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Multiple myeloma (MM) is usually diagnosed in older adults at the time of immunosenescence, a collection of age-related changes
in the immune system that contribute to increased susceptibility to infection and cancer. The MM tumor microenvironment and
cumulative chemotherapies also add to defects in immunity over the course of disease. In this reviewwe discuss howmousemodels
have furthered our understanding of the immune defects caused by MM and enabled immunotherapeutics to progress to clinical
trials, but also question the validity of using immunodeficientmodels for these purposes. Immunocompetentmodels, in particular
the 5T series and Vk∗MYC models, are increasingly being utilized in preclinical studies and are adding to our knowledge of not
only the adaptive immune system but also how the innate system might be enhanced in anti-MM activity. Finally we discuss the
concept of immune profiling to target patients who might benefit the most from immunotherapeutics, and the use of humanized
mice and 3D culture systems for personalized medicine.

1. Introduction

Multiple myeloma (MM) is a malignancy of plasma cells
that reside within a supportive niche in the bone marrow
(BM) [1, 2]. Monoclonal gammopathy of undetermined
significance (MGUS) is a preceding, benign phase to MM,
where amonoclonal paraprotein is detected in the peripheral
blood but plasma cells account for less than 10% of BM
haematological cells [3, 4]. Smoldering myeloma (SMM) is
similarly asymptomatic, but plasma cells account for at least
10% of BM haematological cells. Patients are often diagnosed
with MMwhen they develop end-organ features that include
anaemia, bone fractures secondary to lytic lesions, hypercal-
caemia, and/or renal disease [1, 2]. Acquired immune paresis
complicates advanced disease due to residual hypogamma-
globulinemia, B cell hypoplasia [5], the effects of cumulative
chemotherapies [6–8], and an ageing T cell population [9, 10].
In end stage disease, plasma cells lose their dependence on the
BM niche and can cause extramedullary disease with solid
organ deposits and/or plasma cell leukaemia.

MM is a disease of older adults with a peak incidence in
the 7th decade of life [11]. The increasing use of proteasome

inhibitors and immunomodulatory drugs (IMiDs) over the
last decade has made an impact on overall survival in MM
patients [12, 13] but has transformed MM to a chronic
palliative illness. As our knowledge of immunosenescence
and T cell exhaustion within the chronic inflammatory
environment of MM advances, evaluating the effectiveness
of immunotherapeutics within a tumormicroenvironment in
an aged host is paramount. This review aims to encompass
how mouse models can contribute to our understanding of
the MM immune microenvironment and of the clinical use
of immunotherapeutics and other novel agents in human
MM.

2. Mouse Models of Multiple Myeloma

The two main types of mouse models used (Table 1) include

(1) immunodeficient xenograft models where mice lack
immune subsets rendering them tolerant to the
transplant of human MM cells (often referred to as
“humanized”),
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(2) immunocompetentmice that are either transgenically
manipulated to develop a MM-like tumor or trans-
planted with MM cells from a syngeneic mouse.

2.1. ImmunodeficientModels. SCID (severe combined immu-
nodeficiency) and NSG (NOD/SCID/IL2R𝛾null) mouse mod-
els inoculated with humanMM cells are widely used for drug
discovery; however, their obvious disadvantage is that neither
immunosurveillance nor the tumor microenvironment that
supports myeloma cell survival is fully intact. Regardless,
xenograft models are frequently used to assess antimyeloma
therapies including monoclonal antibodies and vaccines.

2.1.1. Human MM Cell Lines. MM cell lines are derived from
clones from humans with plasma cell leukaemia or other
forms of extramedullary disease. These cells have evolved
to survive outside of the bone marrow niche, have complex
cytogenetic profiles, and are highly resistant to apoptosis.
They have a rapid doubling time of 24-72 hours and are
therefore very easy to culture. But for all these reasons,
they do not accurately resemble most human myeloma cells,
which are typically very difficult to culture outside of human
BM.MMcell lines can be injected intomice intravenously via
the tail vein, intratibially, or subcutaneously (SC).The former
two methods are preferred as they more faithfully represent
BM disease in MM, whereas SC injection imitates solitary
plasmacytoma in an entirely separate immune compartment.
Whilst cell lines are likely to be selective for highly effective
antimyeloma therapies, their use in an immunodeficient
setting does not recapitulate the typical immune myeloma
microenvironment and may not allow an opportunity for
immunotherapies to fully exert their effect.

2.2. Immunocompetent Models. The most commonly used
immunocompetent mouse models of multiple myeloma
in the literature are the 5T series and transgenic myc-
overexpressing models (or syngeneic transplanted cell lines
from these diseased mice).

The 5T series (including 5T2MM, 5T33MM, and 5TGM1)
are cell lines derived from aged C57BL/KaLwRij mice that
spontaneously developed plasma cell dyscrasia. On syngeneic
transplant, recipients develop dissemination of the tumor,
paraprotein, osteolytic bone lesions, and resultant hind limb
paralysis [14, 15].

Knowledge of driver mutations in MM led to the devel-
opment of the Vk∗MYC [16] and Myc/Bcl-XL [17] myc-
overexpressing mouse models of myeloma, and the E𝜇-XBP-
1s model [18]. All spontaneously develop MM-like tumor
dissemination and paraprotein over a longer latency, with
greater heterogeneity of disease than single clonal transplant.
However, the time to disease is a greatly limiting factor at the
bench. Syngeneic transplant of cells retrieved from diseased
Vk∗MYC mice has similar MM-like disease but with faster
kinetics [16], and the myeloma cells are responsive to most
conventional therapies used in humans [19].

Less commonly used now are the plasmacytoma-
resembling murine MM cell lines (MOPC315, J558, HOPC)
that have been transplanted subcutaneously in syngeneic

mice. These were obtained from granulomas arising from
the intraperitoneal injection of mineral oil in Balb/c mice.
The cell line MOPC315.BM has been derived fromMOPC315
cells that exhibit bone marrow tropism [20].

3. The Tumor Microenvironment and Immune
Dysfunction in MM

It is well established that MM cells influence the BM
microenvironment to sustain tumor survival. This is achieved
by pathologies that include osteoclastogenesis, increased
angiogenesis, and immune editing. The role of xenograft and
5Tmurine models of MM to assess the efficacy of therapeutic
agents for bone disease was reviewed recently [21].

Immunosurveillance describes the processes by which
the immune system recognizes and eliminates foreign
pathogens and tumor cells. This theory has been refined
over the last 15 years to the concept of “immune editing”,
which is a dynamic process composed of three phases: (1)
elimination, (2) equilibrium, and (3) escape [22]. In MM,
the equilibrium phase is most noteworthy as it represents a
therapeutic opportunity to utilize the immune system to slow
or prevent disease progression. Immunosurveillance has been
demonstrated in the Vk∗MYCmouse model, where immune
control of MM was demonstrated via NK and CD8+ T cells
through CD226 (DNAM-1) interaction with its ligand CD155
on malignant plasma cells [23].

The development of immunosenescence, through which
age-related changes of immune system lead to functional
defects, may also contribute to loss of immunosurveillance
with subsequent progression of tumors. These age-related
changes include a drastic loss of thymic function and a
decrease in the number and repertoire of näıve T cells in
the 7th decade [24, 25], coinciding with the peak incidence
of MM. Simultaneously, there exists a chronic inflammatory
state termed inflammaging: a sustained, low-grade increase in
proinflammatory factors such as IL-6, IL-1, TNF𝛼, and CRP
[26].This adds to the increased susceptibility of older humans
to opportunistic infections, cancer, and autoimmunity [27].
Some of these changes are seen, and possibly accelerated,
in malignancy and/or chronic viral infections, as discussed
below.

3.1. Adaptive Immune System. This section concentrates on T
cell pathology in MM that has been most intensively studied
in the immunotherapeutics field. B cells have predominantly
been evaluated inmousemodels with regard to the oncogenic
mutations that promote development into plasma cell malig-
nancy. B cell hypoplasia has been described in humanMM[5]
and in the Vk∗MYCmouse model [28], and further study of
how this might affect anti-MM T cell function is warranted.

3.1.1. T Cell Generation. Thymic involution leads to an age-
associated decrease in the frequency of circulating näıve T
cells in peripheral blood (PB) [10, 29], lymph nodes [30], and
bone marrow (BM) [31]. Of additional relevance to the MM
patient population, it has been shown that the human thymus
is incapable of responding to a sudden decline in peripheral



4 Journal of Oncology

T cells (i.e., after high dose chemotherapy or radiation) with
a substantial increase in T cell output [32]. Studies with bone
marrow transplant patients have shown that the thymus of
the majority of patients over 40 years was unable to rebuild a
näıve T cell compartment [33].

Despite the reduction in thymic output, overall T cell
numbers are not affected due to compensatory proliferation
of T cells in the periphery [34]. However, CD4+ T cells do
not proliferate to the same degree as CD8+ T cells [33, 35]
leading to a reduction in CD4:8 in MM patients [28, 36],
which could be partly explained by the higher expression of
CD122 (the 𝛽-chain of the IL-2/IL-15 receptor) on CD8+ T
cells [37] and increased availability of IL-15 in lymphopenic
states [34]. Additionally, IL-7 dependent STAT-1 activation
has been reported to limit homeostatic CD4+ Tcell expansion
[38], and näıve CD8+ T cells are particularly hyperresponsive
to IL-15 because of lack of suppressor of cytokine signaling
(SOCS)-1 [39]. The emergence of an oligoclonal T cell
population with a limited TCR repertoire has been observed
[40], as well as a senescence-associated secretory phenotype
(SASP) that has low proliferative potential but retains the
ability to produce cytokines and does not exhibit telomere
shortening that is seen with ageing populations [40, 41].

The loss of naı̈ve T cell populations is not paralleled
in aged mice, where the thymus sustains the naı̈ve T cell
pool throughout their lifetime [42], and the CD4:8 ratio
remains unaffected in diseased Vk∗MYC mice [28]. One
study showed an impaired ability of aged mice to thymically
recover T cells after irradiation [43], although in most cases
this state is not replicated inMMmousemodels because mice
used in experimental models are invariably young adults.
Of interest, it has been shown in the Vk∗MYC transplant
model that CD8+CD44+ Tmemory cells were integral toMM
control after BM transplant; however, mice transplanted with
näıve (CD44−) T cells had improved survival, indicating the
importance of näıve T cell priming [44].

3.1.2. T Cell Differentiation. In addition to reduced thymic
output of naı̈ve T cells, chronic antigen exposure leads to
alterations in the proportion of naı̈ve: antigen-experienced
T cells. This has been described in humans with ageing,
persistent viral infections, and chronic malignancy. A major
skewing towards a T cell population predominantly made up
of effector memory T (TEM) and CD8+ TEMRA cells has been
demonstrated in human MM and replicated in Vk∗MYC
mice with advanced disease in both the transplant and
transgenic models [28]. This pattern has also been noted in
another model of chronic B cell malignancy, the E𝜇TCL1
mouse model of chronic lymphocytic leukaemia [45].

3.1.3. T Cell Exhaustion. T cell exhaustion refers to an altered
T cell state that is manifested under conditions of chronic
inflammation, such as chronic viral infection or cancer [46].
Exhausted T cells are not inert; but the loss of effector
functions limits their ability to fully eradicate pathogens or
tumor. CD8+ T cells expressing inhibitory markers correlated
strongly with disease progression after BM transplant in the
Vk∗MYC mouse model [47]. Knowledge of inhibitory T
cell signaling pathways has been instrumental in developing

immunotherapeutics such as PD-1 and CTLA-4 inhibitors
that are currently in human trials (see Therapeutics).

3.1.4. T Cell Polarization. Several groups have published
evidence that there are increased numbers of Th17 cells in
the PB and BM microenvironment of patients with MM
compared to normal [48–50], and elevated levels of IL-17
[49, 50] and Th17-polarizing cytokines (IL-6, TGF𝛽, IL-23,
and IL-1𝛽) [49] in the BM. This has been proposed to be
harmful in MM by promoting lytic bone disease [49, 51]
and MM cell growth [50]. Others have suggested that the
Treg/Th17 balance is the important factor, and lower Treg
numbers carry a favorable prognosis [52]. Studies in Treg
levels and activity have also been contradictory [53, 54],
which is further confusing as to how to define Tregs by
flow cytometry [52, 55, 56]. This remains an area for further
exploration as greater understanding of the epigenetic factors
involved in T cell polarization and the potential for plasticity
between the subsets is developed [57].

In the mouse models, there is a notable Th1 response as
evidenced by increased IFN𝛾 production (predominantly by
CD8+ T cells) with advanced disease in Vk∗MYC mice [28,
58]. Transition from a Th1 to a Th2 response with increased
IL-4 and IL-13 production has been described with advanced
disease in the transgenic Vk∗MYCmodel [58], andTh2 cells
provided no protection against disease in a 5TGM1 transplant
model (and may even promote MM growth by promoting
VEGF production) [59]. Th17 cells and IL-17 production was
not significantly altered in Vk∗MYC mouse models [28],
but it would be of interest to assess this in longstanding
disease correlating with amount of bone disease and relative
proportion of Tregs. Later work in the Vk∗MYC model
has been suggestive of a pathological role for IL-17: IL-17A
deficient donor grafts and inhibition of IL-17A with mAb
improved MM control after BM transplant and, conversely,
donor derived IL-17A promoted MM cell survival [44].

Increased Treg populations were described in the spleen,
lymph nodes, bone marrow, and peripheral blood of 5T2 and
5T33 transplant mouse models, and these cells retained their
suppressive function ex vivo [60]. In further analysis in the
5T2 model, it was evident that there are temporal differences
in Treg accumulation, with changes being observed early in
the spleen and peripheral blood but only at later stages of the
disease in bone marrow.

3.2. Innate Immune System. Innate immune responses occur
without prior exposure to antigen and memory T cell forma-
tion. Cells considered part of the innate immune response
include granulocytes, antigen-presenting cells (APCs) such as
dendritic cells (DCs), natural killer (NK) cells, and uncon-
ventional T cells such as invariant natural killer T (iNKT)
cells and 𝛾𝛿 T cells. The latter make up a more substantial
and diverse proportion of the murine immune system than
in humans [61]. All of these cells have been described to be
adversely affected in human MM [62–67] and are selectively
discussed in more detail in Therapeutics.

Type I interferons are cytokines produced after immune
cell recognition of pathogen-specific molecules via pattern
recognition receptors such as Toll-like receptors (DCs can
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be prolific producers). Release of type I interferons has
numerous effects but is overall stimulatory to T cells by
causing upregulation of MHC I and II on cells and hence
increased peptide presentation. The consequences of drug-
induced type I interferon production are discussed in DC
Vaccines and Small Molecule Inhibitors.

Myeloid-derived suppressor cells (MDSCs) are immature
myeloid cells that are increased in inflammatory states and
play a pathological role in cancer by suppressing effector
T cell function and promoting Treg expansion [68, 69].
They have been described as fundamental to MM-associated
immunosuppression in the Vk∗MYC MM model and are
driven by IL-18 that has emerged as a potential therapeutic
target [70].

4. Matching Models with Human MM

4.1. Disease Stage. Chromosomal instability begins with
MGUS, and cumulative chromosomal changes occur
throughout the course of disease [71]. Secondary trans-
locations, including dysregulation of c-myc, occur later in
disease as the tumor becomes addicted to oncogenes [72]
and escapes immunosurveillance. It would therefore seem
logical that myc-overexpressing mouse models might better
represent advanced disease, and those models that lack
c-myc oncogene rearrangements (5TMM [73], XBP-1) might
provide an opportunity to study the aetiopathogenesis of
MM, in particular how MGUS transforms to MM. In all
cases, it should be considered whether these models truly
have an MGUS period, or whether they represent an initial
state akin to smoldering MM with steady accumulation of
tumor until mice exhibit symptomatic disease.

In our experience with the Vk∗MYC mouse model, it
was important to interpret data in context of the amount
of tumor burden and to take into account the differing
disease dynamics of the transgenic and transplant models
[28]. As an example, there have been contradictory reports
in Vk∗MYC mice of either BM accrual of CD4+ and CD8+
T cells with increasing disease [58] or depletion of CD8+
T cells with advanced disease [23] that can be accounted
for by substantially different disease burdens in these cases.
We found that immune dysfunction in Vk∗MYC mice with
advanced disease was in keeping with relapsed/refractory
multiple myeloma (RRMM) in humans [28], which certainly
remains an area of need for novel therapeutics. Only using
models with aggressive disease, however, could lead to agents
being overlooked that work in indolent disease when there
is a more functional immune system. Hence, if the focus of
research is in preventing disease progression in the MGUS
or smoldering phase of disease, aged transgenic mice with
disease arising de novo are likely to provide a better model.

4.2. Cell Compartments. A valid criticism of translational
studies is of the comparisons made between different cell
compartments in mouse models and human samples. For
obvious reasons, spleen and BM samples are not readily
available from humans, and serial blood samples are most
accessible for studies of immune cells. Where comparisons

have been made between PB and BM mononuclear cells in
human MM, CD4+ subsets and associated cytokine profiles
have been similar [28, 48–50], although PB contamination
of BM samples does occur. There are differences in a few
parameters however; for example, CD4:8 ratio is higher in PB
than BM and there are fewer CD4+ TCM and more TEMRA in
BM than PB (which correlates with lower CD27 and higher
CD57 expression in BM CD4+ cells) [28].

Unlike humans (where extramedullary haematopoiesis is
abnormal), the spleen is considered a haematopoietic organ
in mice [74] and most frequently used for T cell analysis
in studies because of ease of access and increased numbers
of T cells retrievable. In many of the MM mouse models,
hepatosplenic plasma cell infiltration and/or plasmacytomas
occur and it is unclear whether this should be accepted as
equivalent to BM infiltration or rather as true extramedullary
disease.

5. Therapeutics

Much of the preclinical experimentation with immunothera-
peutics has been performed in immunodeficient mice (Tables
2 and 3). Xenograft mouse models have proven useful in pro-
viding preclinical data for the use of novel immunotherapies
in phase 1 human trials. Additionally, where drugs that looked
favorable in the in vitro setting failed to yield sufficient clinical
responses in phase 1 and 2 trials, returning to these models
has helped provide evidence for combination therapies and
phase 3 trials in humans. As already alluded to, xenograft
models only provide proof of concept for the therapeutic
efficacy of immunotherapeutics, and their effect in humans
is often much more subdued than that in preclinical tri-
als. Performing experiments in both immunodeficient and
immunocompetent mice has been integral in elucidating the
mechanism of action of novel agents (see Small Molecule
Inhibitors).

5.1. Cellular 	erapies. The oldest form of cellular therapy,
stem cell transplantation, has been reviewed recently in MM
[75]. However, chimeric antigen receptor (CAR)-T cells have
really captured the scientific and public attention of late.
Another approach to enhance anti-MM cytotoxic T cell
activity is via dendritic cell (DC) vaccination, although DCs
are significantly dysfunctional in MM patients [62, 63] that
have repercussions for effective vaccination.

5.1.1. CAR-T Cells. CAR-T cells are cytotoxic T cells engi-
neered to express receptors specific for a target antigen. In
adoptive immunotherapy, millions of these cells are cultured
in the laboratory and administered to the patient intra-
venously. For a broader review of the history and evolution
of CAR-T cells in MM, readers are directed to other review
articles [76, 77].

CAR-T constructs have been created for use in MM
against B cell maturation antigen (BCMA), CD19, and kappa
light chains. Whilst a 100% cure rate was achieved in
xenograft murine models with anti-BCMA constructs [78,
79], only very modest effects have been achieved in phase
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1 trials in humans [80, 81]. Engineered NK cells specific to
CD138 [82] and CS-1 [83] have also been effective in vitro and
in vivomouse models of human MM.

Because immunodeficient mouse models have been used
in preclinical work, CAR-T cell-induced cytokine release
syndrome (a not uncommon feature in humans) cannot
be predicted for. This is an advantage in that significant
morbidity and mortality might be avoided in the mice,
but means that the human immune response is not being
faithfully replicated: we are essentially measuring the ability
of CAR-T cells to reach their target antigen in an in vivo
system and perform cytolysis (as they would in an in vitro
setting).

Treating MM patients with CAR-T cells remains a long
way fromwidespread use clinically,mainly because of the cost
but also the challenge of producing an effective and persistent
T cell product fromelderly and/or heavily pretreated patients.
Studies of CD19 CAR-T cells in an NSG mouse model of
lymphoma have shown that TN and TCM produce a superior
CAR-T product to TEM in terms of cytokine production
(CD4+) and cytotoxicity (CD8+), and the potency of CD8+
CAR-T cells is enhanced by their production in the presence
of CD4+ T cells [84]. It would therefore seem logical to
collect and sort CD62L+ T cells (i.e., TN and TCM) for CAR-T
production fromMMpatients at first diagnosis, prior toT cell
depleting therapies and subsequent further skewing of the T
cell population, even if they are not used until relapse.

5.1.2. DC Vaccines. DC vaccines are produced from autol-
ogous ex vivo DCs generated from PB monocytes or BM
progenitor cells that are exposed to MM-specific antigens.
These can be derived from MM lysates or dying MM cells,
or DCs can be transfected with MM-derived RNA or fused
directly with MM cells. The goal of DC priming is, via
enhancement of tumor-specific antigen presentation, to stim-
ulate tumor-specific cytotoxic T cell activity and overcome T
cell tolerance.

In MOPC-315 plasmacytoma-bearing mice, DC vaccine
in combination with IMiDs controlled plasmacytoma growth
[85]. Unfortunately this does not bear out in humans,
whereDC vaccines frequently show antigen-specific immune
responses but do not demonstrate tumor regression [86, 87].
Returning to mouse models may yet provide an insight into
how to improve clinical outcomes by enhancing DC function
through choice of progenitor cell, cytokine stimulation or
priming antigen, and timing and route of administration
and by rescuing defective DC function (reviewed from a
broader oncological perspective recently [88–92]). As an
example, 5T33MM mice inoculated with 𝛼-GalCer-loaded
DCs moderately prolonged survival [93]. Therapies that pro-
mote maturation of DCs and enhance type I interferon may
also prove useful: for example, the novel Toll-like receptor
agonist C792 inhibited plasmacytoid DC-induced MM cell
growth in a xenograft model and enhanced the effectiveness
of antimyeloma therapies [94].

A logical combination therapy with DC vaccines is check-
point blockade (see Section 5.2.3), because PD-L1/2 expressed
on DCs can be associated with suppression of effector T
cells and expansion of Tregs [63]. It has been suggested that

DC vaccination might be better utilized at a shorter interval
after, or concurrently with, chemoradiotherapy to optimize
immunogenic cell death, as suppressive immune cells are
at their lowest at this time. Furthermore, their use in the
posttransplant setting could be influential in the reemerging
lymphocyte population. This is discussed further in the next
section.

5.2. Monoclonal Antibodies (MoAbs). Monoclonal antibodies
in the treatment of MM have been developed to target the
plasma cell itself (Table 2) or to promote anti-MM immunity,
wherebyMoAbs target MMcell and immune cell interactions
by acting as agonists or antagonists to key signaling receptors
on NK and T cells (Table 3). Novel putative target antigens in
MM are reviewed elsewhere [95].

5.2.1. MoAbs Targeting the MM Plasma Cell. Arguably one
of the most exciting new drugs on the MM clinical scene is
daratumumab, a human anti-CD38 IgG1k mAb. Xenograft
mouse models were used to compliment in vitro data that
daratumumab induced apoptosis of MM cells [96], and the
drug has subsequently progressed from phase 1/2 trials [97]
to promising results in phase 3 trials [98, 99]. Returning to
xenograft models has further helped to establish mechanisms
of action—in addition to antibody-dependent cellular cyto-
toxicity (ADCC), daratumumab induces programmed cell
death via Fc𝛾 receptor-mediated cross linking [100]. They
have also been useful to provide evidence for the effectiveness
of combination therapy with lenalidomide prior to phase 3
trials (in previously lenalidomide/bortezomib resistant MM)
[101] and ATRA via upregulation of CD38 expression [102,
103].

Also utilizing plasma cell CD38 and CD138 expression,
alpha-radioimmunotherapy delivers localized radiation by
delivering 𝛼-particles to target cells and has been developed
to treat low level residual disease in MM. Effectiveness with
minimal toxicity has been shown in the 5T mouse model
with an anti-CD138 mouse antibody [104–107] and an anti-
CD38 mouse antibody [108, 109] coupled to bismuth-213. A
small dosimetry study in humans has shown feasibility of this
therapeutic approach with good biodistribution in the BM
[110].

Elotuzumab is an agonist for the signaling lymphocytic
activation molecule-F7 (SLAM-F7, a.k.a. CS1). It enhances
NK cell-mediated ADCC of CS1-expressing myeloma cells
via IL-2 and TNF𝛼 pathways [111]. Elotuzumab proceeded to
phase 1 clinical trials after in vitro and in vivo studies indicated
enhanced NK cell antimyeloma activity, which was further
augmented in combination with bortezomib [112]. Whilst
tolerated well by RRMM patients, this mAb was ineffective
as monotherapy [113], but clinical responses were seen when
combined with IMiDs [114–116] or bortezomib [117, 118].
It is likely that the timing of administration and choice
of combination therapy are important, as coadministration
of dexamethasone is profoundly immunosuppressive to NK
cells [7]. Researchers are now returning to mouse models to
support phase III trial combination therapies and to further
evaluate mechanism of action.



Journal of Oncology 9

5.2.2. Agonistic MoAbs. The cytotoxic functions of NK cells
are regulated by a balance of expression of activating and
inhibitory receptors, with the latter being known as killer
cell immunoglobulin-like receptors (KIRs). The expression
of ligands to KIRs is upregulated on MM cells, causing
inhibition of NK cell activity [119]. IPH2101 is an anti-
KIR human IgG4 mAb that prevents inhibitory KIR-ligand
interaction against KIR2DL-1, KIR2DL-2, and KIR2DL-3.
Initial in vitro experiments using IPH2101 in combination
with lenalidomide showed synergistic anti-MM activity by
enhancing NK cell function, and an in vivo tumor cell
rejection model in C57BL/6J mice showed that a murine
anti-KIR and lenalidomide had an additive effect [120].
Phase 1/2 clinical trials followed in humans with RRMM as
monotherapy [121] and in combination with lenalidomide
[122]. IPH2101 is no longer in development and has been
superseded by another anti-KIR mAb lirilumab, which is in
phase 1 trials in solid tumors.

Urelumab is an agonist for CD137, a costimulatory
receptor target that is expressed on activated T cells, NK,
and NKT cells. Activation with an agonistic mAb (4-1BB)
exerted variable antimyeloma activity in Vk∗MYC mice [61,
109] and 5TGM1 mice [110]. In 5TGM1 mice, anti-CD137
mAb treatment led to a significant reduction in monoclonal
paraprotein and extramedullary disease after 30 days of
treatment, but had little effect on skeletal involvement [123]. It
has also been trialed by two separate groupswith twodifferent
transplant clones of Vk∗MYC: anti-CD137 mAb treatment
with the Vk∗MYC 12653 clone showed a marked response
in plasma cell infiltrate and paraprotein accompanied by a
significant increase in survival [23], whereas the Vk∗4929
clonewas virtually unaffected, even in combinationwith anti-
CD40 antibody [124]. Of note, combination therapy with
anti-CD137 and anti-CD40 prolonged survival in a minor
proportion of treated mice who had a lower burden of disease
at commencement of treatment: this highlights a problem
with using transplant models with highly proliferative disease
(as opposed to the indolent transgenic models), in that there
may not be an opportunity for immunotherapies to be able to
be shown to exert an effect. A phase 2 trial in RRMMpatients
with urelumab in combination with elotuzumab is underway
(NCT02252263).

In order to promote immune synapse formation between
T cells and tumor cells, bispecific T cell engager (BiTE)
antibodies have been developed, which have had clinical
success in lymphoma and acute lymphoblastic leukaemia.
In myeloma, a xenograft model was used to provide in
vivo data showing the efficacy of a CD3-BCMA BiTE [125],
which is now in phase 1 studies in humans (NCT02514239).
Other BiTEs in development include CD3-FcRH5, which has
also progressed to phase 1 trial (NCT03275103), and an NK
receptor binding BiTE CS1-NKG2D [126].

5.2.3. Antagonistic MoAbs. A MM cell line J558L was used
in one of the first in vivo experiments with BALB/c mice
to demonstrate the antitumor efficacy of PD-L1 blockade
[127]. In the 5T33 mouse model, as has been reported in
human MM patients [128–131], PD-L1 is overexpressed on
MM cells and PD-1 expression is increased on T cells [132,

133]. After the success of PD1/PD-L1 pathway blockade in
melanoma, these inhibitors were used in an array of cancers
but with underwhelming responses in phase 1/2 trials in
RRMM [134, 135], and there has been some critique about
the appropriateness of PD-1 inhibition in MM patients [41].
Chronically exhausted T cells may not have the capacity to
respond to checkpoint blockade owing to a stably differenti-
ated epigenetic landscape [136–138]. Alternately, it has since
beendemonstrated in humanMMthat hyporesponsive CD8+
T cell clones exhibit low expression of PD-1 or CTLA-4,
suggesting that these cells are senescent rather than exhausted
[139].

Returning to mouse models, inhibition of PD-1 had no
effect on disease progression in Vk∗MYC [23]; however, in
the 5T33 model, PD-1 was increased on T cells after autolo-
gous BM transplant and PD-L1 blockade increased efficacy of
DC vaccine in combination with ASCT [132]. Further, PD-
L1 mAb administered during the homeostatic proliferation
phase after nonmyeloablative total body irradiation resulted
in increased survival [140]. Immune checkpoint blockade
with PD-1 blocking antibodies in the posttransplant setting
also significantly improved disease control in Vk∗MYCmice
[47].

To understand why PD-1 inhibition might be efficacious
in these circumstances, it is important to note that PD-1 is
not only upregulated in exhausted T cells but also as a normal
process in effector T cells after activation of theT cell receptor.
A balance between stimulatory and inhibitory signaling
ultimately controls the magnitude of a T cell proliferation
to antigen, and PD-1 facilitates apoptosis in CD8+ T cells by
increasing reactive oxygen species [141]. Therefore, utilizing
PD-1 inhibition in the post-ASCT setting could represent a
unique timepoint at which derepression of proliferating T
cells could enable superior clearance of tumor by myeloma-
specific T cell clones.

However, recent studies have suggested a more complex
role of PD-1 in T cells. PD-1 signaling causes a metabolic
switch from glycolysis to lipolysis and fatty acid oxidation
that is critical for the development and maintenance of T cell
memory [142, 143].This might suggest that PD-1 inhibition at
T cell activation might impair the subsequent development
of T memory cells, but this has not been reported with
mouse models of acute viral infection [144–146], and further
investigations in the MM setting are warranted.

Ipilimumab targets cytotoxic T-Lymphocyte antigen 4
(CTLA-4), another inhibitory receptor that is upregulated
early in T cell activation. Human trials with ipilimumab
have been in solid cancers, largely advanced melanoma, with
some success but there are concerning, and potentially severe,
immune-related adverse effects. This reiterates a problem
with checkpoint blockade in that reverting evolutionarily
acquired mechanisms that prevent the expansion of autoim-
mune T cell clones can result in autoimmune complications.

T cell immunoglobulin and ITIM domains (TIGIT)
have recently been described as another effective immune
checkpoint target in the Vk∗MYC mouse model [47, 147].

5.2.4. Combination	erapy. It would seem a logical rationale
to combine stimulatory and inhibitory checkpoint blockade,

https://clinicaltrials.gov/ct2/show/NCT02252263
https://clinicaltrials.gov/ct2/show/NCT02514239
https://clinicaltrials.gov/ct2/show/NCT03275103
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or NK and T cell checkpoint blockade, to maximally antag-
onize tumor-induced immune suppression. Indeed, there
are a number of ongoing human trials with PD-1/PD-L1
inhibitors in combination with other immunotherapies, and
with checkpoint blockade combinations that combat bothNK
and T cell inhibition (Table 3). Unfortunately, phase 3 trials
using pembrolizumab in combination with IMiDs and dex-
amethasone have been suspended because of fatalities related
to immune-mediated pneumonitis in the pembrolizumab-
receiving groups. This could dampen the pharmaceutical
appetite for further trials in MM with this combination.

Further studies with mouse models have been supportive
of combination therapies. In the Vk12653 (4-1BB-responsive)
transplant model, CD137 agonist treatment both reduced
the proportion of Tregs and increased CD8+ effector fre-
quency and function but also upregulated PD-1 and TIM-
3 expression. Consequently, combination of CD137 mAb
and anti-PD-1 early after BM transplant proved superior in
MM disease control [44]. In the 5T33 mouse model, tumor-
bearing mice treated with low dose whole body irradiation
and combinations of immune checkpoint blockade (PD-L1
blockade with LAG-3, TIM-3, or CTLA4 blocking antibod-
ies) had not only significantly improved survival rates, but
also correlated with increased frequency of tumor-reactive T
cells and elevated levels of inflammatory cytokines [133].

Ongoing work with checkpoint inhibitors is likely to
concentrate on the timing of administration around other
anti-MM therapies (particularly in the lymphopenic after BM
transplant setting) and their use in combination with DC
vaccines or oncolytic vaccines to optimize a specific anti-
MM immune response. The potential to combine oncolytic
vaccination (reviewed recently [148]) with immunotherapies
to enhance immune surveillance was shown in a breast carci-
noma mouse model with anti-4-1BB [149]. Specific to MM,
the efficacy and safety of a vaccinia virus were established
in a mouse xenograft model of MM [150], but has not yet
progressed to human trials.

5.3. Immunomodulatory Drugs (IMiDs). Thalidomide, or its
analogs lenalidomide and pomalidomide, is often used in
combination therapy with proteasome inhibitors, alkylating
agents, and/or corticosteroids in the treatment of human
MM. IMiDs were first introduced as an antimyeloma therapy
without fully comprehending their mechanism of action. It
is now understood that the binding of IMiDs to cereblon
(CRBN) [151] leads to the degradation of two zinc finger
transcription factors: IKZF1 and IKZF3 [152, 153]. This
inhibits MM growth as IKZF1 is required for plasma cell
maturation and loss of IKZF1/3 leads to decreased IRF4 and
MYC expression [151, 154]. IMiDs achieved their name by
being stimulatory toNK and T cells in vitro. This seems to be,
in part, due to enhanced T cell IL-2 production, explained
by the inhibition of IFZK1/3-mediated repression of the Il2
promotor [152], although this effect is significantly abrogated
by high dose steroid therapy [7].

It has long been appreciated that thalidomide does not
have the same antitumor or antiangiogenic effect in rodents
as that seen in humans [155]. Rodents have a point mutation
in the substrate recognition protein of CRBN meaning that

IMiDs cannot bind [156, 157] and therefore do not exert a
direct antimyeloma effect in murine MM [19, 158]. To this
end, several groups have developed humanized CRBNmouse
models to further elucidate the in vivo immunomodulatory
effects of IMiDs. It is possible that IMiDs have targets other
than CRBN: there are a number of murine studies showing
that lenalidomide enhances CD4+ T cell [159] and NK cell
[85] antitumor activity and, in CB17-SCIDmice bearing sub-
cutaneous MM.1S plasmacytomas, pomalidomide-resistant
xenografts could respond to lenalidomide despite CRBN
levels being low [160]. IMiDs have also been shown to exhibit
synergistic effects in combination with tumor-antigen loaded
DCs in the MOP-315 murine model of MM [85, 161].

5.4. Small Molecule Inhibitors. Small molecule inhibitors
generally exert their antitumor effects by promoting tumor
cell apoptosis or cell cycle arrest but, somewhat serendipi-
tously in some cases, their off-target effects on the immune
system are beginning to be comprehended. In fact, some
would say that their full therapeutic effect may depend on a
functioning immune system [162].

Histone deacetylase inhibitors (HDACi) exert their full
effect in murine tumors when combined with traditional
chemotherapy [162] or with CD137 and CD40 mAb (that
promote APC function and thereby support cytotoxic T
cells) [163]. The importance of host-derived IFN𝛾 for the
effectiveness of HDACi has been demonstrated utilizing
immunocompromised and immunocompetent mouse mod-
els of adenocarcinoma, aggressive lymphoma [162], and
breast carcinoma [164].

Combination therapies using HDACi with DNAmethyl-
transferase inhibitors or IMiDs are increasingly being stud-
ied. Panobinostat in combination with azacitidine has shown
efficacy in the transplant Vk∗MYC model, but the role of
the immune system was not evaluated [165]. Quisinostat in
combination with decitabine in 5T33MM diseased mice was
also favorable and is, at least partly, attributable to a signif-
icant induction of a type I interferon response; decitabine
in particular resulted in increased DC maturation [166]. In
a leukaemia mouse model decitabine was also reported to
deplete MDSCs [167], whether that bears out in the MM
tumor microenvironment is yet to be proven.

We await the long-term outcomes of phase 2/3 trials using
Vorinostat and Panobinostat in RRMM in combination with
bortezomib and/or IMiDs. Of note, some HDACi have been
reported to reduce cereblon and so might be expected to
impair the efficacy of IMiDs in this setting [168].

The inhibitor of apoptosis (IAP) antagonist LCL161 com-
petitively inhibits binding of cellular IAPs, which are fre-
quently inactivated inMM. Contrary to expectations, LCL161
reduced tumor burden inVk∗MYCaged transgenicmice and
transplant models. This was, again, shown to be the result of
type I interferon production by the MM cells that resulted in
their increased phagocytosis by macrophages [169]. A phase
2 clinical trial in humans did not show any response to
single agent LCL161. Returning to the transplant Vk∗MYC
model, the combination of LCL161 and anti-PD-1was curative
in all mice that completed 2 weeks of treatment. Hence
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combination therapy with LCL161 and PD-1 inhibition has
been taken forward to phase 2 clinical trials (NCT03111992).

In a somewhat divergent approach to proinflammatory
immunotherapies, bromodomain inhibitors (BETi), which
are considered immunosuppressants due to their ability to
reduce key proinflammatory cytokine and chemokine genes
in sepsis [170], have been utilized in MM. The bromod-
omain inhibitor JQ1 resulted in rapid paraprotein regressions
and improved survival outcome in transplanted Vk∗MYC
mice, and it was shown to diminish IFN𝛾-induced PD-
L1 expression on human and mouse tumor cell lines [171].
This is particularly relevant to myc-driven malignancies,
as induction of PD-L1 may be partly due to the direct
binding of MYC to the promoter region of CD274 (PD-
L1) [172]. However, the JQ1 response was shown to be
caused by the displacement of a BET protein from the
transcriptional start site of CD274 and is therefore myc-
independent [171]. Nevertheless, BETi may prove to have a
role in selected humanMMcells that have upregulated PD-L1
expression.

6. Future Directions

6.1. Personalized Care: Humanized Mice and 3D Culture
Systems. Medical oncology is increasingly headed towards
personalized care and, rather than a “one drug fits all”
approach, it would be ideal to test the efficaciousness of
immunotherapeutic drugs in an ex vivo model of an indi-
vidual’s tumor microenvironment prior to administration to
the patient. Humanized mice may offer a conduit for this
purpose, although it is not possible to incorporate a human
thymus for normal T cell development: this may not be a
disadvantage in the setting of MM due to the occurrence of
thymic atrophy in immunosenescence.

Also promising are 3D tissue culture systems, which have
the potential to be cheaper, less time consuming, and more
ethically viable and have higher drug throughput than mouse
models.The notable disadvantages currently (compared with
mouse models) include the lack of vasculature and the
challenges of maintaining plasma cells in an in vivo-like
microenvironment alongside normal BM cell maturation.
Several groups are making progress with replicating the BM
microenvironment [173–179]: these generally involve either a
tissue scaffold of osteoblasts [173, 174], crosslinked fibrinogen
[176], or differentiated mesenchymal stromal cells [177] that
can be combined with microfluidic chamber so that drug can
be circulated similarly to capillary flow in the bone marrow.
Increasing investment in these technologies over the last
decade are likely to see improvements in the extracellular
matrix scaffold and oxygen and nutrient distribution, as well
as increased throughput and standardization of microscopic
analysis and cell measurements.

6.2. Targeting Immunotherapies to Immune Profile. For some
time it has been appreciated that evolving and cumulative
genetic changes contribute to increased resistance of MM
cells to apoptosis, the development of drug resistance, and
poorer prognosis [71]. In some patients, clonal tides of MM
can mean that therapies need to be switched depending on

the dominant clone and its responsiveness [180]. In the same
way, we should look to fitting treatments not only to the
cytogenetic profile of the patients, but also to their immune
profile.

Immune profiling can be performed by the assessment
of T cell phenotype by flow cytometry; in one study, a
putative immune signature by flow cytometry was associated
with PFS and OS for MM patients treated with ASCT
[181]. Features such as a reduced CD4:8, low proportions
of circulating TN and high proportions of TEM/TEMRA indi-
cate immunosenescence and shifts in the T cell population
due to iatrogenic lymphopenia, and are likely to correlate
with poorer responses to immunotherapeutics. Individuals
with an immune profile comparable to healthy donors (i.e.,
younger, newly diagnosed MM with less advanced or smol-
dering phenotype of disease) are likely to achieve the greatest
benefit from immunotherapeutics, and targeting this group
in clinical trials may result in superior trial outcomes and
greater cost-effectiveness.

6.3. Immunotherapy in Immunosenescence. If the adaptive
immune system is essentially considered terminally differ-
entiated or “burnt out” in immunosenescent, heavily treated
MM patients, is there a role for immunotherapies at all? In
such patients, perhaps alternative approaches to replenishing
an effective T cell pool should be evaluated such as “off the
shelf” CAR-T cells (derived from young healthy donors).
Notably, in the 5T33 mouse model, it was shown that T
lymphocytes from younger mice were associated with better
disease control [182]. Thymic regeneration techniques [183,
184], whilst still some way from being utilized clinically,
represent another solution to the diminished naı̈ve T cell
population.

Other immunomodulatory approaches also need to be
considered such asmimicking or enhancing CD4+ T cell help
[185]. The former might include cytokine support and ago-
nists of costimulatory pathways such as CD27, and the latter
utilizes innate immune signals to aid DC priming of CD8+ T
cells. Of note,NK-likeT cells aremore frequent at extremes of
age and are correlated with healthy ageing [186, 187]—further
understanding of their potential plasticity will help with the
development of age-appropriate immunotherapies.

7. Conclusions

Mouse models will continue to be important for selecting
drugs for clinical trials, as the actual efficacy and toxic-
ity cannot be predicted in vitro. However, moving away
from utilizing hardy human MM cell lines in immuno-
compromised mice and, instead, trialing immunotherapeu-
tics in the immunocompetent mouse are likely to yield
more informative preclinical information for both the use
of immunotherapeutics and enhancing the performance of
small molecule inhibitors. Importantly (and with particu-
lar relevance to combination immunotherapies), acknowl-
edging the complimentary roles of the innate and adap-
tive immune systems, and dendritic cells as the interface
between the two, will be integral in furthering the success of
immunotherapies.

https://clinicaltrials.gov/ct2/show/NCT03111992
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