b, Visualized restoration 

performance of PSSR models that used different crappifiers (No noise, Salt & Pepper, 

Gaussian, Additive Gaussian, and a mixture of Salt & Pepper plus Additive Gaussian noise). 

LR input and Ground Truth of the example testing ROI are also shown. PSNR (c), SSIM (d) 

and FRC (e) quantification show the PSSR model that used “Salt & Pepper + Additive 

Gaussian” crappifier yielded the best overall performance (n=10 independent timelapses of 

fixed samples with n=10 timepoints for all conditions). All values are shown as mean ± 

SEM. P values are specified in the figure for 0.0001<p<0.05. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001, ns = not significant; Two-sided paired t-test.

Extended Data Fig. 6. Quantitative comparison of CARE and PSSR-SF with PSSR-MF and 
Rolling Average (RA) methods for timelapse data.
PSNR (a) and SSIM (b) quantification show a decrease in accuracy when applying RA to 

LR-CARE and LR-PSSR-SF, while multi-frame PSSR provides superior performance 

compared to LR-PSSR-SF and CARE before and after RA processing. Data points were 

color-coded based on different cells. See Fig. 4c for visualized comparisons, and 

Supplementary Movie 6 for a video comparison of the entire timelapse for CARE, LR-

PSSR-SF, LR-PSSR-SF-RA, and LR-PSSR-MF. N=5 independent timelapses with n=30 

timepoints each, achieving similar results. All values are shown as mean ± SEM. 

****p<0.0001; Two-sided paired t-test.
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Extended Data Fig. 7. NanoJ-SQUIRREL error-maps of MitoTracker data.
NanoJ-SQUIRREL was used to calculate the resolution scaled error (RSE) and resolution 

scaled Pearson’s coefficient (RSP) for both semi-synthetic and real-world acquired low 

(LR), bilinear interpolated (LR-Bilinear), and PSSR (LR-PSSR) images versus ground truth 

high-resolution (HR) images. For these representative images from Fig. 4, the RSE and RSP 

images are shown along with the difference images for each output.
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Extended Data Fig. 8. Compare PSSR with BM3D denoising method on mitotracker data.
PSSR restored images was compared to results of applying BM3D denoising algorithm to 

low-resolution real-world mitotracker images before (LR-BM3D-Bilinear) and after (LR-

Bilinear-BM3D) bilinear upsampling. A wide range of Sigma (σ ∈ 0,  95 , with step size of 

5) was thoroughly explored. Examples of the same region from the LR input, bilinear 

upsampled, PSSR-SF restored, PSSR-MF restored, and Ground truth are displayed (a, top 

row). Images from the top 6 results (evaluated by both PSNR and SSIM values) of LR-

BM3D-Bilinear (a, middle row) and LR-Bilinear-BM3D (a, bottom row) are shown. PSNR 
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and SSIM results of LR-BM3D-Bilinear and LR-Bilinear-BM3D across the explored range 

of sigma are plotted in (b) and (c). Metrics resulted from bilinearly upsampled, PSSR-SF 

restored and PSSR-MF restored images of the same testing set are shown as dash lines in 

orange (LR-Bilinear: PSNR=24.42±0.367; SSIM=0.579 ±0. 0287), blue (LR-PSSR-SF: 

PSNR=25.72±0.323; SSIM=0.769 ±0.0139) and green (LR-PSSR-MF: PSNR=26.89 

±0.322; SSIM=0.791±0.0133). As it shows, in this fluorescence mitotracker example, 

BM3D performs better than bilinear upsampling with carefully defined noise distribution, 

whereas its general performance given both PSNR and SSIM is overall worse than single-

frame PSSR (LR-PSSR-SF). Excitably, our multi-frame PSSR (LR-PSSR-MF) yields the 

best performance. n=10 independent timelapses of fixed samples with n=6–10 timepoints 

each for all conditions. Values are shown as mean ± SEM.
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Extended Data Fig. 9. NanoJ-SQUIRREL error-maps of neuronal mitochondria data.
NanoJ-SQUIRREL was used to calculate the resolution scaled error (RSE) and resolution 

scaled Pearson’s coefficient (RSP) for both semi-synthetic and real-world acquired low 

(LR), bilinear interpolated (LR-Bilinear), and PSSR (LR-PSSR) images versus ground truth 

high-resolution (HR) images. For these representative images from Fig. 5, the RSE and RSP 

images are shown along with the difference images for each output.
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Extended Data Fig. 10. PSSR facilitates detection of mitochondrial motility and dynamics.
Rat hippocampal neurons expressing mito-dsRed were undersampled with a confocal 

detector using 170nm pixel resolution (LR) to facilitate faster frame rates, then restored with 

PSSR (LR-PSSR). a, before and after time points of the event shown in Fig. 5 wherein two 

adjacent mitochondria pass one another but cannot be resolved in the original low-resolution 

(LR) or bilinear interpolated (LR-Bilinear) image but are clearly resolved in the LR-PSSR 

image. b, kymographs of a LR vs LR-PSSR timelapse that facilitates the detection of a 

mitochondrial fission event (yellow arrow).

Fang et al. Page 29

Nat Methods. Author manuscript; available in PMC 2021 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Evaluation of crappifiers with different noise injection on EM data.
a, Different crappifiers applied to high resolution, high SNR images, including “No noise” 

(no added noise, downsampled pixel size only), “Poisson”, “Gaussian”, and “Additive 

Gaussian” noise. The real-world acquired low- (LR acquired) and high-resolution (Ground 

Truth) images are also shown for comparison. Each training set contains 40 image pairs, 

achieving similar results. b, Visualized restoration performance of PSSR models that were 

trained on each different crappifier (No noise, Poisson, Gaussian, and Additive Gaussian), as 

well as a model trained with manually acquired low-resolution versions of the same samples 
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used for the high-resolution semi-synthetic training data (“Real-world Training Data”). 

Results from a model that using the same crappifier as “Additive Gaussian”, but with ~80x 

more training data (“Additive Gaussian (~80x)”) are also displayed. LR input and Ground 

truth of the example testing ROI are also shown. Experiments were repeated with 8–16 

images, achieving similar results. PSNR (c), SSIM (d) and resolution as measured by 

Fourier Ring Correlation analysis (FRC) (e) (PSNR and SSIM, n = 8 independent images; 

FRC resolution, n = 16 independent images). f, Shown is a table that compares the devoted 

time, cost and difficulty level between experiments with manually acquired training pairs 

and experiments using our crappification method. All values are shown as mean ± SEM. ns 

= not significant. P values are specified in the figure for 0.0001<p<0.05. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001, ns = not significant; Two-sided paired t-test.
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Fig. 2 |. Restoration of semi-synthetic and real-world EM testing data using PSSR model trained 
on semi-synthetically generated training pairs.
a, Overview of the general workflow. Training pairs were semi-synthetically created by 

applying a degrading function to the HR images taken from a scanning electron microscope 

in transmission mode (tSEM) to generate LR counterparts (left column). Semi-synthetic 

pairs were used as training data through a dynamic ResNet-based U-Net architecture. Layers 

of the same xy size are in the same color (middle column). Real-world LR and HR image 

pairs were both manually acquired under a SEM (right column). The output from PSSR 
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(LR-PSSR) when LR is served as input is then compared to HR to evaluate the performance 

of our trained model. b, Restoration performance on semi-synthetic testing pairs from tSEM. 

Shown is the same field of view of a representative bouton region from the synthetically 

created LR input with the pixel size of 8nm (left column), a 16x bilinear upsampled image 

with 2nm pixel size (second column), 16x PSSR upsampled result with 2nm pixel size (third 

column) and the HR ground truth acquired at the microscope with the pixel size of 2nm 

(fourth column). A close view of the same vesicle in each image is highlighted. The Peak-

Signal-to-Noise-Ratio (PSNR) and the Structural Similarity (SSIM) quantification of the 

semi-synthetic testing sets are shown (right) (n = 66 independent images). c, Restoration 

results of manually acquired SEM testing pairs. Shown is the comparison of the LR input 

acquired at the microscope with a pixel size of 8nm (left column), 16x bilinear upsampled 

image (second column), 16x PSSR upsampled output (third column) and the HR ground 

truth acquired at the microscope with a pixel size of 2nm (fourth column). Bottom row 

compares the enlarged region of a presynaptic bouton with one vesicle highlighted in the 

inset. Graphs comparing PSNR, SSIM and image resolution are also displayed (right). The 

PSNR and SSIM values were calculated between an upsampled result and its corresponding 

HR ground truth (n = 42 independent images). Resolution was calculated with the Fourier 

Ring Correlation (FRC) plugin in NanoJ-SQUIRREL by acquiring two independent images 

at low and high-resolution (n = 16 independent images). All values are shown as mean ± 

SEM. P values are specified in the figure for 0.0001<p<0.05. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001, ns = not significant; Two-sided paired t-test.
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Fig. 3 |. PSSR model is effective for multiple EM modalities and sample types.
Shown are representative low-resolution (LR), bilinear interpolated (LR-Bilinear) and 

PSSR-restored (LR-PSSR) images from mouse brain sections (n = 75 sections in one image 

stack, xy dimension 240×240 pixels) imaged with a ZEISS Sigma-VP Gatan Serial 

Blockface SEM system (a), fly sections (n = 50 sections in one image stack, xy dimension 

1250×1250 pixels) acquired with ZEISS/FEI focused ion beam-SEM (FIB-SEM) (b), mouse 

sections (n = 563 sections in one image stack, xy dimension 240×240 pixels) from 

ZEISS/FEI FIB-SEM (c) and rat sections (one montage, xy dimension 2048×1024 pixels) 
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imaged with a Hitachi Regulus serial section EM (ssEM) (d). e, Validation of pre-synaptic 

vesicle detection. LR, LR-Bilinear, LR-PSSR, and ground truth high-resolution (HR) images 

of a representative bouton region as well as their color-labeled vesicle counts are shown. 

Vesicles colored with red represents false negatives, blue are false positives, and white are 

true positives. The percentage of each error type is shown in the pie chart. Docked vesicles 

were labelled with purple dots. Vesicle counts from two humans were plotted (Dashed line: 

Human-1, solid line: Human-2), with the average total error ± SEM. displayed above. 

Experiments were conducted with n=10 independent bouton regions in all conditions, 

achieving similar results. The linear regression between LR-Bilinear and HR, LR-PSSR and 

HR, and two human counters of HR are shown in the third row. The equation for the linear 

regression, the Goodness-of-Fit (R2) and the p-value (p) of each graph are displayed. Scale 

bars = 1.5μm.
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Fig. 4 |. Multi-frame PSSR timelapses of mitochondrial dynamics.
a, Overview of multi-frame PSSR training data generation method. Five consecutive frames 

(HRi,  i ∈ t − 2,  t + 2 ) from a HR Airyscan time-lapse movie were synthetically crappified 

to five LR images (LRi,  i ∈ t − 2,  t + 2 ), which together with the HR middle frame at time 

t  HRt , form a five-to-one training “pair”. b, Temporal consistency analysis. Neighboring-

frame cross-correlation coefficient (∅  Xτ,  Xτ + 1  that corresponds to frame τ in x-axis 

denotes the correlation coefficient of frame τ  Xτ) and frame τ + 1 Xτ + 1  (Left). Absolute 
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error against HR ( ∆ ∅ ) for each condition was compared ( ∆ ∅ = ∅τ − ∅τHR , right). n = 6 

independent timelapses with n = 80–120 timepoints each. Colored shades show standard 

error. The * sign above LR-PSSR-MF denotes that LR-PSSR-MF is significantly more 

consistent with HR than all other conditions (P<0.0001). All violin plots show lines at the 

median and quartiles. c, Examples of false mitochondrial network merges (white boxes) due 

to the severe flickering artifacts in single-frame models (LR-Bilinear, LR-CARE and LR-

PSSR-SF), and loss of temporal consistency and resolution (yellow boxes) in models post-

processed with a “rolling frame averaging” method (LR-CARE-RA and LR-PSSR-SF-RA). 

Two consecutive frames of an example region from semi-synthetic acquired low-resolution 

(LR), bilinearly upsampled (LR-Bilinear), CARE (LR-CARE), 5-frame Rolling Average 

post-processed CARE output (LR-CARE-RA), single-frame PSSR (LR-PSSR-SF), single-

frame PSSR post-processed with a 5-frame Rolling Average (LR-PSSR-RA), 5-frame multi-

frame PSSR (LR-PSSR-MF), and ground truth high-resolution (HR-Airyscan) time-lapses 

are color coded in magenta (t = 0s) and green (t = 5s). Insets show the intensity line plot of 

the two frames drawn in the center of the white box in each condition. The yellow box 

shows an example of temporal resolution loss in RA conditions (LR-CARE-RA and LR-

PSSR-SF-RA) only. Magenta pixels represent signal that only exists in the t=0s frame, but 

not in the t=5s, while green pixels represent signal present only in the t=5s frame. d, 

Restoration performance on semi-synthetic and real-world testing pairs. For the semi-

synthetic pair, LR was synthetically generated from Airyscan HR movies. Enlarged ROIs 

show an example of well resolved mitochondrial structures by PSSR, agreeing with 

Airyscan ground truth images. Red and yellow arrowheads show two false connecting points 

in LR-Bilinear and LR-PSSR-SF, which were well separated in LR-PSSR-MF. In the real-

world example, green arrowheads in the enlarged ROIs highlight a well restored gap 

between two mitochondria segments in the LR-PSSR-MF output. Normalized line-plot 

cross-section profile (yellow) highlights false bridging between two neighboring structures 

in LR-Bilinear and LR-PSSR-SF, which was well separated with our PSSR-MF model. 

Signal-to-Noise Ratio (SNR) measured using the images in both semi-synthetic and real-

world examples are indicated. e, PSSR output captured a transient mitochondrial fission 

event. Shown is a PSSR-restored dynamic mitochondrial fission event, with three key time 

frames displayed. Arrows highlight the mitochondrial fission site. f, PSNR and SSIM 

quantification of the semi-synthetic (n = 8 independent timelapses with n = 80–120 

timepoints each) as well as the real-world (n = 10 independent timelapses of fixed samples 

with n=10 timepoints each) testing sets discussed in (d). FRC values measured using two 

independent low- versus high- resolution acquisitions from multiple cells are indicated (n = 

10). g, Validation of fission event captures using semi-synthetic data. An example of a 

fission event that was detectable in LR-PSSR but not LR-Bilinear. Experiments were 

repeated with 8 timelapses, achieving similar results. h, For fission event detection, the 

number of false positives, false negatives, and true positives detected by expert humans was 

quantified for 8 different timelapses. Distribution was shown in the pie charts. Fission event 

counts from two humans were plotted (Dashed line: Human-1, solid line: Human-2). i-k, 
Linear regression between LR-Bilinear and HR, LR-PSSR and HR, and two human counters 

of HR are shown (n = 8 independent timelapses with n = 80–120 timepoints each). The 

linear regression equation, the Goodness-of-Fit (R2) and the p-value of each graph are 

Fang et al. Page 40

Nat Methods. Author manuscript; available in PMC 2021 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



displayed. All values are shown as mean ± SEM. P values are specified in the figure for 

0.0001<p<0.05. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns = not significant; Two-

sided paired t-test.
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Fig. 5 |. Spatiotemporal analysis of mitochondrial motility in neurons.
PSSR facilitates high spatiotemporal resolution imaging of mitochondrial motility in 

neurons. a, Comparison of PSSR results (LR-PSSR) versus bilinear interpolation (LR-

Bilinear) on semi-synthetic (n = 7 independent timelapse movies with n=100 independent 

time points each) and real-world testing pairs (n = 6 independent timelapse movies with 

n=12 independent time points each). Enlarged ROIs from representative images show PSSR 

resolved two mitochondria in both semi-synthetic and real-world testing sets, quantified by 

normalized line plot cross-section profiles. SNR b, PSNR (top) and SSIM (middle) 

quantification of the datasets in (a). FRC resolution measured from two independent 

acquisitions of the real-world overview dataset discussed in (a) is indicated (bottom). c, 

PSSR restoration of LR timelapses resolves mitochondria moving past one another in a 

neuronal process (arrows indicate direction of movement). d, Representative kymographs of 

mitochondrial motility in hippocampal neurons transfected with Mito-DsRed (n = 7 

independent LR timelapse movies processed to LR-PSSR). First frame of each time-lapse 

movie is shown above each kymograph. Different color arrowheads indicate mitochondria 

going through fission and fusion events. Each color represents a different mitochondrion. e, 
Enlarged areas of (d), capturing mitochondrial fission and fusion events in real-time. f-i, 
Mitochondrial motility was quantified from time-lapse movies as demonstrated in 

Supplementary Video 8. For each mitochondrial trajectory the total distance mitochondria 

travelled (f), mitochondrial velocity (g), percent time mitochondria spent in motion (h) and 

in pause (i) was quantified (n = 76 – 216 mitochondria from 4 neurons and 3 independent 

experiments). All values are shown as mean ± SEM. P values are specified in the figure for 

0.0001<p<0.05. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns = not significant; Two-

sided paired t-test (b) and Kruskal-Wallis test followed by Dunn’s multiple comparison test 

(f-i).

Fang et al. Page 42

Nat Methods. Author manuscript; available in PMC 2021 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fang et al. Page 43

Table 1:

Details of fluorescence PSSR training experiments.

Experiment U2OS MitoTracker PSSR-SF U2OS MitoTracker PSSR-MF Neuron Mito-dsRed PSSR-MF

Input size (x, y, z) (128, 128, 1) (128, 128, 5) (128, 128, 5)

Output size (x, y, z) (512, 512, 1) (512, 512, 1) (512, 512, 1)

No. of image pairs for training 5000 5000 3000

No. of image pairs for validation 200 200 300

No. of GPUs 2 2 2

Training datasource size (GB) 9.4 9.4 9.5

Validation datasource size (GB) 0.44 0.44 1.8

Training dataset size (GB) 1.38 1.7 1.03

Validation dataset size (GB) 0.06 0.07 0.1

Batch size per GPU 8 8 6

No. of epochs 100 100 50

Training time (h) 3.76 3.77 1.25

Learning rate 4e-4 4e-4 4e-4

Best model found at epoch 33 86 39

Normalized to ImageNet statistics? No No No

ResNet size ResNet34 ResNet34 ResNet34

Loss function MSE MSE MSE
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Table 2:

Details of fluorescence PSSR testing data for PSNR, SSIM, and error-mapping.

U2OS MitoTracker Neuron Mito-dsRed

Semi-synthetic Real-world Semi-synthetic Real-world

HR LR HR HR LR HR

Microscopy Airyscan Confocal Airyscan Airyscan Confocal Airyscan

Laser power (μW) 35 7 28 82 11 55

Data source size (MB) 1250 7.15 200 5920 10.7 305

Data set size (MB) 325 6.39 191 1970 10.4 305

Total number of different cells 6 10 10 7 10 10
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Table 3:

Details of the EM PSSR training experiment.

EM training data

Round of progressive resizing 1 2 3

Input size x,   y,   z (32, 32, 3) (64, 64, 3) (128, 128, 3)

Output size x,   y,   z (128,128,3) (256, 256, 3) (512, 512, 3)

Batch size per GPU 64 16 8

No. of epochs N1,   N2 [1,1] [3,3] [3,3]

Learning rate  lr1,   lr2 [1e-3, (1e-5,1e-3)] [1e-3, (1e-5,1e-3)] [1e-3, (1e-5,1e-4)]

Training dataset size (GB) 3.9 15.56 62.24

Validation dataset size (GB) 0.96 3.89 15.56

Training datasource size (GB) 105

Validation datasource size (GB) 26

No. of image pairs for training 80,000

No. of image pairs for validation 20,000

Total training time (h) 16

Normalized to ImageNet statistics? Yes

ResNet size ResNet34

Loss function MSE

No. of GPUs 2
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