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Abstract: Giardia duodenalis (syn. G. intestinalis, or G. lamblia) is a leading cause  

of waterborne diarrheal disease that infects hundreds of millions of people annually. 

Research on Giardia has greatly expanded within the last few years, and our understanding 

of the pathophysiology and immunology on this parasite is ever increasing. At peak 

infection, Giardia trophozoites induce pathophysiological responses that culminate in the 

development of diarrheal disease. However, human data has suggested that the intestinal 

mucosa of Giardia-infected individuals is devoid of signs of overt intestinal inflammation, an 

observation that is reproduced in animal models. Thus, our understanding of host inflammatory 

responses to the parasite remain incompletely understood and human studies and experimental 

data have produced conflicting results. It is now also apparent that certain Giardia infections 

contain mechanisms capable of modulating their host’s immune responses. As the oral route 

of Giardia infection is shared with many other gastrointestinal (GI) pathogens, co-infections 

may often occur, especially in places with poor sanitation and/or improper treatment of 

drinking water. Moreover, Giardia infections may modulate host immune responses and have 

been found to protect against the development of diarrheal disease in developing countries. 

The following review summarizes our current understanding of the immunomodulatory 
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mechanisms of Giardia infections and their consequences for the host, and highlights areas 

for future research. Potential implications of these immunomodulatory effects during GI  

co-infection are also discussed. 

Keywords: Giardia duodenalis; host-parasite interactions; diarrheal disease;  

inflammation; immunomodulation 

 

1. Introduction 

Infections caused by the protozoan parasite Giardia duodenalis (syn. G. intestinalis, G. lamblia) are 

a major cause of waterborne diarrheal disease worldwide, and are estimated to cause ~280 million 

infections annually [1]. However, the advent of molecular assays with higher sensitivity for Giardia 

trophozoites and cysts suggests this number may be underestimated [2,3]. This parasite has long been 

overlooked for its ability to cause diarrheal disease, and it was not until the 20th century that it was 

definitively identified as a causative agent of infectious diarrheal disease [4]. Giardia is now included 

on the WHO’s Neglected Disease Initiative [5], and research on Giardia appears to be increasing [6].  

At the height of infection, Giardia trophozoites induce pathophysiological processes that result in  

a malabsorptive diarrheal disease (reviewed in [7]). Symptoms classically associated with Giardiasis 

include diarrhea, abdominal pain, nausea, vomiting, and anorexia. However, infected individuals can 

also develop extra-intestinal and post-infectious complications [8,9]. Chronic extraintestinal sequelae 

may affect the joints, the skin, the eyes, and even the central nervous system, and the mechanisms are 

unknown [8,9]. For reasons that remain obscure, Giardia infections cause a spectrum of symptoms 

ranging from asymptomatic carriage through to chronic diarrheal disease [10]. Although chronic Giardia 

infection tends to occur in immunocompromised individuals, it has been reported in patients without 

obvious immunodeficiency (reviewed in [10]). In addition, asymptomatic infection has been observed 

in developed countries following re-infection with the same isolate [11]. Giardia is currently subdivided 

into eight distinct genetic assemblages labelled as assemblage “A” through “H” [12,13]. Humans are 

susceptible to infection from assemblage “A” and “B” isolates. Some studies have suggested that symptom 

development may in part be assemblage-dependent, but results are largely inconclusive [14–18]. 

However, in vivo studies in mice have demonstrated differences in the pathogenicity of assemblage A 

and B isolates [19], and genomic analysis of assemblage A and B isolates indicates substantial disparity 

between the two groups [20,21]. This has led to the proposition that assemblage “A” and “B” Giardia 

isolates are actually unique Giardia species, a topic of ongoing debate in the scientific literature [20,22]. 

Our understanding of the pathophysiology and immunity in giardiasis is drastically improving, yet 

discrepancies in study results persist and much remains to be learned [23–26]. Several parasites are 

known to affect various aspects of their host’s pro-inflammatory responses [27,28], and recent findings 

indicate that Giardia actively modulates host inflammatory responses (as referenced below). This is 

particularly important when considering that this parasite is often found in association with a variety of  

pro-inflammatory gastrointestinal (GI) pathogens. The purpose of this review is to summarize our current 

understanding surrounding the immunomodulatory mechanisms of Giardia and discuss potential 

consequences of this phenomenon during GI co-infection.  
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2. Does Giardia duodenalis Induce Pro-Inflammatory Responses? 

The GI mucosal barrier is comprised of two main components: a secreted mucus layer and the intestinal 

epithelium. This structure restricts luminal contents, including various exogenous and endogenous antigens, 

from contacting underlying host tissues and, subsequently, inducing GI pro-inflammatory responses 

(reviewed in [29,30]). Dysfunction of the GI mucosal barrier is observed in chronic GI inflammatory 

states, such as Crohn’s disease, and contributes to disease progression [31,32]. Moreover, a broad variety 

of GI pathogens induce GI barrier dysfunction during infection [33,34]. It has been well established that 

Giardia infections cause intestinal barrier dysfunction via a variety of mechanisms, including activation 

of myosin light chain kinase and increased rates of intestinal epithelial apoptosis [35–39]. At the height 

of infection, parasite numbers exceed 106 trophozoites per centimetre of gut; coupled with increases in 

intestinal permeability, it is possible that the presence of copious amounts of exogenous parasitic 

material could induce pro-inflammatory intestinal responses via translation to subepithelial spaces.  

In addition, it has recently been suggested that certain G. duodenalis isolates may be capable of invading 

into host tissues in in vivo gerbil models [40]. Despite this, evidence supporting the development of any 

overt inflammatory response is lacking, and human studies and experimental research have produced 

conflicting results. Histological analysis of Giardia-infected individuals and in vivo Giardia muris 

infections shows small intestinal mucosal tissues are devoid of signs of significant inflammation [41–44]. 

Small increases in intra-epithelial lymphocyte numbers and mast cell hyperplasia post-infection have 

been observed [45]. Microarray analysis of jejunal tissues from assemblage E-infected cattle 

demonstrated downregulation of genes associated with inflammatory and immune responses, as well as 

immune cell migration; this was associated with increased expression of the anti-inflammatory 

transcription factor peroxisome proliferation activation receptor γ (PPARγ) [46]. Moreover, co-incubation 

in vitro of intestinal epithelial monolayers and assemblage A Giardia trophozoites does not produce  

pro-inflammatory cytokines and/or chemokines [47,48]. Rather, microarray analysis from studies in vitro 

demonstrated that assemblage A G. duodenalis induces a chemokine profile that is different from the 

host responses commonly seen with other GI pathogens, whereby parasites significantly increased 

mRNA levels of CCL2, CCL20, and CXCL1-3 [49]. In children populations from developing countries, 

Giardia infections also have been found to reduce the incidence of diarrheal disease and fever, and 

decrease serum C-reactive protein (CRP) levels, which is a common marker of inflammation [50]. 

Together, the data available to date would indicate that Giardia infections fail to induce, and perhaps 

downregulate, factors associated with intestinal inflammatory responses within its hosts. 

However, findings from some human studies and experimental evidence suggest that Giardia infections 

may induce pro-inflammatory intestinal responses. Subsets of human patients with chronic assemblage 

B infection were shown to develop microscopic duodenal inflammation and displayed elevated fecal 

calprotectin levels [51]. Experimental infections in vivo with G. duodenalis assemblage B have been 

associated with post-infectious neutrophil (polymorphonuclear leukocyte, PMN) infiltration in the 

terminal ileum [52] or even more robust intestinal inflammatory responses [53]. Excretory/secretory 

products from these assemblage B trophozoites activated pro-inflammatory mitogen activated protein 

kinase (MAPK) and nuclear factor of κB (NF-κB) signaling pathways in intestinal epithelial monolayers 

and produced pro-inflammatory cytokines and chemokines, including tumor necrosis factor α (TNF-α) 

and the potent PMN chemoattractant interleukin-8 (CXCL8) [54]. In addition, reports examining human 
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patients [55,56] and ruminants [57] suggested that at least some Giardia infections may cause eosinophilia; 

this was also shown in in vivo infections whereby Giardia assemblage B H3 infections [58] or parasite 

excretory/secretory products [59] caused intestinal recruitment of eosinophils. It is interesting that in 

vivo and in vitro experimental data suggest assemblage B isolates induce intestinal pro-inflammatory 

responses, while similar observations have not been demonstrated for assemblage A isolates, or with 

Giardia muris infections in vivo. Some reports correlate assemblage B infections with more severe 

symptomatology, while others have suggested the same for assemblage A infections [14–17]. More 

research is needed to determine whether assemblage B infections may indeed induce intestinal 

inflammatory responses and more severe diarrheal disease. The differences between the pro-inflammatory 

capabilities of assemblage A and B Giardia isolates warrant further investigation. 

3. Polymicrobial GI Infections Involving Giardia 

The above observations that Giardia infections may or may not induce pro-inflammatory intestinal 

responses also need to be considered in the context of GI co-infections. Giardia infections occur upon 

ingestion of contaminated food or water, or directly via the fecal-oral route (reviewed in [60]). This 

method of acquisition is common to various GI pathogens, and, therefore, can easily result in polymicrobial 

GI infections in the appropriate setting. Due to poor hygiene and lack of appropriate water treatment 

facilities, polymicrobial infections are more frequently observed in developing countries but can also 

occur within developed countries [61,62]. Infections are more likely to cause symptomatic infection in 

individuals living in developed countries compared to those living in developing countries [63,64]. 

Indeed, Giardia infections have been reported concurrently with pro-inflammatory pathogens such as 

Helicobater pylori, Vibrio cholera, enteropathogenic Escherichia coli, norovirus, and rotavirus [65–68], 

and others have found Giardia infections in association with Ascaris sp., Cryptosporidium sp., 

Clostridium difficile, and Salmonella sp. [69–71]. However, our knowledge of polymicrobial GI 

infections and intestinal inflammatory responses involving Giardia is poorly understood, and, to date, 

much evidence is anecdotal. Several human studies suggest that Giardia infections may protect against 

the development of diarrheal disease and, potentially, the development of intestinal inflammatory 

responses [72]. Tanzanian children infected with Giardia were shown to have reduced incidence of 

diarrheal disease and fever, and lower serum C-reactive protein levels [50]. However, this study did not 

look for the presence of polymicrobial GI infections. Giardia infections in humans have also been 

associated with other GI pathogens or identified in control patients not experiencing diarrhea [67]. 

Giardia infections may reduce the severity of symptoms associated with rotavirus infection [68], yet 

separate studies have suggested that Giardia infections enhanced the severity of rotavirus infection [73]. 

To date, we have no scientific explanation for these observations. Apart from a single in vivo study 

showing acute intestinal infection with Trichinella spiralis increases host susceptibility to Giardia GS/M 

infection [74], in vivo polymicrobial infections involving Giardia parasites have not been examined. 

4. Giardia and Immunomodulation 

Accumulating experimental evidence suggests that Giardia infections are also capable of modulating 

pro-inflammatory responses to other stimuli via several mechanisms. Observations that Giardia infections 

can protect against the development of diarrheal disease are consistent with the immunomodulatory 
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capabilities of the parasite. Indeed, acute GI inflammatory responses represent a collection of cellular 

and humoral effector responses and involve a variety of different cell types and mediators; several of 

these have been shown to contribute to the development of diarrheal disease. For example, infection with 

enterohaemorrhagic E. coli causes chloride hypersecretion, a major driving force for diarrheal disease, 

via mechanisms that require PMN infiltration [75]. Research has demonstrated that certain Giardia 

infections are capable of attenuating recruitment of pro-inflammatory leukocytes and decreasing nitric 

oxide (NO) production (as referenced below). In addition, evidence is accumulating that Giardia 

infections may modulate other pro-inflammatory events. However, these mechanisms have not been 

fully characterized. The following sections will describe the immunomodulatory mechanisms of Giardia 

and describe how this may result in the attenuation of diarrheal disease during GI co-infection. 

4.1. Giardia and the Intestinal Mucus Layer 

The entire GI tract is lined with a layer of mucus of varying thickness with a structural backbone 

comprised of mucin glycoproteins dissolved in luminal water. In the colon, this layer can be further 

subdivided into two separate layers: a dense, inner mucus layer largely devoid of bacterial populations 

and an outer, loosely packed outer layer containing various bacterial populations [76,77]. In the intestinal 

tract, the primary mucus constituent is the mucin-2 (MUC2) protein [76–78]. Preliminary research in 

our lab has demonstrated in vivo Giardia assemblage B GS/M isolate infections in mice damages the 

small intestinal mucus layer by degrading the MUC2 protein and inducing the hypersecretion of mucus 

in the small intestine and colon, resultantly leading to mucin depletion from goblet cells; this culminated 

in a weakened mucus layer and facilitated disease (unpublished data). Furthermore, studies monitoring 

mucus disruption during in vivo Giardia GS/M infections have observed an increase in bacterial translocation 

across the epithelial barrier, but this was not associated with an increase in pro-inflammatory markers at 

the point of acute infection [52]. Separate in vivo studies have demonstrated that pro-inflammatory 

enteropathogens, such as H. pylori, Entamoeba histolytica, and Trichuris muris, alter the mucus layer 

and this contributes to the initiation or exacerbation of GI disease [79–82]. Similarly, modulation or 

aberrant assembly of the mucus layer is often associated with intestinal inflammation and increased 

expression of pro-inflammatory cytokines including interleukin (IL)-1β, IL-4, IL-6, CXCL8 IL-13, and 

TNF-α [83–86]. Finally, in vivo studies using mice devoid of Muc2 have revealed that the mucus layer 

plays an important role in protection against GI infection from pro-inflammatory enteropathogens, such 

as E. histolytica and T. muris, and deletion of this gene results in exacerbated intestinal inflammatory 

responses [87–89]. Similarly, disruption or aberrant expression of MUC2 has been observed in patients 

with chronic intestinal inflammatory disorders, such as ulcerative colitis [90–92]. Collectively, these 

results demonstrate that disruption of the intestinal mucus layer is largely associated with GI 

inflammation. It remains to be determined why disruption of the mucus layer during Giardia infections 

fails to elicit pro-inflammatory intestinal responses. Moreover, it remains to be seen how Giardia  

co-infections may alter host pro-inflammatory responses and/or alter susceptibility to co-infecting  

GI pathogens. 
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4.2. Giardia and Neutrophil Recruitment 

The tissue accumulation of polymorphonuclear leukocytes or neutrophils (PMNs) is a hallmark of 

numerous bacterial, viral, and parasitic GI infections. PMNs are myeloid-derived innate immune cells 

essential to host defence against a variety of bacterial and fungal pathogens, and they possess various  

anti-microbial mechanisms, including the ability to phagocytose infectious agents, secrete anti-microbial 

proteases, and release neutrophil extracellular traps (NETs) (reviewed in [93]). In the absence of  

pro-inflammatory stimuli, PMNs are kept in a non-activated state within the bone marrow and circulation. 

During an acute inflammatory response, increased expression and production of PMN chemoattractants 

promotes PMN activation and recruitment into tissues, including the GI tract (reviewed in [94,95]). 

Certain PMN chemoattractants are capable of inducing the transepithelial migration of PMNs; this 

process occurs following PMN contact with the basolateral surface of the intestinal epithelium and 

results in functional changes to both PMNs and intestinal epithelial cells (IECs) [96]. Importantly, PMN 

infiltration can induce pathophysiological responses that result in water and solute loss and, hence, 

diarrheal disease, and in vivo and in vitro experiments have suggested this may involve PMN-mediated 

intestinal barrier dysfunction and/or anion secretion [75,97–99]. Collectively, these results demonstrate 

the importance PMNs have in contributing to diarrheal disease. 

Recent studies have shown that Giardia infections may attenuate intestinal PMN recruitment. 

Notably, these observations have been recorded with assemblage A, the genotype that has been 

postulated not to induce overt intestinal pro-inflammatory responses (see above). For example, Giardia 

assemblage A decreased granulocyte infiltration and cytokines and chemokines involved in PMN 

recruitment after intra-rectal instillation of pro-inflammatory Clostridium difficile toxin A/B; these 

effects were not observed with in vivo Giardia assemblage B GS/M infections [100]. This study was 

also the first to demonstrate that co-incubation of Giardia trophozoites with inflamed colonic mucosal 

biopsy tissues from patients with active Crohn’s disease decreased supernatant levels of numerous  

pro-inflammatory mediators, including those involved in PMN recruitment [100]. Further studies went 

on to identify potential immunomodulatory molecules involved in this process. The findings 

demonstrated that assemblage A Giardia cathepsin B (catB) cysteine proteases degraded CXCL8 

induced by pro-inflammatory interleukin-1β, or by Salmonella enterica serovar Typhimurium, and 

attenuated CXCL8-induced PMN chemotaxis; these effects were not observed with assemblage B GS/M 

trophozoites at early time points and, potentially, occur via different mechanisms [101]. These studies 

highlight a hitherto unidentified anti-inflammatory capability for Giardia infections and, more 

specifically, Giardia catB proteases. Another recent study shows that these catB cysteine proteases may 

also be implicated in the degradation of epithelial villin [102]. Otherwise, very little is known about the 

function of Giardia cathepsin cysteine proteases (Box 1). 



Pathogens 2015, 4 770 

 

 

Box 1. Giardia cathepsin cysteine proteases. 

The term cathepsin was initially used to describe proteases active in a lightly acidic environment. 

However, as genome sequencing of different species has progressed, it has become evident that not 

all cathepsin-like proteases are active at an acidic pH. Cathepsin cysteine proteases consist of 

a catalytic diad of a cysteine and a histidine residue, whereby the histidine residue donates an electron 

to the cysteine residue to make it a stronger nucleophile (reviewed in [103]). Cathepsin cysteine 

proteases are divided down into two superfamilies: the cathepsin-L(catL)-like and the cathepsin-B-

like superfamilies. Cathepsin B-like cysteine proteases contain a unique ~20-amino-acid insertion 

referred to as the occluding loop; this structure allows the protease to function as an endo- and 

exopeptidase. The Giardia genome contains genes for numerous catB and catL proteases [104]. 

Interestingly, the Giardia catB protein appears to lack the occluding loop present in human catB [105]. 

Prior to an immunomodulatory role for Giardia catB proteases, very little was known about Giardia 

cathepsin cysteine proteases. Indeed, it was demonstrated that these factors were upregulated 

following exposure to in vitro intestinal epithelial monolayers and they played a role in parasite 

encystation and excystation [106]. Ongoing research has demonstrated that Giardia cathepsin-like 

cysteine proteases induce the myosin light chain kinase (MLCK)-mediated breakdown of cytoskeletal 

villin [102]. Future studies should continue to elucidate the role of Giardia cathepsin cysteine 

proteases in disease and their regulation within the parasite For example, Toxoplasma gondii catB 

proteases actually require catalytic activation via the parasite’s catL proteases [107]. It remains to be 

seen whether similar effects are observed with Giardia catB proteases. 

The construction of preliminary phylogenetic trees using ClustalW [108] for Giardia cathepsin B 

(catB) (Figure 1) and cathepsin L (catL) (Figure 2) cysteine proteases of sequenced parasite isolates used 

in our above study (see Cotton et al [101]) suggests certain parasite isolates may contain unique catB 

proteases; this may explain differences in the ability of parasites to degrade CXCL8. However, it should 

be noted that sequencing of Giardia genomes is incomplete and, therefore, construction of these 

phylogenetic trees requires re-analysis following their completion. These data may lend credence to the 

hypothesis that certain Giardia isolates may possess unique immunomodulatory cathepsin cysteine 

proteases. The utilization of these phylogenetic trees in association with the Cre/loxP system in Giardia 

trophozoites [109] may aid in the identification of immunomodulatory functions of cathepsin cysteine 

proteases. In addition, it remains to be determined whether Giardia catB proteases modulate or degrade 

other cytokines or chemokines, as indicated by the above observations that G. duodenalis trophozoites 

reduce tissue concentrations of numerous cytokines and chemokines released from inflamed colonic 

mucosal biopsy tissues [100]. Indeed, other parasites use cathepsin-like cysteine proteases to modulate 

host immune responses via the alteration of cytokines or chemokines (reviewed in [105,110]). For 

example, Entamoeba histolytica cysteine proteases alter interleukin-18 [111] and the end-target PMN 

chemokine C5a [112]. As a result, future studies could investigate other pro-inflammatory mediators 

targeted by Giardia cathepsin cysteine proteases. 
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Figure 1. Phylogenetic tree and bootstrap values of Giardia WB and Giardia GS/M cathepsin B cysteine proteases. Proteases were compared 

against human, bovine, mouse, rat, Schisotoma mansonii, Leishmania major, L. donovani, L. chagasi, Trypanosoma brucei, and T. cruzi catB 

cysteine proteases. Alignment and phylogenetic trees of cathepsin B cysteine proteases were assembled using ClustalW and CLC Sequence 

Viewer (Qiagen). These observations indicate that Giardia isolates may contain unique catB cysteine proteases. 
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Figure 2. Phylogenetic tree and bootstrap values of Giardia WB and Giardia GS/M cathepsin L cysteine proteases. Proteases were compared 

against human, bovine, mouse, rat, Schisotoma mansonii, Leishmania major, and L. chagasi catL cysteine proteases. Alignment and 

phylogenetic trees of cathepsin L cysteine proteases were assembled using ClustalW and CLC Sequence Viewer (Qiagen). 
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CXCL8 is primarily secreted basolaterally by IECs to recruit extravasated PMNs to the basolateral 

membrane of the intestinal epithelium so subsequent signals can, if necessary, promote PMN 

transepithelial migration [113–115]. Therefore, the immunomodulatory capability of Giardia cathepsin 

cysteine proteases implies that these must be delivered to the basolateral surface of the intestinal 

epithelium. In the studies discussed above, apical-to-basolateral translocation of cysteine proteases 

occurred when Giardia trophozoites and Caco-2 monolayers were co-incubated with Salmonella 

enterica serovar Typhimurium [101]. These results may also suggest that delivery of immunomodulatory 

cathepsin cysteine proteases can be facilitated by the presence of S. Typhimurium. Another study 

demonstrated that co-incubation of Giardia trophozoites, intestinal epithelial monolayers, and 

macrophage-like IC-21 cells in vitro resulted in basolateral attenuation of CXCL8 [116]; this study did 

not investigate causal mechanisms. As macrophages are known to increase intestinal epithelial 

permeability [117], more research is needed to assess whether and how the interaction between parasites, 

IECs, and immune cells may facilitate the apical-to-basolateral migration of immunomodulatory Giardia 

catB proteases. 

Modulation of Neutrophil Recruitment and Co-Infections 

It is well established that individuals with genetic mutations resulting in defective PMN function are 

highly susceptible to bacterial and fungal infection [118–120], and similar events have been observed 

during certain experimental GI infections. For example, in vivo depletion of PMNs increases mortality 

due to C. difficile infection [121,122], while intestinal PMN influx reduces pathogen burdens from the 

attaching and effacing pathogen Citrobacter rodentium and protects against pathogen-induced  

diarrheal disease [123]. In contrast, other reports indicate that GI inflammatory responses and PMN 

infiltration may increase susceptibility to GI infection, and it has been postulated that the development 

of GI inflammatory responses disrupts resident microbiota populations, which in turn aides pathogen 

colonization [124]. Research has shown that S. Typhimurium outcompetes the host’s resident microbiota 

during intestinal inflammatory responses to facilitate its colonization [125–128]. Similarly, attenuated 

PMN recruitment in vivo reduces colonization by Campylobacter jejuni [129] and C. rodentium [130]. 

In addition, PMN recruitment has been shown to aggravate experimental colitis [131]; this may occur 

via the PMN's ability to induce protective responses within IECs via the induction of hypoxia-inducible 

factor (HIF) [132] or the secretion of interleukin-22 (IL-22) [133]. In this context, the above observations 

that certain Giardia infections modulate PMN recruitment require further investigation in the context of 

GI co-infection. Specifically, experiments need to ascertain whether Giardia-mediated modulation of 

PMN recruitment into intestinal tissues is of benefit or detriment to a host co-infected with another GI 

pathogen. This may, ultimately, be dependent upon the co-infecting GI pathogen. 

4.3. Giardia and L-Arginine 

L-arginine is utilized for a variety of cellular processes and signaling events; it is incorporated into 

various proteins and is a precursor substrate for various other molecules [134]. During homeostasis,  

L-arginine levels are maintained by endogenous production in the intestine and kidneys [134]. Several 

pathogens have been found to compete with their host for L-arginine during infection, and, therefore, 

exogenous sources of the amino acid are required in these instances [135]. Indeed, L-arginine is a 
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primary source of energy for Giardia trophozoites [136], and restoration of host arginine levels via 

ornithine supplementation during oral rehydration therapy has been proposed to be beneficial in the 

treatment of symptomatic giardiasis [137]. Nitric oxide (NO) is also important in prompt parasite 

eradication in in vivo G. duodenalis infections in mice [138–140]. Following exposure to intestinal 

epithelial monolayers, Giardia trophozoites quickly upregulate the expression of two enzymes: arginine 

deiminase and ornithine carbomyl transferase (OCT). These enzymes are important in parasite arginine 

metabolism and effectively outcompete host enzymes [141,142]. Depletion of L-arginine levels has been 

shown to affect multiple cellular processes and results in the modulation of host immune responses; this 

includes decreased production of nitric oxide, modulation of T-cell and dendritic cell function, and 

cessation of intestinal epithelial proliferation (discussed below). 

Parasite Arginine Consumption Inhibits NO Production 

NO production is initiated by the enzymatic conversion of L-arginine into L-citrulline by three nitric 

oxide synthase (NOS) isoforms: neuronal NOS (nNOS or NOS1), inducible NOS (iNOS or NOS2), or 

endothelial NOS (eNOS or NOS3) [143]. In IECs, NO is largely produced by iNOS, and is upregulated 

following exposure to various host- or pathogen-derived pro-inflammatory stimulatory processes [144,145]. 

NO has anti-microbial activity against numerous bacterial and parasitic pathogens [146–148], and in vitro 

experiments have demonstrated NO and its end-products are cytostatic to Giardia trophozoites and 

inhibit their encystation and excystation [48,141]. Exposure to parasites resulted in the initial 

upregulation of iNOS mRNA in in vitro intestinal epithelial monolayers [149], but human studies suggest 

that infection may also result in the downregulation of iNOS expression [150]. L-arginine consumption 

by Giardia trophozoites prevents the IEC-mediated production of iNOS-mediated NO production [48,141]. 

Moreover, assemblage A and B Giardia trophozoites produce a flavohemoglobin capable of degrading 

NO and attenuating T-cell proliferation [149]. Collectively, these results demonstrate that Giardia 

trophozoites possess multiple mechanisms aimed at decreasing their exposure to NO. 

It remains to be determined how the consumption of L-arginine and the concomitant loss of NO during 

Giardia infections may contribute to the modulation of host immune responses and/or susceptibility to 

co-infecting GI pathogens. Indeed, NO has multiple roles in modulating host immune responses and 

targeting GI pathogens. For example, animals deficient in iNOS are highly susceptible to infection with 

Listeria monocytogenes [151]. Separately, in vivo models of colitis have shown that the activation of 

iNOS and the subsequent NO production contribute to the resolution of inflammation [152] and attenuate  

pro-inflammatory responses [153]. In contrast, genetic deletion or pharmacological inhibition of iNOS 

has been shown to protect against dextran sodium sulfate (DSS)-induced colitis [154,155]. These results 

suggest that the immunomodulatory capacity of iNOS and NO may depend on the model of GI 

inflammation. Additional experiments are required to determine how the Giardia-mediated inhibition of 

NO production may, potentially, modulate host inflammatory responses and/or susceptibility to GI 

infection. It has also been demonstrated that NO production during GI infection can induce anion 

secretion and, therefore, cause diarrheal disease [156]. However, NO has also been shown to inhibit 

intestinal trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) protein in 

intestinal epithelial monolayers and, therefore, may inhibit anion secretion [157]. As numerous GI 
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pathogens induce NO, it is possible that Giardia infections protect against the development of diarrheal 

disease via this mechanism. However, additional studies are required to confirm this hypothesis. 

4.4. Intestinal Epithelial Cell Death 

Changes in intestinal epithelial cellular proliferation are essential responses to GI infection and 

facilitate the removal of damaged and/or pathogen-infected cells; however, GI pathogens can alter the 

kinetics of epithelial cell death and turnover to facilitate their colonization and subsequent invasion 

(reviewed in [158–161]). For example, enteroinvasive Escherichia coli, Salmonella sp., and Shigella sp. 

initially suppress and, subsequently, induce various forms of intestinal epithelial cell death to facilitate 

replication and dissemination within their host, respectively; this can be associated with the activation 

of pro-survival pathways such as the NF-κB pathway [162–166]. Giardia infections can inhibit intestinal 

epithelial proliferation and, subsequently, induce intestinal epithelial apoptosis; however, the 

pathophysiological processes may differ from those of other GI pathogens discussed above. L-arginine 

is involved in cellular proliferation via its conversion into polyamines [167], and Giardia arginine 

deiminase-mediated consumption of arginine has been associated with the inhibition of in vitro IEC 

proliferation [137]; this consumption was proposed to reduce intestinal epithelial cell turnover and create 

a more stable environment for the parasite [137]. Contrastingly, increases in intestinal epithelial 

proliferation have been reported in in vivo G. duodenalis GS/M mouse infections [168]; therefore, it 

remains to be determined whether the consumption of arginine by parasites inhibits IEC proliferation. 

Other reports have demonstrated that Giardia trophozoites induce IEC apoptosis via the activation of 

cysteinyl asparate proteases (caspases) through mechanisms that remain incompletely understood [35,37,39]. 

However, it remains to be determined how these pathophysiologic processes induced by Giardia 

potentially modulate host immune responses and their interaction during GI co-infections. It is possible 

that Giardia-mediated upregulation of intestinal epithelial cell death may increase the expulsion of  

co-infecting GI pathogens. It is also currently unknown whether Giardia trophozoites modulate  

pro-inflammatory signaling cascades, such as the NF-κB pathway, in IECs to delay the induction of cell 

death. Caspase proteins inactivate or degrade various proteins associated with the NF-κB signaling 

cascade [169–171]. Research needs to determine whether Giardia may degrade pro-inflammatory 

transcription factors, thereby preventing bacterial pathogens from initially inhibiting cell death cascades 

within IECs to allow for their replication prior to dissemination into deeper host tissues. 

4.5. Dendritic Cells 

Dendritic cells (DCs) are essential to the induction of adaptive immune responses and/or tolerance. 

Following their activation, DCs become immunogenic antigen-presenting cells capable of promoting the 

expansion and differentiation of naïve T-cells into effector T-cells via a three-step process. DCs consume 

and process antigen, couple it to major histocompatibility complexes (MHC), and, subsequently, present 

this to naïve T-cell populations; in addition, DCs also use co-stimulatory molecules, such as CD80 and 

CD86, and produce mediators, such as cytokines, to influence the differentiation of naïve T cells in 

various subsets (reviewed in [172,173]). Within the GI tract, especially in the distal small intestine, DCs 

directly sample luminal contents via the extension of dendrites between adjacent IECs [174,175]. 

Research to date has produced conflicting results on how Giardia trophozoites affect DC activation and 
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their ability to induce and/or modulate effector immune responses. The co-incubation of Giardia 

assemblage B GS/M trophozoite extracts and murine bone marrow-derived DCs in vitro resulted in the 

upregulation of co-stimulatory CD40, and to a lesser extent, CD80 and CD86; moreover, these extracts 

altered DC responses to toll-like receptor (TLR) ligands, whereby parasites reduced the expression of 

MHC Class II, CD80, and C86, decreased the secretion of IL-12, and enhanced IL-10 production via 

activation of the PI3K pathway [176]. In contrast, separate experiments found that the Giardia homolog 

of immunoglobulin protein (BiP) triggered the expression of MHC Class II molecules and concomitantly 

resulted in the secretion of TNFα, IL-12, and IL-6 via several pro-inflammatory signaling cascades in in 

vitro murine dendritic cells [177]. Experiments using assemblage A Giardia WB trophozoites 

demonstrated that the parasite decreases the production of IL-12p40, IL-12p70, and IL-23 by human DC 

in vitro and the expression of co-stimulatory molecules and human leukocyte antigen (HLA) DR  

(HLA-DR) while enhancing the production of anti-inflammatory IL-10; interestingly, DCs incubated with 

these parasites and concurrently exposed to TLR2 ligands enhanced IL-12p40, IL-23, and IL-10 

production [178]. Separately, arginine depletion induced by the same parasite isolate was shown to 

reduce the surface expression of CD83 and CD86, decrease the secretion of IL-10 and IL-12p40, and 

enhance TNFα production in in vitro human DCs [179]. In other experiments, the in vitro co-incubation 

of bovine DCs and a mixture of Giardia assemblage A and E trophozoites resulted in elevated MHC 

Class II molecules, TGF-β, TNFα, IL-10, and IL-4; these DCs are able to induce T-cell proliferation [180]. 

Collectively, these results demonstrate that Giardia trophozoites are capable of modulating DC cell 

function. Future studies should compare and contrast DC function and activation following exposure to 

different Giardia isolates and assemblages. 

4.6. Macrophages 

Ongoing research has demonstrated these macrophages change their function based on endogenous 

and exogenous stimuli within the local tissue environment; this also results in the altered expression of 

several surface markers and leads to their classification into subgroups, commonly known as M1 and 

M2 macrophages [181,182]. M1 macrophages have been labelled as “inflammatory macrophages” that 

produce various inflammatory mediators and molecules, such as TNFα, whereas the M2 macrophage 

phenotype is often thought to antagonize host pro-inflammatory responses, including the production of 

nitric oxide, and can result in the expression of Arginase-1 [183]. However, current research suggests 

these cell types do not exist as distinct entities, but rather as a continuum of differing phenotypes [184]. 

To date, very little research has examined how Giardia infections modulate macrophage phenotypes 

during infection, and only one study has shown that in vivo Giardia assemblage B infections result in 

the accumulation of macrophages positive for both NOS2 and Arginase-1 [185]. Additional research is 

required in order to investigate how Giardia infections induce this unique macrophage phenotype, and, 

moreover, whether these macrophages are observed during human Giardia infections or in vivo assemblage 

A or Giardia muris infections. Future studies are also required to assess whether a Giardia-induced 

switch to macrophage phenotype, if present, may alter susceptibility to GI co-infection. As individuals 

with mutations in cytokines associated with M1 macrophage polarization are more susceptible to 

infection by numerous microorganisms [186,187], Giardia-induced changes to macrophage phenotypes 

may significantly affect susceptibility to a variety of infections. For example, the intracellular replication 
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of S. Typhimurium is greatly impaired in monocyte-derived macrophages with an M1 phenotype [188]. 

Moreover, macrophage Arginase-1 expression has been found to limit helper Th2-mediated immune 

responses and fibrosis during in vivo Schistosoma mansonii infection [189]. Collectively, these studies 

highlight the need for additional research examining the interaction between Giardia and host macrophages. 

5. Giardia and Distant Site Co-Infections 

Although this review is focused on the immunomodulatory effects of Giardia in GI tissues and its 

potential effects on host responses during GI co-infection, it is important to also consider whether this 

parasite may alter host immune responses to microbial pathogens at distant organ sites. Such effects have 

been observed with soil-transmitted helminth infections modulating host immune responses to various 

pathogens, including Plasmodium sp., Mycobacterium tuberculosis, and human immunodeficiency virus 

(HIV) (reviewed in [190]). It is possible that the immunomodulatory mechanisms of Giardia may also 

modify host responses to other pathogens. Human studies have demonstrated that Giardia infections 

reduce serum levels of serum CRP [50], thereby indicating that these infections are capable of modulating 

systemic immune responses. However, studies have not examined whether Giardia infections modulate 

systemic immune responses to microbial pathogens at distant tissue sites. Currently, a few studies have 

demonstrated that Giardia infections can be observed in association with blood-borne parasites, such as 

Plasmodium sp. [191] and Leishmania sp. [192]. In addition, individuals with immune deficiencies, such 

as HIV/AIDS, may be more susceptible to Giardia infection [193–195]. However, our understanding of 

how immunomodulatory mechanisms employed by Giardia may alter infection dynamics is poor, and 

research is this field is sorely needed. 

6. Summary 

Our understanding of Giardia infections is continually improving, and it is now apparent that 

parasites possess multiple mechanisms capable of modulating host intestinal inflammatory responses, 

yet much remains to be uncovered (Figure 3). Moreover, human studies indicate that infections can be 

commonly found in association with other pro-inflammatory GI pathogens, especially in developing 

countries, and, in certain instances, infections have been shown to protect against the development of 

diarrheal disease. It remains to be causally demonstrated whether the parasites' immunomodulatory 

mechanisms are responsible for the attenuating diarrheal disease within their host. Therefore, future 

studies need to assess the immunomodulatory mechanisms of Giardia infections in the context of the 

attenuation of diarrheal disease. Interestingly, experimental evidence to date suggests that certain 

immunomodulatory capabilities of the parasite are associated with different Giardia assemblages, and 

future research needs to assess whether similar effects are observed in humans. These observations may 

lend further support to the discussion on Giardia assemblage A and B speciation. Finally, it remains to 

be seen whether Giardia infections are capable of modulating systemic immune responses or immune 

responses at distant organ tissues. As the highest incidence rates of Giardia infections geographically 

overlap with various other microbial pathogens, future research needs to consider whether Giardia 

infections modulate host immune responses to pathogens at sites distant from the GI tract. 
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Figure 3. Immunomodulation by Giardia sp. Giardia infections have been shown to attenuate granulocyte infiltration in vivo following intra-rectal 

instillation of Clostridium difficile toxin A and B (TcdA/TcdB). Giardia trophozoites release cathepsin cysteine proteases that attenuate PMN 

chemotaxis; it remains unknown how these proteases cross the intestinal epithelial barrier. Arginine deiminase (ADI) released by the parasite 

consumes L-arginine and this results in attenuated nitric oxide (NO) production. Furthermore, flavohemoglobins released by the parasite 

decrease the levels of NO. Giardia arginine deiminase also decreases intestinal epithelial proliferation, and this may affect the ability of other 

pathogens to colonize the intestinal tract. Similarly, during trophozoite-induced intestinal epithelial apoptosis, the activation of caspase proteins 

may cleave pro-inflammatory transcription factors. Multiple reports have shown that Giardia trophozoites modulate dendritic cell and helper  

T cell function, and cause mast cell hyperplasia. Additional research is required to characterize the mechanisms and consequences of  

these observations.
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