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Genomic studies feature multivariate count data from high-throughput DNA sequencing experiments,
which often contain many zero values. These zeros can cause artifacts for statistical analyses and multiple
modeling approaches have been developed in response. Here, we apply different zero-handling models to
gene-expression and microbiome datasets and show models can disagree substantially in terms of iden-
tifying the most differentially expressed sequences. Next, to rationally examine how different zero han-
dling models behave, we developed a conceptual framework outlining four types of processes that may
give rise to zero values in sequence count data. Last, we performed simulations to test how zero handling
models behave in the presence of these different zero generating processes. Our simulations showed that
simple count models are sufficient across multiple processes, even when the true underlying process is
unknown. On the other hand, a common zero handling technique known as ‘‘zero-inflation” was only
suitable under a zero generating process associated with an unlikely set of biological and experimental
conditions. In concert, our work here suggests several specific guidelines for developing and choosing
state-of-the-art models for analyzing sparse sequence count data.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Many high-throughput DNA sequencing assays exhibit high
sparsity, which often exceed 70% in microbiome, bulk-, and
single-cell RNA-seq experiments [1–4]. Such sparsity can be prob-
lematic for modeling [5,3,6,7], as common numerical operations
like logarithms or division are undefined when applied to zero.
Empirical benchmarks also suggest that the frequency of zeroes
in datasets can affect false discovery rates in analyses like differen-
tial gene expression [8,9].

Multiple approaches have been proposed for tackling the mod-
eling problems posed by zero values in sequence count data. A
common approach for addressing numerical challenges associated
with taking the logarithm or dividing by zero is to add a small pos-
itive value, or pseudo-count, to the entire dataset prior to analysis
[10,5]. A more sophisticated approach is to model all counts (in-
cluding zero values) as arising due to random counting involving
the Poisson, negative binomial, or multinomial distributions [11–
15]. Often these methods perform inference on the statistical prop-
erties of the entire datasets rather than a single observed zero
count. Still more complicated models permit greater flexibility in
the modeling of zero values by layering secondary random pro-
cesses on top of random count processes. Examples of such models
include zero-inflated negative binomial models [16] and Poisson
zero-inflated log-normal models [17].

Although an abundance of methods have been proposed for
handling zeros, it remains unclear when certain approaches are
to be preferred over others. Empirical benchmarks comparing
sequence analysis software packages [8,9] do not isolate the effects
of zero handling relative to other modeling decisions such as how
to filter samples or normalize read depths, which in turn precludes
offering specific guidance as to which approaches to modeling zero
values are more or less appropriate. A conceptual debate has also
emerged around the appropriateness of zero-inflation, with some
arguing it is unnecessary [18,19,17], while others have suggested
it can account for the large number of zero values in single-cell
RNA-seq data [20–25,16,26–28,4], bulk RNA-seq data [29–32],
and microbiome sequencing data [33–42]. This debate reflects con-
troversy as to what kinds of processes give rise to zero values in
sequence count data [18,19,17,20].

In this Perspective, we re-analyze published datasets to show
that alternative methods of zero–handling can lead to different
inference outcomes. To understand the origins of these differences,
we introduce a categorization scheme for zero generating pro-
cesses (ZGPs) in sequence count data. While the precise ZGPs that
contributed to a given dataset are typically unknown, we can use
simulation to examine if there exist zero–handling models that
perform well across a range of different ZGPs. Overall, our analyses
reveal minimal conceptual and analytical support for the use of
zero-inflated models to handle zeros in sequencing datasets. Our
results suggest that simpler models avoiding zero-inflation are
preferable for most tasks.

2. Real data examples

To investigate whether different methods of modeling zero val-
ues can affect the outcomes of real-world analyses, we reanalyzed
six previously published datasets using models that differed only
in their handling of zero values; one model used zero-inflation
while the other did not. We chose datasets that spanned a range
of sequencing tasks: single cell RNA-seq [43,44], bulk RNA-seq
[45,46], and 16S rRNA microbiota surveys [47,48]. We then chose
two different statistical models that differed only in their modeling
of zero values. One model was based on a negative binomial distri-
bution. Letting yij represent the observed counts for sequence i in
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sample j, a negative binomial model assumes that yij reflects the
abundance of sequence i in sample j with added sampling noise
described by a negative binomial distribution. Such negative bino-
mial models are used in many popular software tools such as edgeR
[49], DESeq2 [11]. The second model was similar to the first, but
also assumed a process known as zero-inflation was taking place.
In contrast to the first model, a zero-inflated negative binomial
model additionally assumes that there exists a probability pj that
yij ¼ 0 regardless of the abundance of sequence i in sample j. Zero
inflation has become a popular method of augmenting the negative
binomial to model higher levels of zero values in sequence count
data [29,20,38,16,28]. To implement our two models, we used the
ZINB-WaVE modeling framework [16], which allowed us to create
identical negative binomial models that varied only according to
the presence of zero inflation. Notably, our implementation relied
on the default settings of ZINB-WaVE, which further assumes that
the probability pj can vary depending on the condition a sample
belongs to (e.g. treatment or control). Such condition-specific
zero-inflation is commonly used in a number of popular software
packages [33,20,25,16,27]. Moreover, the zero-inflated model we
use here has been used in multiple studies to conduct differential
expression analysis [50–53]. We refer to these two models respec-
tively as the Zero-Inflated Negative Binomial (ZINB) and Negative
Binomial (NB) models (see Section 6 for more details).

To interpret the results of these two models we quantified the
discrepancy between the top-K most differentially expressed
sequences according to each model (Figure S1). Discrepancy was
calculated as K �mð Þ=K where m is the number of the top-K
sequences in common between the two models. We found that
the ZINB and NB models disagreed on average by 44% (range:
14%-100%) among the top-50 most differentially expressed
sequences. Even among the top-5 most differentially expressed
sequences (a subset whose size and priority makes them likely
for potentially costly experimental follow-up), disagreement aver-
aged 53% and reached 100% for one dataset (Fig. S1).

We found that the largest discrepancies between the ZINB and
NB models occurred on sequences that were observed with a high
number of counts in one condition, while also being observed with
low or zero counts in the other condition (Fig. 1, S2, and S3). These
presence-absence-like cases would seem like examples of where
sequence abundance varies according to condition, and indeed,
the NB model infers these sequences are differentially expressed
(Fig. 1, S2, and S3). By contrast, we observed that the ZINB model
does not always infer that sequences exhibiting presence-
absence-like patterns in one condition were differentially
expressed. The ZINB model instead inferred that these sequences
were actually expressed at equal abundance; but, one condition
exhibited higher rates of zero-inflation than the other condition
(a phenomenon we term differential zero-inflation; Fig. 1, S2, and
S3). Indeed, we found that there was a correlation between the dif-
ference in inferred differential expression according to the ZINB and
NB models and the degree to which the ZINB model inferred that a
sequence is differentially zero-inflated (Spearman q > 0.35 and p-
value � 0 for all 6 datasets; Fig. 1, S2, and S3). Still, discrepancies
between how the NB and ZINB models handled sequences with
presence-absence like abundance patterns were not solely due to
condition-specific zero-inflation, as we could recapitulate similar
levels of discrepancy (average of 37%; range: 12%–86%; Figs. S4-
S7) even when using non-condition-specific zero-inflation (see Sec-
tion 6 and Supplementary File 1 for complete discussion and meth-
ods). Ultimately, while the true processes underlying sparsity in a
genomic dataset are often unknown, we found it striking that
sequences with high counts in one condition, while also being
observed with low or zero counts in the other condition, were often
inferred by the ZINB model to not be differentially expressed. This



Fig. 1. Differential expression (DE) estimates from a negative binomial (NB) and zero-inflated negative binomial (ZINB) model can differ substantially. Log base 2 differential
expression for the ZINB and NB models are shown after each was applied to two different single cell RNA-seq datasets. The orientation of differential expression is denoted by
an arrow above the X axis; for example, in the Pollen dataset, genes higher in the NPC condition correspond to larger values of differential expression. Dots represent different
genes, and each is colored according to the degree of differential zero-inflation as estimated by the ZINB model. For each dataset, the 10 genes that have the largest
discrepancy between inferred DE are labeled and their distribution is in each condition is plotted in the bottom panel. Similar figures for two bulk RNA-seq datasets and two
16S rRNA surveys are shown in Figures S2 and S3 respectively.

J.D. Silverman, K. Roche, S. Mukherjee et al. Computational and Structural Biotechnology Journal 18 (2020) 2789–2798
suggest that zero-inflated models lead to higher false-negative
rates than identical non-zero-inflated models.
3. Zero Generating Processes (ZGPs)

To provide a conceptual framework for analyzing how different
zero handling models behave, we developed a scheme for catego-
rizing different zero generating processes (ZGPs). Our scheme par-
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titions ZGPs into three major classes, one of which we further
subdivide into two sub-classes (Fig. 2):

Sampling Zeros: Zeros may also arise due to limits in the total
number of sequencing reads counted in a given sample [3]. Certain
sequences, particularly ones at low abundance, may be present but
not counted. In the limit where no reads were collected for a given
sample, all zeros would be due to sampling effects; by contrast, if
every read in a sample could be collected for a sample, sampling
zeros would not be present.



Fig. 2. An overview of the zero generating processes (ZGPs), simulations, and models presented in this work. (A) A graphical representation of three major ZGPs. Orange,
green and blue represent distinct DNA sequences. (B) Model notation is as follows: yi represents the number of counts observed for a given sequence in sample i; zi represents
the person from which sample i originates, xi represents the batch number of sample i; kzi represents the abundance of the sequence in person zi . r2;q, and s2 are fixed hyper-
parameters of the model.
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Biological Zeros: Perhaps the most intuitive reason for zeros in
a dataset, biological zeros arise when a sequence is truly absent
from a biological system.

Technical Zeros: Preparing a sample for sequencing can intro-
duce technical zeros into the data by partially or completely
reducing the amount of countable sequences. These processes
can lead to reductions in sequence abundance across all samples
in a study or can act on a subset samples. For example, some genes
are under-represented (partially reduced) in sequencing libraries
due to the relative difficulty of amplifying GC-rich sequences
[54,55]. This bias could occur across all samples in a study; or, in
a heterogeneous manner if different batches of samples were
amplified using different primers or cycle number. Furthermore,
if instead of a relative inability to amplify a sequence there was a
complete inability, we would have a complete technical process.
Zero-inflated models consider a specific case of complete technical
zeros where this inability to measure a given sequence occurs ran-
domly from sample-to-sample. Importantly, in a complete techni-
cal process, even abundant sequences may go unobserved.

There is ample experimental evidence that biological, sampling,
and partial technical zeros occur in real data. Biological zeros are
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known to occur when studying gut microbiota across people [56]
since unrelated individuals will harbor unique bacterial strains.
Another example of biological zeros can be found in RNA expres-
sion analyses of gene knockout experiments, where gene deletion
will eliminate certain transcripts from the expressed pool of genes
prior to DNA sequencing [57]. Sampling zeros are known to occur
when sequencing depth is limited and sequence diversity is high
[2,18]. For example, in silico studies have shown that decreasing
the depth of sequencing studies can increase the numbers of
observed zeros [36]. There also exist well-known examples of par-
tial technical processes such as DNA extraction bias [58], batch
effects [59,60] or PCR bias [55,61–63].

In contrast with the other ZGPs, the rationale for modeling com-
plete technical zeroes is more nuanced. Dataset-wide complete
technical zeros certainly exist: certain prokaryotic taxa are known
to not be detectable by common 16S rRNA primers, for example,
and will therefore not appear in microbiota surveys [64,65]. Of
course, modeling the expression of dataset-wide technical zeros
is typically neither considered a useful nor practical endeavor.
Much more interest and effort though has been invested in consid-
ering cases of sample-specific complete technical zeros; that is,
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when with some probability pj, a sequence j may go completely
unobserSilverman J.D., Roche K, Holmes Z.C., David L.A., Mukherjee
S. Bayesian ved in a given sample, regardless of its true abundance.
Such sample-specific complete technical zeros have been consid-
ered in the analysis of gene-expression data, where zero-inflation
has previously be used to model a variety of processes often ter-
med ‘‘dropout” [20,22,23,25,27]. Dropout has been explained as
stochastic forces involved with sampling of low-abundance
sequences or due to the stochastic nature of gene expression at
the single-cell level [20,22]. Dropout has also been described as
the result of failures in amplification during the reverse-
transcription step in RNA-seq experiments [20,22]. In the analysis
of microbiome data, zero-inflation has been used to model differ-
ing presence/absence patterns between individuals [20,22]. Yet,
each of the aforementioned phenomena could be argued as arising
from either sampling, biological, or partial technical ZGPs. The
inability to detect low abundance RNA sequences could be argued
as arising from a sampling process rather than a complete techni-
cal process. Stochastic gene expression at the single-cell level and
differing presence/absence patterns between individuals fit the
definition of biological zeros. Last, zeros associated with gene
amplification inefficiency could either reflect a sampling process
or a partial technical process related to competitive inhibition
between sequences in the amplification reaction. Thus, models
considering sample-specific complete technical processes may
actually be attempting to capture other ZGPs.

4. Simulation studies

As the ZGPs present in a given dataset are typically unknown,
we sought to understand how different methods of handling zeros
performed under model mis-specification. Exploring model behav-
ior using empirical benchmarks that compare common software
platforms (e.g. DESeq2, EdgeR, or ALDEx2) is not optimal because
multiple modeling decisions independent of zero–handling like
data filtering, inference method, and data normalization are incor-
porated into commonly used sequence analysis tools. To isolate the
effects of different zero–handling methods on sequence analysis,
we created a 5 by 5 grid in which different models were tested
against different combinations of ZGPs. We started with a simple
inference model based on the Poisson distribution (Base model,
Fig. 2). We chose this distribution in place of the negative binomial
(also called the Poisson-Gamma) distribution (which was used in
our analysis of real data) because the Poisson affords a simpler to
understand, single-parameter model while still modeling random
sampling. To understand how the Poisson model interpreted the
data we used tools from Bayesian statistics which allowed us to
directly calculate a probability distribution representing the mod-
els belief in a sequence’s abundance having observed sequence
count data (the posterior distribution) [66]. To accomplish this,
we also needed to specify a distribution representing the model’s
belief in the abundance of the sequence prior to seeing the data
(prior distribution) [66]. We chose the log-normal prior in place
of the more common gamma distribution because the mean and
variance parameters of the log-normal distribution provide a more
interpretable description of sequence abundances than the shape
and rate parameters of the gamma distribution.

We then layered four common zero-modeling approaches onto
our Base model (Fig. 2; full descriptions of each model are pre-
sented in Methods). We created a Zero-Inflated Poisson (ZIP) model
by adding a zero-inflation component to the Poisson distribution in
the Base model. To model zeros arising due to true biological
absence, we created the Biological Zero model (BZ). This model
includes a zero inflated component on the Log-Normal portion of
the Base model and is similar to the DESCEND model of Wang
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et al. [17]. To model sampling and partial technical zeros, we cre-
ated the Random Intercept (RI) model. The RI model differs from
the Base model only by allowing external covariate information,
e.g., batch numbers, to decrease the amount of available sequences.
Last, we designed a Pseudo-Count (PC) model that does not model
any ZGPs, but rather avoids numerical issues with zeros by adding
a fixed positive pseudo-count j to each observed count value (i.e.,
each cell) in the data before analysis. The PC model removes the
Poisson component from the Base model and instead uses
k̂i ¼ yi þ j as the observation.

We next designed five different simulation experiments to test
our hypothesis that some zero–handling methods would be more
tolerant to model mis-specification than others. As sampling lies
at the heart of sequence count data [67,18], we included zeros from
Poisson sampling in each simulation. In addition, to investigate the
other ZGPs, the second through fifth simulations included biologi-
cal, complete-, and partial-technical processes as well. Each model
was applied when simulations could distinguish models. For exam-
ple, in the absence of covariate information the RI and Base models
are identical; therefore, the RI model was only applied to simula-
tions where covariate information was available and could distin-
guish the RI and Base models (See Supplementary File 1 for a full
discussion of this topic).

We judged model performance on a given simulation based on
the inferred probability that the sequence’s abundance was less
than or equal to the true simulated value, i.e., the cumulative dis-
tribution function of the posterior density evaluated at the true
value. This statistic captures both the error in the model’s best
guess (the mean) as well as its certainty about that guess (the
spread of the posterior about the mean; Figure S8 provides a visual
explanation of this metric). An optimal model would have a value
of 0.5, whereas models that performed poorly would have values
near 0 or 1 if they under- or over-estimated the true value with
undue certainty.

The results of our simulation studies are shown in Figure 3 and
S9. (A detailed description and explanation of the results is pre-
sented in Supplementary File 1.) Overall, we found the best-
performing model to be the RI model. In particular, this model dis-
played three beneficial features. First, like the Base model, the RI
model appropriately modeled sampling zeros without difficulty.
Second, even though it did not model biological zeroes directly,
the RI model approximated biological zeros as very low abun-
dance; conveying the key information, that the absent sequence
was not common. Third, by allowing covariate adjustment, the RI
model effectively estimated sequence abundance even in the pres-
ence of partial technical zeros due to batch effects.

The next best performing models were the Base and BZ models.
The Base model exhibited similar simulation results as the RI
model, with the exception of its performance on technical zero
simulations due to its inability to incorporate additional covariates
like batch. The BZ exhibited a similar limitation on modeling exter-
nal covariates and hence, batch effects. Still, the BZ model per-
formed well on modeling of biological zeroes, which was
expected because it is designed specifically for such a
phenomenon.

More poorly performing models in our simulations were the PC
and ZIP models. In addition to its observed lower accuracy, the PC
model was also sensitive to chosen pseudo-count values (Fig. 3A
and E). The ZIP model overestimated sequence abundances (k) in
every simulations with the exception of the one explicitly simulat-
ing sample-specific complete technical zeroes (Simulation 3).
Additionally, our simulations showed that the ZIP model had high
posterior uncertainty: The ZIP model could not tell if zeros were
due to sampling of a low abundance sequence, technical censoring
of a low abundance sequence, or technical censoring of a high



Fig. 3. A summary of how different zero handling models behave on different simulations of zero generating processes. Shown are posterior distributions of sequence
abundance (k) from each model. The dark red vertical bar represents true value of k. Posterior mean as well as the 66% and 95% credible intervals are shown in black. Boxed
values represent the cumulative distribution function of the true value of k, as described in the text and in Figure S8, the best performance possible is a value of 0.5. The
statistic is by definition zero when ktrue ¼ 0 (e.g., person 2 in panel E) in which case performance is assessed visually. (A) Simulation 1 (sampling zeros only), (B) Simulation 2
(batch-specific partial technical and sampling zeros), (C) Simulation 3 (sample-specific complete technical and sampling zeros) (D) Simulation 4 (batch-specific complete
technical and sampling zeros), (E) Simulation 5 (biological and sampling zeros). In panel E, the abundance axis (k) was cropped to enable all model results to be shown.
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abundance sequence (Figure S10). Such uncertainty biased param-
eter estimates even when more than 1,000 replicate samples were
available to the model (Figure S11). That is, even when the ZIP
model had access to many replicate samples, the model falsely
inferred that zero-inflation was present even when it was not.
Our simulation of biological zeros also showed that, when used
to model condition-specific zero-inflation like in the ZINB model
of Section 2, posterior estimates of k under the ZIP model can be
the highest in conditions when true sequence abundances are
the lowest (Person 2; Fig. 3E). More broadly, our simulations reca-
pitulate our earlier findings involving published datasets and pro-
vide examples for how zero-inflated models can spuriously infer
sequences to be present even when unobserved.

5. Discussion

Here we have demonstrated, using real-world datasets, that dif-
ferent methods for modeling zeros can lead to disagreement
among almost half of sequences when carrying out differential
expression analysis. We also categorized zero generating processes
(ZGPs) and summarized evidence in favor of each. Last, we used
simulations to explore how different zero handling methods per-
form when different ZGPs are present. In concert, these analyses
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suggest caution when considering zero-inflated models for han-
dling zero values. These models may increase false negative rates
in differential expression analyses, capture ZGPs that may actually
be described by simpler biological processes, and are sensitive to
model mis-specification.

Our conceptual framework and simulations provide insight into
the mechanisms underlying the outcomes of empirical benchmark-
ing studies [8,9,68,42,69]. Thorsen et al. [8] report that the zero-
inflated Gaussian model metagenomeSeq increasingly biases esti-
mates of differential abundance as data sparsity increases. Simi-
larly, Dal Molin et al. [69] observe that models using zero-
inflation, such as SCDE [20], or Monocle [70], have a higher false-
negative rate for differential expression than alternative non-
zero-inflated models such as DESeq [11] or edgeR [49]. Our results
suggest these errors arise when zero-inflated models are applied to
datasets where sample-specific complete technical processes are
insubstantial.

Beyond explaining empirical phenomena, our framework sug-
gests three guidelines for modeling sequence count data. First,
for designers of new sequence count models, biological zeros can
be approximated as sampling zeros. This recommendation is logi-
cal as biological zeros can be considered sampling zeros from a
sequence whose abundance is small. Moreover, our results demon-
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strate that sampling models will correctly interpret zeros as evi-
dence of low-abundance sequence. Treating biological zeros as evi-
dence of very low abundance sequence should encourage
simplicity in future models, and is also consistent with the design
of several existing tools such as DEseq2 [11], Aldex2 [71], MAL-
LARD [13], Fido [72], GPMicrobiome [12] and MIMIX [14].

Our second guideline is that zeroinflated models should be
avoided. Our re-analysis of datasets from single cell RNA-seq, bulk
RNA-seq, and 16S rRNA microbiome sequencing experiments sug-
gested that zero-inflated models can result in the spurious conclu-
sion that sequences are not differentially expressed when clear
presence-absence patterns exist between experimental groups.
Additionally, our literature review and categorization of ZGPs
revealed that common motivating phenomena for zero-inflated
models such as dropout can actually be considered forms of other
common ZGPs. Last, we found that when sample-specific complete
technical processes are not present in data, zero-inflated models
produce biased estimates. Overall, this guideline is aligned with
recent research demonstrating that after controlling for biological
zeros in droplet single-cell RNA-seq experiments, zero-inflation is
not necessary to describe the zero patterns observed in sequencing
data [18]. Rather, zeros in these experiments were nearly perfectly
captured by negative binomial models lacking zero-inflation (i.e.,
without the need to model complete technical zeros). Thus, when
sequence count data have more zeros than can be adequately mod-
eled by a Poisson distribution, our guideline suggests that these
‘‘excess-zeros” be modeled using sampling, partial technical, and
biological processes. Still, were sample-specific complete technical
zeros believed to be present in a given dataset, the use of zero-
inflated models would be warranted.

Our third guideline for modeling zero values is to employ sim-
ple count models such as the Poisson, negative binomial, or multi-
nomial that can incorporate technical covariates (e.g., batch). We
underscore that this guideline does not require knowing the true
ZGPs present in a study. Moreover, we do not expect that models
will be able to reliably make this distinction either. Rather, our
simulations show that simple models capable of accounting for
both sampling and partial technical zeros can produce accurate
inferences under a range of different ZGPs. Fortunately, such mod-
els have also already been implemented for a range of applications
including generalized linear regression [72,14], non-linear regres-
sion [72,73], clustering [74], time-series analysis [13,12,72], and
classification [75,76].

Our guidelines for zero handling will eventually need to be
incorporated into broader pipelines for the analysis of sequence
count data. Other outstanding challenges exist in this arena. Tasks
like gene and sequence variant calling or data processing can be
considered to be independent of zero handling as they are often
done as an isolated step prior to data modeling. Recent advances
in understanding the impact of these independent tasks [77–79]
should therefore combine in a straightforward manner with our
zero handling guidelines. On the other hand, some tasks in
sequence count data analysis, such as data normalization, in
sequence count data analysis are likely to require solutions that
interact with a given zero handling framework. Data normalization
choices, for example may convert integer counts into continuous
variables [67] and thereby remove key information needed to
understand sampling zeros. Furthermore, the goal of data model-
ing may further impact the choice of zero–handling method; tasks
such as cluster analysis or differential expression may have differ-
ent sensitivities to the choice of zero–handling. Future zero han-
dling studies may therefore be combined with empirical studies
of full sequence data analysis pipelines to provide additional
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insight into how modeling choices ultimately affect sequence
count data analysis.

Even within the study of zero–handling, key questions remain.
For example, in Section 2, we focused on how the presence or
absence of zero-inflation impacted inferred differential expression
effect sizes. We focused on effect sizes, as opposed to p-values or
false discovery rates, as we felt that these provided a more inter-
pretable means of understanding the origin of the differing results
from the ZINB and NB models. Still, in practice, many researchers
may be interested in hypothesis testing and in these cases a more
detailed exploration of how different zero–handling methods
impact false negative and false positive rates would be impactful.

6. Methods

6.1. Analysis of previously published data

We analyzed six previously published datasets. Each dataset
was pre-processed such that only sequences observed in at least
3 samples with at least 3 counts were retained. Each dataset was
normalized to the median sequencing depth of the dataset. For
each dataset, the ZINB and NB models were fit using default
parameter values, an intercept, and a binary variable denoting
which of two groups samples belonged to. The NB model was cre-
ated from the ZINB model by additionally specifying the matrix
parameter O_pi. Large negative values for this parameter reduce
zero inflation. The ZINB model used the default value for O_pi to
allow zero inflation; the NB model set O_pi to be a matrix popu-
lated with the number �106 to ensure no zero inflation was used.
The non-condition-specific ZINB model was created from the ZINB
model by additionally specifying which X pi ¼ 1 and
which V pi ¼ 1. Details regarding how each dataset can be
obtained, the groups compared, and the resulting dataset sparsity
level are given in Supplementary File 2.

Differential zero-inflation was reported directly by ZINB-WaVE.
The ZINB-WaVE model infers a zero-inflated parameter pj on the
logit scale. For the condition-specific ZINB model, pj is described
by the linear model pj ¼ b1j þ b2jxi where xi is condition of sample
xi. Therefore, the paraeter b2j can be interpreted as the degree to
which the model differentially uses zero-inflation in one condition
compared to another for sequence j – hence we termed this param-
eter differential zero-inflation.

6.2. Simulation studies

First we introduce our notation.
yi
 The number of counts of a specific sequence in the ith

sample

zi
 The biological sample where sample i originates

xi
 The batch in which sample i was processed
The following five models assume that each of the K biological
specimens has a true parameter kk that represents the abundance
of a single sequence j.

6.2.1. Prototypical models
For comparability, each of our five models are based on a hier-

archical Poisson log-normal model. Letting j denote a fixed non-
zero value, we define the pseudo-count (PC) model as
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yi þ jð Þ � LogNormal kzi ;r2
� �

kk � Normal q; s2
� �

:

This model avoids numerical issues with taking the log of zero
values by adding a pseudo-count to the data prior to analysis.

We defined the base model as

yi � Poisson kzi
� �

kk � LogNormal l;r2
� �

l � Normal q; s2
� �

:

This model considers count variation and zeros due to sampling.
The random intercept (RI) model modifies the base model

with a batch-specific multiplicative factor gxi
, which may alter

the rate of Poisson sampling.

yi � Poisson kzigxi

� �
gm � LogNormal m;x2

� �
kk � LogNormal l;r2

� �
l � Normal q; s2

� �
:

For identifiability, we assume that a single batch, labeled batch
number 1, is an unbiased gold standard, so g1 ¼ 1. If we have a sin-
gle batch, this model is identical to the base model. The NB (nega-
tive binomial) model of Section 2 is similar to the RI model but uses
the more flexible negative binomial distribution instead of the
Poisson.

Like the ZINB model in Section 1, we created a zero-inflated
Poisson (ZIP) model by adding a zero-inflated component to the
Poisson part of the base model. The ZIP model is defined by

yi � ZIP kzi ; hxi
� �

kk � LogNormal l;r2
� �

hm � Beta a;bð Þ
l � Normal q; s2

� � ð1Þ

where ZIP(kzi ; hxi ) is shorthand for

yi �
d0 if wi ¼ 0
Poisson kzi

� �
if wi ¼ 1

(
wi � Bernoulli hxi

� �
and where d0 refers to the Dirac distribution centered at zero. This
model assumes that all zeros arise due to a sampling process or a
complete technical process.

In contrast to the ZIP model, the Biological Zero (BZ) model
adds a zero-inflated component to the log-normal part of the base
model. The BZ model is defined by

yi � Poisson kzi
� �

kzi � ZILN l;r2; czi
� �

ck � Beta f; nð Þ
l � Normal q; s2

� �
:

Here ZILN(l;r2; czi ) is short for:

ki �
d0 if wi ¼ 0
LogNormal l;r2

� �
if wi ¼ 1

(
wi � Bernoulli czi

� �
:

this model assumes that zeros arise from a sampling process or a
biological process. In Section 4, the BZ model was modified from
this form because of the difficulty of representing the latent Dirac
distribution using the Hamiltonian Monte Carlo. Instead, the Dirac
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distribution in the BZ model was approximated with a truncated
normal distribution with mean 0 and variance 0:0001.

6.2.2. Simulations
Our series of simulation studies investigated the behavior of

each model on each zero generating process. We present only uni-
variate simulations. Hyper-parameter values were chosen to use in
each of the five simulations. The hyper-parameters are:
r2 ¼ 3; q ¼ �1; s2 ¼ 5; m ¼ 0; x2 ¼ 2; a ¼ :5; b ¼ :5; f ¼ 1, and
n ¼ 1. Simulations that had low likelihood under the simulating
model were rerun. This procedure ensured that each simulated
dataset contained enough information to recover the true parame-
ter values. This was done for simulations in Fig. 3 but not for sim-
ulations in Fig. S9.

Simulation 1: Sampling Zeros. The first simulation consisted of 5
random draws from a Poisson distribution with a rate parameter k
of 0.5. This represents a single sequence within a single person,
measured with 5 technical replicates all processed in the same
batch. We applied the PC model with three different pseudo-
counts: 1,.5, and.05.

Simulation 2: Sampling and Batch-Specific Partial Technical Zeros.
The second simulation consisted of 15 replicates samples split into
3 batches with Poisson rate parameters 1.4, 0.6, and 3.2. This sim-
ulates polymerized chain reaction (PCR) efficiency varying by
batch. As discussed above, batch 1 is derived from some gold stan-
dard measurement device with no bias.

Simulation 3: Sampling and Sample-Specific Complete Technical
Zeros. The third simulation consisted of 15 replicate samples from
a Poisson distribution with rate parameter k of 1. This simulates a
single sequence measured with technical replicates where each
replicate has a 30% chance of catastrophic error, causing a com-
plete inability to measure that sequence. This simulation was con-
trived to reflect the assumptions of the ZIP model.

Simulation 4: Sampling and Batch-Specific Complete Technical
Zeros This simulation uses sampling and complete technical zeros,
and represents a single sequence measured in 15 replicate samples
in 3 batches. However, because of a different reagent or missed
experimental step, batch 2 complete lacked the sequence. We
assume that no other bias is present in batches 1 or 3, which are
represented as random draws from a Poisson distribution with rate
parameter 1.

Simulation 5: Sampling and Biological Zeros The fifth simulation
consisted of 15 samples from three individuals with Poisson rate
parameters 1.4, 0, and 3.2. This simulates the abundance of a single
sequence measured in three individuals, of which two possess that
sequence and one does not. To model biological zeros with zero
inflation, we slightly modify Eq. (1) in the ZIP model, replacing
hxi with hzi . This change reflects a change of modeling zero-
inflation by batch to modeling zero-inflation by individual. This
corresponds to modeling condition-specific zero-inflation as in
the ZINB-WaVE model.

6.2.3. Posterior inference
All 5 models were implemented in the Stan modeling language

which uses Hamiltonian Monte Carlo (HMC) sampling [80]. Model
inference was performed using 4 parallel chains, each with 1,000
transitions for warmup and adaptation and 1,000 iterations col-
lected as posterior samples. Convergence of chains was determined
by manual inspection of sampler trace plots and through inspec-

tion of the split bR statistic.

Code availability

All code necessary to recreate the analysis and figures in this
work is available at:https://github.com/jsilve24/zero_types_paper.

https://github.com/jsilve24/zero_types_paper
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