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Increased sympathetic nerve activity to the myocardium is a central feature in patients with heart failure. Accumulation
of catecholamines plays an important role in the pathogenesis of heart disease. Acting via β-adrenergic receptors (β-AR),
catecholamines (norepinephrine and isoproterenol) increase cardiac myocyte apoptosis in vitro and in vivo. Specifically, β1-AR and
β2-AR coupled to Gαs exert a proapoptotic action, while β2-AR coupled to Gi exerts an antiapoptotic action. β1 integrin signaling
protects cardiac myocytes against β-AR-stimulated apoptosis in vitro and in vivo. Interaction of matrix metalloproteinase-2 (MMP-
2) with β1 integrins interferes with the survival signals initiated by β1 integrins. This paper will discuss background information
on β-AR and integrin signaling and summarize the role of β1 integrins in β-AR-stimulated cardiac myocyte apoptosis.

1. Introduction

Heart failure is a leading cause of morbidity and mortality
in the western world. Cardiac myocytes are generally viewed
as terminally differentiated and incapable of reentering the
cell cycle. Myocyte apoptosis is shown to occur in human
myocardium and animal models of cardiovascular disease
under a variety of pathological states of the heart [1–4]. The
apparently limited capacity for regeneration of myocytes in
the adult heart suggests that cardiac myocyte loss due to
apoptosis may contribute to the progression of heart failure.

Increased sympathetic nerve activity is a central fea-
ture in patients with heart failure [5]. Initial release of
catecholamines by the sympathetic nervous system exerts
important tonic effects on the biology of cardiac myocytes
leading to increased contractility. However, chronic increase
in sympathetic activity is known to have adverse effects in
the heart. The efficacy of β-AR antagonist in improving the
clinical outcome as well as benefit in long-term morbidity
and mortality of patients with chronic heart failure [6]
has confirmed the importance of sympathetic nerve activity
in the pathological remodeling, a process that leads to

progressive left ventricular (LV) dilation and contractile dys-
function. Norepinephrine (NE), a primary neurotransmitter
of sympathetic nervous system, signals via its interaction
with α- and β-adrenergic receptors (ARs), a family of G
protein-coupled receptors (GPCRs). Specific stimulation of
β1-AR using NE or isoproterenol (β-AR agonist) induces
apoptosis in cardiac myocytes in vitro and in vivo [7–9].
Increased myocyte apoptosis may influence the development
of heart failure.

Integrins are a large family of heterodimeric transmem-
brane receptors composed of α and β subunits. Integrins
play a significant role in cell-matrix interactions. They are
involved in a variety of functions like gene expression and
regulation, organogenesis, cell proliferation, differentiation,
migration, and death. In the heart, integrins are shown to
regulate cellular phenotype in the developing and postnatal
myocardium. They also serve as mechanotransmitters dur-
ing normal development and in response to physiological
and pathophysiological signals [10–12]. Cardiac myocytes
predominantly express β1 integrins. β1 integrins play an
important role in β-AR-stimulated LV remodeling with effect
on myocyte apoptosis [9].
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This paper will discuss (a) the expression of AR subtypes
in the heart and their role in cardiac myocyte apoptosis,
(b) molecular signals involved in β-AR-stimulated myocyte
apoptosis, and (c) role of β1 integrins in the regulation of
β-AR stimulated cardiac myocyte apoptosis.

2. Adrenergic Receptors (ARs) and
Cardiac Myocyte Apoptosis

2.1. AR in Cardiac Myocytes. Nine subtypes of AR have
been identified [13]. Cardiac myocytes express at least six
subtypes of AR which include three subtypes of β-AR (β1,
β2, β3) and three subtypes of the α1-AR (α1A, α1B, and α1C)
[14, 15]. Cardiac myocytes do not appear to express α2-
AR in most species [16]. Based on receptor number, β1-AR
generally predominates, although the ratio of β1 to β2-AR
varies among species and under various pathophysiological
states [6].

Both β1- and β2-AR couple to the stimulatory G protein
(Gαs). This coupling normally leads to the activation of
adenylyl cyclase, production of cAMP, and activation of
protein kinase A (PKA). β2-AR also couples to Gi, a
different heterodimeric G-protein whose Gα subunit can
inhibit adenylyl cyclase, thereby inhibiting synthesis of cAMP
and activation of PKA. This coupling may require phos-
phorylation of β2-AR by cAMP-dependent protein kinase
A [17]. The dual coupling of β2-AR may induce com-
partmentalization of Gαs-stimulated cAMP signal affecting
only plasma membrane effectors such as L-type calcium
channel, without affecting cytoplasmic target proteins such
as phospholamban and myofilament contractile proteins
[18]. In normal myocytes, β2-ARs are localized exclusively to
the deep transverse tubules, whereas β1-ARs are distributed
across the whole cell surface. Redistribution of β2-AR from
transverse tubules to the cell crest occurred in myocytes
isolated from a rat model of heart failure. This redistribution
led to cAMP signals in both cell crest and T-tubule, a
pattern similar to that observed for β1-AR stimulation
[19]. Thus, the selective activation of β2-AR-Gi pathway,
redistribution of β2-AR during heart failure, and changes in
the compartmentalization of cAMP may have implications
during the development of heart failure.

Pharmacological approaches have suggested that β3-AR
and a putative β4-AR are present in rodent heart [20, 21].
Their role in cardiac myocyte apoptosis remains to be
investigated. Of note, activation of the β3-AR pathway by
catecholamines may contribute to the myocardial dysfunc-
tion during sepsis [22], and putative β4-AR may represent
propranolol-insensitive state of β1-AR [23, 24].

2.2. β-AR in Cardiac Myocyte Apoptosis. Chronic exposure
to catecholamines is known to be toxic to cardiac myocytes
[25]. Tonic exposure of feline cardiac myocytes to NE caused
spontaneous contractions followed by hypercontracture,
leading to cell death [26]. This effect was prevented by β-
AR antagonist propranolol, but not by α-AR antagonist, and
was mimicked by β-AR agonist isoproterenol. Communal
et al. provided evidence that stimulation of β-AR increases
apoptosis in adult rat ventricular myocytes (ARVM) [27].

Similar observations were made in neonatal rat ventric-
ular myocytes and in the myocardium of rats and mice
treated with isoproterenol [7, 9, 28, 29]. Interestingly, β-AR
blockers such as metoprolol and carvedilol reduced myocyte
apoptosis and improved cardiac systolic function in animal
models of chronic heart failure [30, 31]. These studies suggest
that increased sympathetic activity contributes to myocardial
failure, at least in part, via β-AR-stimulated apoptosis of
cardiac myocytes.

Pharmacologic manipulations indicated that specific
stimulation of β1-AR induces proapoptotic signals, while
specific linkage of β2-AR to Gi plays an antiapoptotic
role in ARVM [32, 33]. Transgenic mice studies in the
heart concur with these observations to some extent.
Transgenic mice overexpressing β1-AR exhibited increase
in basal contractile function at young age. This difference
in contractility was lost at 16 weeks (age), and contrac-
tility continued to decline thereafter, going to less than
50% of wild-type value at 35 weeks [34]. This decline
in contractility associated with increased cardiac myocyte
apoptosis and expression of pro-apoptotic protein Bax [35].
Transgenic mice overexpressing β2-AR (60–100-fold over
the endogenous level) in the myocardium show enhanced
cardiac function without deterioration into heart failure
[36–39]. In contrast, higher levels (200–350-fold over the
endogenous level) resulted in age-dependent progression to
cardiomyopathy which associated with LV dilation, fibrosis
and decreased contractility [39]. These deleterious effects of
β2-AR overexpression could be attributed to the enhanced
coupling of β2-AR to Gαs. It is interesting to note that
β2-AR overexpression (200-fold over the endogenous level)
preserved LV contractility in a mouse model of myocardial
infarction while exhibiting similar cardiac hypertrophy and
chamber size as wild-type mice [40]. Overexpression of
Gαs also had deleterious effects on the heart with chamber
dilation, reduced ejection fraction, and increased myocar-
dial fibrosis and myocyte apoptosis [41, 42]. In contrast,
targeted inhibition of Gi signaling in the heart worsens
the outcome after myocardial ischemia with increased
myocyte apoptosis, suggesting a role for Gi in cell survival
[43].

2.3. Molecular Signals Involved in β-AR-Stimulated Apoptosis.
β-AR-stimulated apoptosis is influenced by the intracellular
and extracellular signals. With respect to the intracellular
signals, the apoptotic pathway (β1-AR-Gαs) involved activa-
tion of PKA [32, 33], while the survival signaling pathway
(β2-AR-Gi) involved activation of phosphatidylinositol 3-
kinase (PI3-kinase) and Akt [18]. However, transgenic
mice studies question the involvement of PKA in β-AR-
stimulated apoptosis. This is based on the findings that
prolonged β-AR stimulation may decrease the levels of
β1-AR and Gαs may become uncoupled from adeny-
lyl cyclase, leading to activation of calcium/calmodulin
kinase II (CaMKII) [44]. Using two genetically defined
β1-AR systems (adult cardiac myocytes isolated from β2-
AR knockout mice and adenovirus-mediated transfer of
the mouse β1-AR in myocytes isolated from β1-AR and
β2-AR double knockout mice), it was demonstrated that
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sustained β1-AR stimulation delivers a powerful cardiac
apoptotic signal via a CaMKII-dependent, rather than a
PKA-dependent, mechanism [45]. Recent studies using β1-
AR knockout mice demonstrated that β1-AR stimulates
CaMKII and enhances cardiac dysfunction after myocardial
infarction [46]. Cardiac myocytes express delta isoform of
CaMKII. Adenoviral-mediated expression of constitutively
active CaMKII(deltaC) increased cardiac myocyte apoptosis
which associated with increased mitochondrial cytochrome
c release. The increase in cardiac myocyte apoptosis and
cytochrome c release was attenuated by coexpression of
anti-apoptotic protein Bcl-X(L). Furthermore, expression
of a dominant negative mutant of CaMKII(deltaC) not
only prevented CaMKII(deltaC)-mediated apoptosis but
also protected cells from multiple death-inducing stimuli
[47].

Mitogen-activated protein kinases (MAPKs), a large
family of serine-threonine kinases, have important functions
as mediators of intracellular signal transduction. Three
subgroups of MAPKs have clearly been identified: c-jun
N-terminal kinases (JNKs), p38 kinase, and ERK1/2. β-
AR stimulation has been shown to activate these three
subgroups of MAPKs [48]. Activation of JNKs plays a pro-
apoptotic role [49]. Superoxide dismutase/catalase-mimetics
or catalase overexpression inhibited JNK activation and β-
AR-stimulated apoptosis. Inhibition of mitochondrial per-
meability transition pore opening or caspase activation also
decreased β-AR-stimulated apoptosis [49]. These studies
suggested that β-AR-stimulated apoptosis in ARVM involves
reactive oxygen species/JNK-dependent activation of the
mitochondrial death pathway. In this pathway, small GTPase
Rac 1 may act upstream in the activation of JNKs [50].
Studies from our lab have shown that β-AR stimulation
activates glycogen synthase kinase-3β (GSK-3β), and acti-
vation of GSK-3β plays a pro-apoptotic role in β-AR-
stimulated apoptosis via the involvement of mitochondrial
death pathway [51]. Adenoviral-mediated overexpression
of constitutively active GSK-3β increased JNK phospho-
rylation, suggesting that GSK-3β may also act upstream
in the activation of JNKs [52]. Further investigations are
needed to clarify the sequence of events involved in the
activation of JNK and its linkage with mitochondrial death
pathway.

Inhibition of ERK1/2 using PD98059 had no effect on
β-AR-stimulated apoptosis. On the other hand, SB-202190,
an inhibitor of p38 kinase, potentiated β-AR-stimulated
apoptosis in ARVM, suggesting a protective role for p38
kinase [48]. Pharmacological approach coupled both β1-
and β2-AR to the activation of p38 kinase, although β-
AR-stimulated activation of p38 kinase could be inhib-
ited by inactivation of Gi using pertussis toxin. In adult
mouse myocytes, β2-AR activated p38 kinase independent
of Gi [53]. Transgenic mice studies uncovered an apoptotic
role for p38 kinase, specifically for isoform α. Inhibition
of p38 kinase(α), by mating mice expressing dominant
negative p38 kinase(α) with mice overexpressing β2-AR,
reversed depressed LV function and reduced apoptosis in
mice overexpressing β2-AR. Inhibition of p38 kinase(α)
had no effect on β1-AR overexpressing mice [54]. These

transgenic mice studies suggest that p38 kinase(α) plays
a pro-apoptotic role during the development of cardiomy-
opathy following chronic β2-AR stimulation. These differ-
ential effects of p38 kinase may reflect nonspecific effects
of pharmacological inhibitor and/or overexpression of β2-
AR. It may also reflect acute versus chronic stimulation
of β-AR. The transgenic mice studies were carried out in
11–14-months old mice versus acute stimulation of β-AR
in vitro.

Extracellular signals also modulate β-AR-stimulated car-
diac myocyte apoptosis. Matrix metalloproteinases (MMPs),
a large family of endopeptidases, have the ability to degrade
extracellular matrix (ECM) proteins, and therefore, play
a fundamental role in tissue remodeling, including the
heart [55–57]. Tissue inhibitors of MMPs (TIMPs) inhibit
MMPs activity by binding to the active site. The involve-
ment of MMP-2 is considered important since MMP-
2 is capable of degrading elastin as well as interstitial
fibrillar collagen. These effects of MMP-2 can ultimately
lead to systolic and diastolic impairment of the heart.
Treatment of cardiac rings with active MMP-2 decreased
cardiac tissue tensile strength and caused systolic and
diastolic dysfunction [58]. Cardiac-specific expression of
MMP-2 induced the development of cardiac contractile
dysfunction in the absence of superimposed injury [59].
Targeted deletion of MMP-2 attenuated early rupture and
improved fractional shortening in mice after myocardial
infarction [60]. Our laboratory has provided evidence that
β-AR stimulation (isoproterenol, 24 h) increases expression
of MMP-2 and TIMP-1, and decreases expression of TIMP-2
in ARVM [61]. β-AR stimulation had no effect on the
expression or activity of MMP-9. Inhibition of MMPs
using GM-6001 (a broad-spectrum inhibitor of MMPs),
SB3CT (inhibitor of MMP-2), or purified TIMP-2 (tissue
inhibitor of MMP-2) inhibited β-AR-stimulated apoptosis in
ARVM. This decrease in apoptosis associated with inhibition
of JNK activity decreased cytosolic cytochrome c levels
and maintenance of mitochondrial membrane potential.
On the other hand, treatment with active MMP-2 alone
increased cytosolic cytochrome c levels and the number of
apoptotic cardiac myocytes [61, 62]. These studies highlight
the importance of MMP-2 in β-AR-stimulated cardiac
myocyte apoptosis and provide evidence that MMP-2 is
capable of modulating JNK-dependent mitochondrial death
pathway.

Recently, our laboratory has identified ubiquitin in the
conditioned media of ARVM. Stimulation of β-AR increased
levels of extracellular ubiquitin in the media. Treatment of
ARVM using purified ubiquitin inhibited β-AR-stimulated
apoptosis. This inhibition of apoptosis associated with inac-
tivation of GSK-3β/JNK and mitochondrial death pathways
[52]. Growing evidence suggests that while formation of
multiubiquitin chains targets proteins for destruction by the
proteasomal complex, monoubiquitination mediates more
diverse functions such as protein transport and transcription
regulation [63–65]. Using methylated ubiquitin, incapable of
forming polyubiquitin chains, it was demonstrated that the
anti-apoptotic effects of extracellular ubiquitin are exerted by
monoubiquitination of cellular proteins [52].
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3. Integrins and Heart: General Concepts

Integrins link the ECM proteins and the intracellular
cytoskeleton. Integrins consist of α and β subunits, with
α subunits ranging from 120 to 180 kDa, while β subunits
range from 90 to 110 kDa [66, 67]. Integrin subunits consist
of large extracellular domain (700–1100 amino acids), a
single transmembrane segment, and short cytoplasmic tails,
ranging from 20 to 60 amino acids [68]. Integrins are
bidirectional signaling molecules. The extracellular binding
activity of integrins is regulated from intracellular signals
(inside-out signaling). Through inside-out signaling, inte-
grins can undergo a switch from a low affinity/avidity state
to a high affinity/avidity state. On the other hand, binding
of integrins to ECM proteins results in intracellular signaling
events. When the extracellular domain of integrin receptor
becomes occupied by ligand, the integrins set off a cascade
of events termed “outside-in” signaling. This may result
in modifications of intracellular pH and cytosolic calcium,
and activation of intracellular signaling kinases, leading
to alterations in cell morphology, migration, proliferation,
differentiation, survival, suppression of tumorigenicity and
so forth [69–71].

A significant role of integrins in the heart is their ability
to serve as mechanotransducers during normal development
and in response to physiological and pathophysiological
signals [72]. Mechanical stimulation as well as a variety of
growth factors like platelet-derived growth factor, insulin-
like growth factor, angiotensin II and transforming growth
factor-β modulate the expression of several integrins as well
as specific ECM components such as interstitial collagens,
osteopontin, fibronectin and laminin. The myocyte integrin-
ECM interactions may play a fundamental role in the
pumping function of heart. The ECM surrounding the
individual myocytes coordinates the transduction of force to
the whole ventricular chamber, so that the heart can function
as a single pump [73]. These mechanical linkages (integrin-
ECM) also prevent myocyte slippage during contraction.
Disruption of the linkages is suggested to occur during the
transition from compensated to decompensated heart failure
in animal model [74] and in patients with tachycardia-
induced heart failure [75]. This disruption may lead to
release of cardiac myocytes from their ECM attachment sites,
resulting in apoptosis. This process is called anoikis (Greek
for homelessness) [76]. It was proposed to be responsible
for selective myocyte death due to apoptosis in the heart
[74]. The mechanisms involved in the disruption of these
linkages are not clearly understood. However, it may involve
shedding or cleavage of the extracellular domain (involved
in the binding with ECM proteins) of integrins due to a
class of enzymes called shedases that include A disintegrin
and metalloproteinases (ADAMs) and MMPs [77–79]. The
shedding of extracellular domain of β1 integrin may subject
the cell to altered mechanical force that can be detrimental
to the long-term cell survival. Shedding of β1 integrins is
described in the heart during the transition from cardiac
hypertrophy to heart failure [74]. Chronic stimulation of
β-AR induces β1 integrin shedding in the mouse heart
[80].

Cardiac myocytes predominantly express β1 integrins.
However they express β1D, a differentially spliced variant
of β1 integrin. β1D has a unique cytoplasmic domain of
50 amino acids with the last 24 amino acids encoded by an
additional exon. However, both integrin isoforms, β1A and
β1D, were found to be functionally similar with regard to
integrin signaling [81, 82]. In the myocytes, β1 integrins can
heterodimerize with integrin α subunits (α1, α3, α5, α6, and
α7b) [83]. Due to the predominant expression of β1 integrins
in myocytes, the paper summarizes the role of β1 integrins in
β-AR-stimulated apoptosis.

4. Cross-Talk between β1 Integrins and β-AR:
Role in Cardiac Myocyte Apoptosis

Integrins can themselves signal through a host of pathways.
However, integrins are capable of collaborating with growth
factors and their receptors leading to changes in intracellular
signals. Many studies now indicate that β1 integrins alter AR
signaling and influence myocyte phenotype with respect to
hypertrophy and apoptosis. β1 integrins participate in α1-
AR-induced hypertrophy of neonatal rat cardiac myocytes
[84, 85]. A gene expression profile of the myocardial response
to clenbuterol, a β2-AR agonist shown to induce cardiac
hypertrophy, demonstrated upregulation of genes associated
with integrin-mediated cell adhesion and signaling [86].
Using Cre-Lox technology to inactivate the β1 integrin gene
exclusively in cardiac myocytes, Shai et al. [87] demonstrated
that β1 integrins play an important role in myocardial
fibrosis and cardiac failure [87]. In vitro, stimulation of
β1 integrin signaling using laminin or adenoviral-mediated
overexpression of β1A integrin protected ARVM from β-
AR-stimulated apoptosis [62, 88]. This decrease in apoptosis
associated with decreased cytosolic cytochrome c levels. On
the other hand, expression of a cytoplasmic domain of β1
integrin, present as a result of integrin shedding, induced
apoptosis in ARVM [80]. This induction of apoptosis asso-
ciated with activation of caspase-8, Bid cleavage, decreased
mitochondrial membrane potential and increased cytosolic
cytochrome c suggesting involvement of caspase-8 and
mitochondrial death pathway. Deficiency of β1 integrins as
demonstrated using β1 integrin heterozygous knockout mice
associated with increased cardiac myocyte apoptosis in the
heart after myocardial infarction and isoproterenol infusion
[9, 89]. β1-integrin-deficient mice exhibited enhanced LV
dysfunction and dilation after myocardial infarction when
compared to the wild-type mice. Myocyte cross-sectional
area (a measure of myocyte hypertrophy) and myocardial
fibrosis were significantly lower in β1-integrin-deficient mice
after chronic β-AR stimulation [9]. Thus, β1 integrins
influence β-AR responsiveness and play a crucial role in β-
AR-stimulated myocardial remodeling with effects on car-
diac myocyte hypertrophy and apoptosis. Increased cardiac
myocyte apoptosis and decreased myocardial hypertrophy
and fibrosis during β1 integrin deficiency may induce LV
dilation due to side-to-side slippage of myocytes during
deficiency of β1 integrins. It is interesting to note that
a combined deficiency of dystrophin and β1 integrins in
cardiac myocytes decreased ventricular function and blunted
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Figure 1: Summary diagram illustrating signaling pathways involved in β-AR-stimulated cardiac myocyte apoptosis. AR: adrenergic
receptors; JNKs: c-Jun-N-terminal kinase; GSK-3β: glycogen synthase kinase-3β; ROS: reactive oxygen species; PKA: protein kinase A; AC:
adenylyl cyclase; Gs: stimulatory G protein; Gi: inhibitory G protein; ATP: adenosine triphosphate; cAMP: cyclic adenosine monophosphate;
CaMKIIδ: calcium calmodulin kinase IIδ;PI-3K: phosphatidylinositol 3-kinase.

adrenergic responsiveness [90]. Thus, β1 integrin signaling
has the potential to negate the apoptotic effects of β-AR
stimulation in cardiac myocytes.

Integrin engagement with ligands initiates autophospho-
rylation of focal adhesion kinase (FAK) at Tyr397. This
autophosphorylation site provides a binding site for Src,
which phosphorylates FAK at Tyr576 and Tyr577 to further
activate FAK [91]. Activation of PI3-kinase/Akt pathway is
another signaling event initiated by integrins. Activation of
FAK may act upstream in the activation of PI3-kinase/Akt
pathway [92, 93] and inactivation of GSK-3β [94]. In ARVM,
adenoviral-mediated expression of β1A integrin increased
FAK phosphorylation at both Tyr397 and Tyr576 residues
without affecting expression of FAK. Inhibition of MMP-
2 using SB3CT or TIMP-2 significantly increased FAK
phosphorylation (Tyr-397 and Tyr-576). On the other hand,
active MMP-2 significantly inhibited FAK phosphorylation
[62]. In vivo, chronic stimulation of β1-AR impaired FAK
signaling during early compensated mitral regurgitation in
dogs [95]. In cat atrial myocytes, binding of laminin to β1
integrins inhibited adenylyl cyclase activity via the involve-
ment of FAK/PI3-kinase/Akt pathway [96]. Our laboratory
has provided evidence that expression of β1A integrin or
inhibition of MMP-2 inhibits β-AR-stimulated activation of
GSK-3β. On the other hand, active MMP-2 protein increased
GSK-3β activity. Inhibition of PI3-kinase using wortmannin
reversed the effects of β1 integrins on GSK-3β activity and
inhibited the protective effect of β1 integrins [51]. Activation
of JNKs and expression of MMP-2 were significantly greater
in the myocardium of β1-integrin-deficient mice when
compared to wild type following chronic β-AR stimulation
[9]. It is likely that MMP-2 disrupts the anti-apoptotic

signals initiated by β1 integrin engagement, resulting in
the activation of a JNK-dependent mitochondrial death
pathway. Of note, extracellular ubiquitin also inhibited β-
AR-stimulated activation of GSK-3β, and inhibition of PI3-
kinase using wortmannin reversed the protective effects of
extracellular ubiquitin [52], suggesting the possibility that
extracellular ubiquitin may signal via β1 integrins. Co-
immunoprecipitation studies demonstrated physical asso-
ciation of MMP-2 with β1 integrins in ARVM. β-AR
stimulation increased the level of interaction between these
two proteins, while inhibition of MMP-2 using SB3CT or
stimulation of β1 integrin signaling using laminin inhibited
β-AR-stimulated interaction of MMP-2 with β1 integrins
[61]. It is likely that physical interaction of MMP-2 with β1
integrins may interfere with the survival signals induced by
β1 integrins, leading to apoptosis.

5. Conclusion

Catecholamines play an important role in remodeling of
the heart, when the heart is subjected to pathophysiological
stressors. β1-AR and β2-AR coupled to Gαs exert a pro-
apoptotic action via a cAMP-dependent mechanism which
appears to involve mitochondria and ROS and is associated
with the activation of JNK and GSK-3β. Pro-apoptotic action
of β1-AR may involve activation of CaMKII. Conversely,
β2-AR coupled to Gi exerts an anti-apoptotic action which
is mediated by PI3-kinase/Akt (Figure 1). Elucidation of
processes that can shift the balance from apoptosis to cell
survival during chronic β-adrenergic stimulation may have
important clinical implications. Identification of molecular
targets involved in the activation of JNKs and GSK-3β
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following β-AR stimulation and understanding how these
kinases activate mitochondrial death pathway may provide
new targets for prevention of heart failure. β1 integrins
play an important role in chronic β-AR-stimulated cardiac
myocyte apoptosis and myocardial remodeling via the
involvement of FAK and PI3-kinase/Akt pathways (Figure 2).
The structural changes in myocardial ECM are considered
to play an important role in the modulation of myocardial
function and in the progression to heart failure. Analysis of
components of ECM, including laminin, collagen type I and
IV, and fibronectin, may provide insights into the regulation
of heart function by β1 integrins. Further studies aimed at
determining the molecular mechanism by which interaction
of MMP-2 with β1-integrins affects β-AR-stimulated apopto-
sis in cardiac myocytes may have important implications for
the regulation of myocyte survival.
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