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Predicting Readmission or Death After 
Discharge From the ICU: External Validation 
and Retraining of a Machine Learning Model
OBJECTIVES: Many machine learning (ML) models have been developed for 
application in the ICU, but few models have been subjected to external validation. 
The performance of these models in new settings therefore remains unknown. 
The objective of this study was to assess the performance of an existing decision 
support tool based on a ML model predicting readmission or death within 7 days 
after ICU discharge before, during, and after retraining and recalibration.

DESIGN: A gradient boosted ML model was developed and validated on elec-
tronic health record data from 2004 to 2021. We performed an independent val-
idation of this model on electronic health record data from 2011 to 2019 from a 
different tertiary care center.

SETTING: Two ICUs in tertiary care centers in The Netherlands.

PATIENTS: Adult patients who were admitted to the ICU and stayed for longer 
than 12 hours.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: We assessed discrimination by 
area under the receiver operating characteristic curve (AUC) and calibration 
(slope and intercept). We retrained and recalibrated the original model and 
assessed performance via a temporal validation design. The final retrained 
model was cross-validated on all data from the new site. Readmission or death 
within 7 days after ICU discharge occurred in 577 of 10,052 ICU admis-
sions (5.7%) at the new site. External validation revealed moderate discrimi-
nation with an AUC of 0.72 (95% CI 0.67–0.76). Retrained models showed 
improved discrimination with AUC 0.79 (95% CI 0.75–0.82) for the final val-
idation model. Calibration was poor initially and good after recalibration via 
isotonic regression.

CONCLUSIONS: In this era of expanding availability of ML models, external val-
idation and retraining are key steps to consider before applying ML models to 
new settings. Clinicians and decision-makers should take this into account when 
considering applying new ML models to their local settings.

KEY WORDS: clinical decision support; critical care; data science; external 
validation; generalizability; machine learning

There has been a rapid increase in the use of machine learning (ML) tech-
niques for prediction modeling on routinely collected hospital data (1). 
The ICU forms a popular application area with its high-volume data 

from continuously monitored patients (2, 3). ML models have been developed 
at the ICU to predict the onset of sepsis (4, 5), COVID-19 disease progression 
(6, 7), and mortality and readmission (2, 8). Clinicians increasingly encounter 
ML vendors that claim to revolutionize their clinical workflow, environment, 
and patient outcomes. Therefore, it is important that clinicians are aware of the 
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quality assessment steps that need to be taken before 
the local implementation of these ML models.

Before introducing these ML models in a clinical en-
vironment that is different from the development site 
(e.g., a different ICU, hospital, or country), we need to 
assess the generalizability or external validity at this 
site (9–11). However, few ML models have been sub-
jected to external validation. A recent study found that 
less than one third of Food and Drug Administration 
(FDA) approved ML models reported to have under-
gone multisite assessment (12). Furthermore, less than 
11% of prediction models developed for the ICU were 
externally validated (13). This is particularly prob-
lematic as correlations based on site-specific clinical 
practices are prone to boost local performance of ML 
models but may hamper generalizability to other set-
tings (14). Similarly, shifts in the data-generating pro-
cess over time at a single site can affect performance 
(15–18). A recent example is an ICU sepsis predic-
tion model. This model was implemented and widely 
adopted before external validation showed poor dis-
crimination and calibration, which in turn may have 
dangerous consequences for patients (19).

Several steps may be taken to improve model per-
formance at a new site after external validation. First, 
the external validation may show poor calibration, 
meaning that the estimated probabilities are unreli-
able. Recalibration of the probability outcomes may 
be applied to improve the probability estimates (15, 

20, 21). Second, when the external validation shows 
subpar discrimination, the model may be retrained on 
data from the external validation site. However, it re-
mains unclear to date when and under which circum-
stances these steps are necessary to ensure safe and 
responsible introduction of ML models in local clin-
ical settings.

We aimed to assess the external validity of a certified 
ML model for the ICU: Pacmed Critical (8). Pacmed 
Critical is a decision support tool based on a ML pre-
dictive model that estimates the probability of read-
mission or death within 7 days after ICU discharge. It 
intends to support intensivists in determining the op-
timal moment for discharge of a patient from the ICU 
to a clinical ward. Second, we aimed to assess the effect 
of retraining of the model on predictive performance 
through a temporal validation design. This study serves 
as a use case illustrating how the generalizability of ML 
models may be addressed by local retraining.

MATERIALS AND METHODS

Patients

For the external validation, retraining, and recalibra-
tion of the Pacmed model, we used electronic health 
record (EHR) data from Leiden University Medical 
Center (Leiden UMC), a tertiary care center in The 
Netherlands. These data were collected between 2011 
and 2019. We purposefully left the year 2020 out, as 
COVID-19 drastically changed the composition of 
ICU patients and disrupted ICU care processes which 
might have significantly impacted model perfor-
mance. This study was conducted in accordance with 
the Helsinki Declaration. The need for ethical approval 
was waived for this study by the Institutional Review 
Board of the Amsterdam University Medical Center 
(UMC), location VUmc (2017.212, date: May 2017, 
study title: “Right Data, Right Now: Predicting ICU re-
admission rates”).

Outcome

The outcome variable was defined as a readmission to 
the ICU or unexpected death within 7 days after dis-
charge from the ICU to the ward. Our definition of 
an ICU discharge did not include patients who were 
discharged to the medium care unit (MCU) as the in-
tensity of monitoring on the ICU is comparable with 

 KEY POINTS

Question: Machine learning applications for the 
ICU lack rigorous external validation. We assessed 
the external validity and effect of retraining on the 
predictive performance for a certified machine 
learning model.

Findings: Generalizability was difficult to attain 
for this machine learning model despite apparent 
similarities between patient population, healthcare 
context, and model specification. Retraining with 
additional focus on disease severity monitoring and 
ICU specialty improved predictive performance.

Meaning: External validation and retraining are 
key steps to consider before applying machine 
learning models to new settings.
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that of the MCU, whereas on the ward, the level of 
monitoring is much less intense. A planned surgical 
readmission was not considered as a readmission 
but rather modeled as one continuous ICU stay. ICU 
admissions with a time difference of less than 12 hours 
were removed from the cohort. Only the readmission 
was considered in the case of death after readmission. 
Other exclusion criteria were patients younger than 18 
years old, patients being transferred to the ICU of an-
other hospital, dying at the ICU during the original ad-
mission, or receiving palliative care.

ML Model

Pacmed Critical is a Conformité Européenne (CE)-
certified decision support tool, meeting the safety, 
health, and environmental protection requirements 
of the European Union. It intends to assist intensiv-
ists in determining the optimal moment to discharge 
their patient from the ICU to the ward. It is a gradient 
boosting model that was developed and validated on 
EHR) data collected between 2004 and 2021 from 
the Amsterdam UMC, location VUmc (Amsterdam 
UMC), a tertiary care center in The Netherlands. The 
area under the receiver operating characteristic curve 
(AUC) at the validation cohort of Amsterdam UMC 
was 0.78 (95% CI 0.75–0.81). An in-depth description 
of the original model development and initial valida-
tion is reported elsewhere (8).

Retraining

The Pacmed Critical model was retrained on data from 
the Leiden UMC with the same pipeline and modeling 
techniques as those used for the original model devel-
oped at the Amsterdam UMC. A careful mapping was 
made between the feature sets of Amsterdam UMC and 
Leiden UMC to deal with discrepancies in recorded 
features between the two locations due to differences 
in their EHR systems (Epic, Epic Systems Corporation, 
Verona, WI, and HiX, Chipsoft B.V., Amsterdam, The 
Netherlands, respectively). Features were included for 
model development when good data quality could be 
guaranteed for the data from which the feature was 
computed. This led to slightly different feature lists be-
tween the two hospitals (Table E1, http://links.lww.
com/CCM/H261). Differences in inclusion were for 
example caused by incomplete feature data for some 
of the recorded years. Leiden UMC added features 

related to severity monitoring (e.g., base excess mixed 
venous and continuous venovenous hemofiltration 
blood flow) and ICU specialty.

Validation Design

We compared the descriptive statistics on patient dem-
ographics, clinical context, and type of event (readmis-
sion or death within 7 d) from the Amsterdam UMC 
with the Leiden UMC. We supplemented this analysis 
with information on the type of admission and mor-
tality risk obtained from the National Intensive Care 
Evaluation (NICE) registry (22) for the beginning of the 
NICE registration (2013) up to and including 2019 for 
the Leiden UMC and 2021 for the Amsterdam UMC.

The predictive performance of the Pacmed model on 
Leiden UMC data was measured via a temporal valida-
tion design at four time points: before retraining, after 
the first round of retraining, after the second round of 
retraining, and after the third and final round of retrain-
ing (Table E2, http://links.lww.com/CCM/H261). The 
validation before retraining represents the external val-
idation of the original gradient-boosted ML model de-
veloped on Amsterdam UMC data, validated on new, 
unseen data from the Leiden UMC (“External validation 
before retraining,” Table E2, http://links.lww.com/CCM/
H261). This validation was performed on the 2018–2019 
Leiden UMC cohort. Temporal validation consisted 
of retraining the model on subsets of the Leiden UMC 
data and validation on the 2018–2019 Leiden UMC co-
hort. For the first round of retraining, the ML model was 
trained on data from 2011 to 2015 (“Temporal validation 
1,” Table E2, http://links.lww.com/CCM/H261). In the 
second round of retraining, data from 2011 to 2017 were 
used for retraining (“Temporal validation 2,” Table E2, 
http://links.lww.com/CCM/H261). The final model was 
retrained on all Leiden UMC data (2011–2019). It under-
went a 10-fold cross-validation after which we assessed its 
performance on the 2018–2019 cohort (“Validation after 
retraining,” Table E2, http://links.lww.com/CCM/H261).

We measure the predictive performance for all vali-
dation moments along three axes: discrimination, cali-
bration, and net benefit. Discrimination quantifies the 
separation between low- and high-risk subjects and was 
measured via the AUC (23). The AUC ranges between 
0.5 and 1, with higher values indicating better discrim-
ination. Calibration is good when the proportion of 
patients receiving a given risk score approximates that 
risk score (e.g., 40% of patients are readmitted within 
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the group of patients receiving a 40% risk of readmis-
sion) (23). Calibration was assessed through the cali-
bration slope (1 for perfect calibration), intercept (0 for 
perfect calibration), and calibration loss by bins (lower 
loss is better) (21, 24, 25). Probability predictions were 
recalibrated via isotonic regression (26). Such res-
caling is common for ML models for the probability 
estimates to better approximate the actual probability 
distribution. CIs were obtained through bootstrapping 
(1,000 samples).

A decision curve analysis (DCA) was performed to 
assess how the Pacmed model could impact patient care 
within the clinical workflow (27, 28). A DCA plots net 
benefit across a range of decision probability thresh-
olds. Net benefit measures the number of true-positive 
classifications (patients who were readmitted or died 
and were identified as such) penalized for false-posi-
tive classifications (patients who were not readmitted 
and did not die but were identified as such). The DCA 
was performed with four patient discharge strategies 
for Leiden UMC data: discharge none, discharge all, 
discharge according to the original model developed 
at Amsterdam UMC, and discharge according to the 
final retrained model developed at Leiden UMC. In the 
reporting of our results, we followed the Transparent 
reporting of a multivariable prediction model for in-
dividual prognosis or diagnosis (TRIPOD) statement 
(29).

Subgroup Analysis

To assess model performance across different ICU spe-
cialties, we performed a subgroup analysis for surgery, 
internal medicine, cardiology, neurology, and gastro-
enterology patients.

Software

All analyses were performed in Python 3.8.0 (released 
by the Pythons Software Foundation). Code for the 
validation analysis is available online at https://git.
lumc.nl/aahdehond/pacmed-validation.

RESULTS

The Leiden UMC data consisted of a total of 10,052 
ICU admissions after excluding 2,198 admissions dis-
charged to the MCU, 1,980 admissions with patients 
dying at the ICU, 1,056 admissions with a length of stay 

shorter than 12 hours, 616 admissions with patients 
transferred to the ICU of another hospital, and 220 
admissions with patients receiving palliative care (Fig. 
1). Approximately 0.8% of ICU admissions had a time 
difference of less than 12 hours and were also removed 
from the cohort. There were only minor differences in 
demographics (age, sex, and body mass index) between 
the original development site (Amsterdam UMC) and 
validation site (Leiden UMC) (Table  1). The average 
length of ICU stay was almost a day longer at the orig-
inal development site compared with the validation 
site. The number of vasopressors or inotropes sup-
plied were approximately the same. The percentage of 
readmissions within 7 days after discharge was slightly 
higher at the validation compared with development 
site (4.7% vs 4.3%), whereas the mortality was slightly 
higher at the development compared with the vali-
dation site (1.2% vs 1.0%). There were more planned 
surgical procedures at the validation site compared 
with the development site. A subset of features differed 
between the validation and development site in how 

Figure 1. Flow chart of the ICU admissions included for external 
validation. MCU = medium care unit, UMC = University Medical 
Center. 

https://git.lumc.nl/aahdehond/pacmed-validation
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often they were recorded (e.g., Glasgow Coma Scale) 
or their median value (e.g., troponin T) (for details see 
Table E1, http://links.lww.com/CCM/H261). Across 
the different validation cohorts (Tables E2 and E3, 
http://links.lww.com/CCM/H261), there was a slight 
decrease in length of stay over time and a decrease in 
readmissions and deaths over time (Table E4, http://
links.lww.com/CCM/H261).

Among the 10,052 discharged patients from the ICU 
at the validation site, 577 patients (5.7%) experienced 
readmission or death within 7 days (Table 2). Length of 

ICU stay (before discharge) was notably higher for the 
patients who were readmitted or died compared with 
the patients with no such event (3.9 vs 2.2 d) (Table 2). 
There were fewer surgical compared with nonsurgical 
patients in the readmitted or dead group.

The original model had an AUC of 0.72 (95% CI 
0.67–0.76, “External validation before retraining,” 
Table 3) on validation data (2018–2019). The retrained 
models had improved discriminative performance 
with an AUC of 0.79 (95% CI 0.76–0.82) for temporal 
validation 1 and 0.79 (95% CI 0.76–0.83) for temporal 

TABLE 1.
Descriptive Statistics for the Development Site (Amsterdam University Medical Center) 
and Validation Site (Leiden University Medical Center)

     
Electronic Health Record Data Development Site (2004–2021)a Validation Site (2011–2019)

Demographics

  Total observation, N 15,753 10,052

  Age, mean (sd) 63.4 (14.8) 62.2 (14.0)

  Sex (female), n (%) 4,865 (30.9) 3,423 (34.1)

  Body mass index (kg/m2), mean (sd) 26.4 (4.9) 26.4 (5.6)

Clinical information

  Length of stay (d), mean (sd) 3.1 (4.4) 2.3 (4.2)

  Received vasopressors/inotropes, n (%) 10,807 (68.6) 7,119 (70.8)

Event

  Readmission (%) 599 (3.8) 476 (4.7)

  Death (%) 205 (1.3) 103 (1.0)

  Readmission or death (%) 751 (4.9) 577 (5.7)
 

National Intensive Care Evaluation Registryb Development Site (2013–2021) Validation Site (2013–2019)

Demographics

  Total observation n 11,473 16,686

Type of admission, n (%)

  Medical 5,612 (48.9) 6,738 (40.4)

  Emergency surgery 1,684 (14.7) 2,025 (12.1)

  Planned surgery 4,176 (36.4) 7,913 (47.4)

  Other 1 (0.01) 10 (0.06)

Mortality risk, n (%)

  <30% 7,347 (64.0) 11,920 (71.4)

 �≥30% and <70% 1,794 (15.6) 1,453 (8.7)

 �≥70% 1,217 (10.6) 848 (5.1)

  Missing 1,115 (9.7) 2,465 (14.8)

aObtained from Thoral et al (8).
bObtained from National Intensive Care Evaluation registry: https://www.stichting-nice.nl/.

http://links.lww.com/CCM/H261
http://links.lww.com/CCM/H261
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validation 2 on validation data (2018–2019). The final 
retrained model (“Validation after retraining,” Table 3) 
obtained a discrimination of 0.79 (95% CI 0.75–0.82) 
on validation data (2018–2019).

The models developed on data from the validation 
site showed calibration slopes below 1, indicating 
too extreme risk estimates, and intercepts above 0, 
indicating overall underestimation of risk (Table E5, 
http://links.lww.com/CCM/H261). After recalibra-
tion via isotonic regression, the slopes and intercepts 
were at 1 and 0, respectively, for all validation time 
points (Table 3). The calibration loss showed a minor 
decrease from 0.02 before recalibration to 0.01 after 

recalibration for all validation moments (Table  3) 
(Table E5, http://links.lww.com/CCM/H261). The 
decision curve for the model retrained at the valida-
tion site lies above the other strategies across almost 
the entire range of relevant probability thresholds, 
indicating a higher net benefit than the original 
model (Fig. 2). At a threshold of 5% for risk of re-
admission or death, the Leiden UMC model had a 
net benefit of 0.035: a net reduction of 3.5% points in 
patients who would have been readmitted or would 
have died. At a threshold of 10%, the model had a 
net benefit of 0.015, and at a threshold of 20%, the 
net benefit was 0.005. The original model had net 

TABLE 2.
Descriptive Statistics by Outcome Event for the Validation Site (Leiden University Medical 
Center)

Descriptives All No Event Readmission or Death 

Demographics

  Total, N (%) 10,052 (100.0) 9,475 (94.3) 577 (5.7)

  Age, mean (sd) 62.2 (14.0) 62.1 (14.0) 63.5 (13.9)

  Sex (female), n (%) 3,423 (34.1) 3,181 (33.6) 242 (41.9)

  Body mass index (kg/m2), mean (sd) 26.4 (5.6) 26.5 (5.7) 25.9 (5.5)

Clinical information

  Length of staya, mean (sd) 2.3 (4.2) 2.2 (4.0) 3.9 (5.6)

  Received vasopressors/inotropes, n (%) 7,119 (70.8) 6,677 (70.4) 442 (76.6)

ICU specialty top 5, n (%)

  Surgery 7,980 (79.4) 7,633 (80.6) 347 (60.1)

  Internal medicine 588 (5.9) 543 (5.7) 45 (7.8)

  Cardiology 327 (3.3) 295 (3.1) 32 (5.6)

  Neurology 245 (2.4) 207 (2.2) 38 (6.6)

  Gastroenterology 234 (2.3) 196 (2.1) 38 (6.6)

aLength of stay in days calculated before discharge.

TABLE 3.
Predictive Performance Before and After Retraining

Validation Step 

Area Under the 
Receiver Operating 
Characteristic Curve  Calibration Intercept Calibration Slope 

Calibration 
Loss 

External validation before 
retraining

0.72 (0.67–0.76) –0.09 (–0.3 to 0.12) 1.0 (0.72–1.28) 0.01

Temporal validation 1 0.79 (0.76–0.82) 0.07 (–0.14 to 0.29) 0.95 (0.73–1.17) 0.01

Temporal validation 2 0.79 (0.76–0.83) –0.0 (–0.22 to 0.21) 1.02 (0.78–1.26) 0.01

Validation after retraining 0.79 (0.75–0.82) –0.03 (–0.24 to 0.19) 0.99 (0.77–1.21) 0.01

http://links.lww.com/CCM/H261
http://links.lww.com/CCM/H261
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benefits of approximately 0.03 at a 5% threshold, 0.01 
at a 10% threshold, and 0.002 at a 20% threshold, 
respectively.

Model discrimination was best for surgical and 
neurology patients (final model AUC of 0.79 [95% CI 
0.75–0.84] and 0.84 [95% CI 0.70–0.97]) (Tables E6–
E10, http://links.lww.com/CCM/H261) and worst for 
internal medicine and gastroenterology patients (final 
model AUC of 0.62 [95% CI 0.44–0.79] and 0.63 [95% 
CI 0.40–0.92]). Calibration is best for the surgical 
group. CIs are generally large due to small sample sizes.

DISCUSSION

This study illustrated the importance of local 
retraining for a specific setting to increase the ap-
plicability of a gradient boosted ML model. We 
confirmed the external validity of a promising ML 
model to predict readmission or death within 7 
days after ICU discharge.

Our results indicate that retraining improved dis-
crimination and calibration comparable to the original 
performance at a new site. The constant performance 
throughout the temporal validation indicated that there 
were no changes in our data (data drift) affecting per-
formance over time. Retraining followed upon a process 
of extensive data preparation and harmonization (11). 
The need for retraining was underwritten by the DCA 
in which the final retrained model had a notably higher 
clinical usefulness than the original model. The level of 
heterogeneity between different sites directly relates to 
the generalizability of the original model to new sites. 
Heterogeneity between sites may for example be found 
in the patient populations, the healthcare context, and 
model specification, including the types of features in-
cluded. In our case study, the model development and 
validation settings both treated similar patient popu-
lations and provided a similar level of care in compa-
rable healthcare contexts (Table  1). There were some 
differences in the frequency and median of the features 
recorded, which may indicate differences in clinical 
protocols at the two centers (Table E1, http://links.lww.
com/CCM/H261). Yet, there was considerable overlap 
in the feature sets used at development and validation 
sites. Despite these similarities, there was a clear drop 
in performance for the external validation in compar-
ison to the original model results. Retraining led to 
markedly improved performance. We hypothesize that 
the drop in performance was caused by the differences 
in features and healthcare contexts, but this warrants 
further research. These results illustrate the importance 
of external validation and retraining, as generalizability 
was difficult to attain, and the exact differences between 
healthcare contexts driving the lack of generalizability 
may be hard to discern.

Retrained ML models also showed superior per-
formance in other studies. For a ML model predict-
ing hospital admission, the locally retrained models 
obtained AUCs of around 0.90 versus 0.60 for the ex-
ternal validations (30). For a study that aimed to iden-
tify pneumothorax patients with medical imaging, 
this was 0.90 versus 0.59 (31). These results under-
write that retraining and recalibration will likely be 
necessary when ML models are applied to a different 
setting. Yet, information on the external validity and 
necessity to recalibrate or retrain a ML model is cur-
rently not required to obtain CE-certification or FDA 
approval (12). Clinicians should be aware of this gap 

Figure 2. Decision curve analysis plotting net benefit (NB) 
for four discharging strategies across different threshold 
probabilities. Net benefit is expressed as the percentage 
reduction in readmission or death with respect to regular clinical 
practice (discharge all). The “discharge none” line corresponds 
to treating all patients as if they would be readmitted or dead 
within 7 d. This leads to many unnecessary prolonged ICU stays 
and only yields positive NB for very low threshold values (risk 
averseness). The “discharge all” line corresponds to discharging 
all patients as if they would not be readmitted or death within 7 
d and hence corresponds to the current clinical practice strategy. 
The “Amsterdam University Medical Center (UMC) model” line 
corresponds to discharging according to the original model 
developed on Amsterdam UMC data and recalibrated for the 
Leiden UMC setting. The “Leiden UMC model” line corresponds 
to discharging according to the final retrained and recalibrated 
model developed on Leiden UMC data.

http://links.lww.com/CCM/H261
http://links.lww.com/CCM/H261
http://links.lww.com/CCM/H261


de Hond et al

298     www.ccmjournal.org February 2023 • Volume 51 • Number 2

in the current regulatory requirements to prevent im-
plementation of models with suboptimal or harmful 
performance.

Our study has the following implications. First, our 
results illustrate that generalizability cannot be taken 
for granted, even when the development and validation 
cohorts have strong similarities in terms of patient pop-
ulation, healthcare context, and model specification. A 
second implication is that when generalizability is poor, 
more extensive retraining may be required to improve 
performance at the new site, which requires substantial 
sample size (32). Poor generalizability of ML models 
from one local setting to another limits the scalability of 
these techniques (21). The potential of Pacmed Critical 
(33) may not come to fruition by nontransportable and 
highly tailored solutions that are labor-intensive to de-
velop and maintain. Future research should analyze 
multisite datasets to explore heterogeneity in predictive 
relations as threats to developing generalizable models 
(34). Alternatively, up and coming techniques such as 
federated learning may prove useful in addressing the 
generalizability issue (35, 36). In situations where gen-
eralizable models cannot be attained, investment in data 
sharing infrastructure and in-hospital data science skills 
may help to facilitate the retraining and recalibration of 
these models locally. Last, the subgroup analysis showed 
diverging model performance across the different ICU 
specialties. Caution is needed when applying this model 
to “the ICU population” without detailed knowledge of 
the specific specialty case mix. Future model develop-
ments may focus on maximizing model performance 
across specialties by incorporating specialty specific 
variables and increasing the sample size of these sub-
groups. When applying ML models to clinical practice, 
clinicians should consider what case mix was consid-
ered during ML model development and whether the 
ML model can be safely and reliably applied to all pa-
tient groups and/or their case mix.

A strength of the current study was the use of a tem-
poral validation design. Besides examining the effect 
of retraining on model performance, this design also 
allowed us to assess the model’s sensitivity to shifts in 
data over time (15–18). A second strength was the com-
plete and external EHR data for the validation after 
thorough data preparation in collaboration with a clin-
ical domain expert (M.S.A). This led to a high-quality 
dataset. Another strength is the use of a comprehensive 

set of metrics to evaluate performance aspects, including 
calibration, discrimination, and clinical usefulness (37).

This study also had several limitations. First, the ex-
ternal validation was performed for one academic hospital 
(Leiden UMC) and one ML model (gradient boost-
ing decision tree). Hence, our results cannot be directly 
extrapolated to other sites and ML techniques. Based on 
our findings, we anticipate that external validation and 
possibly retraining likely remain necessary for new im-
plementation sites and ML techniques. Second, the mod-
els were developed with data preceding the COVID-19 
pandemic to reflect “standard care.” COVID-19 has dras-
tically changed the composition of ICU patients and dis-
rupted ICU care processes. Furthermore, COVID-19 may 
have changed the way critical care is practiced in non-
COVID situations. Further validation is therefore needed 
for (post-)COVID-19 patients to use the model safely and 
reliably in this context. Finally, our definition of an ICU 
discharge excluded patients discharged to the MCU from 
the analysis, and those with a recorded admission of less 
than 12 hours. These exclusion criteria not only adhered 
to the strict focus on discharges from critical care to non-
critical care settings but also limits the applicability of 
this model for clinical practice. Furthermore, the distinc-
tion between ICU and MCU may not always be clearcut. 
To address this limitation, future model developments 
should aim to incorporate ICU discharges to the MCU, 
and include all ICU admissions, irrespective of duration.

In conclusion, external validation can be essential 
to consider before clinical implementation of a ML 
model in a new setting. Techniques such as retraining 
may aid in improving model performance at a new site. 
Clinicians and decision-makers at the ICU should take 
this into account when considering applying new ML 
models to their local settings.
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