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Fatty acid translocase: a culprit of lipid 
metabolism dysfunction in disease
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Abstract 

Dysregulation of lipid deposition into and mobilization from white adipose tissue (WAT) underlies various diseases. Long-chain 
fatty acids (LCFA) and cholesterol trafficking in and out of adipocytes is a process relying on transporters shuttling lipids from the 
plasma membrane (PM) to lipid droplets (LD). CD36 is the fatty acid translocase (FAT) that transports LCFA and cholesterol across 
the PM. Interactions of CD36 with proteins PHB1, ANX2, and CAV1 mediate intercellular lipid transport between adipocytes, 
hematopoietic, epithelial, and endothelial cells. Intracellularly, the FAT complex has been found to regulate LCFA trafficking between 
the PM and LD. This process is regulated by CD36 glycosylation and S-acylation, as well as by post-translational modifications 
of PHB1 and ANX2, which determine both protein–protein interactions and the cellular localization of the complex. Changes in 
extracellular and intracellular LCFA levels have been found to induce the post-translational modifications and the function of the 
FAT complex in lipid uptake and mobilization. The role of the CD36/PHB1/ANX2 complex may span beyond lipid trafficking. The 
requirement of PHB1 for mitochondrial oxidative metabolism in brown adipocytes has been revealed. Cancer cells which take 
advantage of lipids mobilized by adipocytes and oxidized in leukocytes are indirectly affected by the function of FAT complex in 
other tissues. The direct importance of CD36 interaction with PHB1/and ANX2 in cancer cells remains to be established. This 
review highlights the multifaceted roles of the FAT complex in systemic lipid trafficking and discuss it as a potential target in 
metabolic disease and cancer.
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1. The role of CD36 in health and disease
Changes in lipid metabolism underlie the progression of all 
diseases [1]. Fatty acids (FA), cholesterol, their derivatives, 
and other lipids are used as a source of energy, cell struc-
ture components, and signaling molecules. White adipocytes 
are the rheostat of FA, contained as triglycerides in the lipid 
droplets (LD), as well as of cholesterol. White adipose tissue 
(WAT) can store or release lipids, which affects metabolism 
and the immune system systemically [2,3]. In contrast, brown 
adipose tissue (BAT) and beige adipocytes in WAT serve as 
energy sink by catabolizing lipids through adaptive thermo-
genesis [4]. Adipocyte dysfunction and imbalance between 
lipid storage and mobilization aggravates chronic cardiovas-
cular, inflammatory, and malignant conditions [5]. Adipocyte 
hypertrophy, a hallmark of obesity, leads to WAT inflam-
mation, dyslipidemia, and systemic lipotoxicity resulting in 
type-2 diabetes [6,7]. Conversely, excessive WAT lipolysis and 
lipid mobilization is associated with cachexia and cancer 
progression [8–10]. The transport of lipids across the PM is an 
active process controlling cell metabolism. A key mediator 
of lipid transport is the scavenger receptor cluster of differ-
entiation 36 (CD36), also known as fatty acid translocase 
(FAT). This protein, along with co-factors such as Src family 
kinases and G protein–coupled receptors (GPCRs), facilitates 
the intracellular and extracellular trafficking of long-chain 

fatty acids (LCFA), cholesterol, oxidized low-density lipo-
protein (OxLDL), and extracellular matrix proteins [11–15]. 
The interaction of CD36 with Src kinases and GPCRs allows 
for detection of specific lipids and the downstream activa-
tion of unique signaling pathways. For instance, CD36 bind-
ing of oleic acid activates mammalian target of rapamycin 
(mTOR) and extracellular signal-regulated kinase (ERK)1/2 
pathways and is associated with tumor cell progression and 
metastasis [16,17]. Moreover, CD36 interaction with GPR120 
and GPR40 in taste buds is implicated in the perception of 
dietary lipids and may play a role in obesity-associated dis-
eases [18].

Ample evidence indicates the importance of CD36 in AT. 
CD36 inhibition attenuates the effect of lipolysis induction 
[19] and reduces hypertrophy of visceral WAT in mice fed high-
fat diet [20,21]. Based on this notion, CD36 has been investi-
gated as a therapeutic target. However, these pursuits have 
been complicated because CD36 is expressed by various cell 
types including hematopoietic [22], and epithelial and endo-
thelial cells [23,24] in which it plays diverse roles. In models 
of atherosclerosis, suppression of CD36 transcription [25,26], 
function [27], or increased CD36 degradation [28] were asso-
ciated with a reduction in foam cell formation and reduced 
uptake of oxidized lipids by macrophages. Consistent with 
a pathogenic role of CD36, its inhibition attenuated hepatic 
steatosis/fibrosis [29,30] and myosteatosis [31]. However, global 
deletion of CD36 results in dyslipidemia, subclinical inflam-
mation [32], and an increased risk of atherosclerosis [33]. 
Moreover, expression of CD36 was found to be an important 
regulator of proper muscle satellite cell differentiation and 
myofiber regeneration [34]. Expression of CD36 is also import-
ant for suppressing neuroinflammation in demyelinating dis-
orders [35]. Collectively, these findings suggest that targeting 
the CD36 pathway requires cell type-specific strategies, and 
systemic inhibition of CD36 may have undesirable off-target 
effects.
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2. Formation of the PHB1/ANX2/CD36 complex and 
its importance in lipid trafficking and mitochondrial 
homeostasis
The complexity of FAT signaling and its functions has become 
even more apparent since the identification of post-trans-
lational modifications regulating CD36-induced lipid traf-
ficking from the plasma membrane (PM) to the LD and vice 
versa. Glycosylation is one such modification, which is partic-
ularly pronounced in adipocytes [36,37]. Another modification is 
S-acylation of CD36 by the palmitoyl acyltransferases DHHC4 
or DHHC5. Palmitoylation induces CD36 translocation to the 
PM, which enables its binding of extracellular lipids and the 
subsequent internalization of the lipid-FAT complex via caveo-
lin-1 (CAV1)–mediated endocytosis [38]. Other proteins mediat-
ing this process are prohibitin-1 (PHB1) and annexin 2 (ANX2), 
which interact with CD36 at the surface of adipose endothelium 
and adipocytes [39]. Dynamic S-acylation of PHB1 and ANX2 is 
important for the formation of the PHB1/ANX2/CD36 complex 
and its trafficking to and from the PM [40]. Furthermore, lipoly-
sis induction results in CD36 deacylation, internalization, and 
an apparent dissociation from PHB1 and ANX2 in the cytosol. 
Transient colocalization of CD36 and CAV1 at the LD during 
LCFA transport suggests that CD36 may play a role in lipid 
trafficking not only at the cell surface but also for transport-
ing lipids from the PM to the LD. The detailed roles of PHB1 
and ANX2 in regulating CD36-mediated lipid transport remain 
to be completely understood. Although the inhibition of either 
PHB1 or ANX2 leads to a phenotype akin to CD36 knockout 
and [39,41], these proteins have other functions in addition to 
lipid transport. Both PHB1 and ANX2 are found in various cell 
organelles, in which they regulate distinct processes [41–48]. A key 
function of PHB1 is to maintain mitochondrial biogenesis and 
function [49–51]. Indeed, ablation of PHB1 in adipocytes results in 
decreased mitochondrial content and function, which accounts 
for the loss of BAT and thermogenesis [52,53]. Interestingly, PHB1 
does not possess a mitochondrial targeting domain, instead, 
phosphorylation of PHB1 at Thr258 by AKT is considered the 
mechanism promoting mitochondrial localization of PHB1 [54].

Since the discovery of the interaction of PHB1 with CD36 in 
adipocytes, and the critical role of PHB1 in mitochondrial res-
piration, it is logical to extrapolate this mechanism to non-adi-
pogenic cells and postulate that the PHB1/ANX2/CD36/CAV1 
interactome may act as a ubiquitous lipid-sensing pathway. One 
possibility is that lipid delivery to the mitochondrial membrane 
and stabilization of electron transport chain enzymes, mediated 
by these proteins, may increase mitochondrial oxidative phos-
phorylation and biogenesis, favoring FA oxidation for ATP 
generation. This concept could have critical implications in the 
context of tumor cell physiology. Tumor cells regularly endure 
hypoxia, changes in fuel source availability, and high levels of 
reactive oxygen species (ROS). These processes involve changes 
in mitochondrial function that are likely to engage PHB1 and 
hence relay back to the FAT complex.

As previously stated, CD36 has been shown to regulate mTOR 
signaling yet our understanding of the mechanism by which 
this occurs remains lacking. Interestingly, PHB1 plays a direct 
role in the regulation of mTOR signaling. Although a consensus 
suggests PHB1 increases protein translation via activation of 
mTOR signaling [55,56], some studies report contradictory find-
ings [57]. Given its association with CD36 and status as a chaper-
one protein [50], PHB1 may act as a rheostat for FA metabolism 
in cells, regulating the shuttling of CD36 between the PM and 
LD while also activating mTOR and stabilizing mitochondrial 
metabolism and ATP production. ANX2 binds calcium, actin, 
and lipids and is a crucial component for stabilizing and orga-
nizing lipid microdomains at the PM, which are important sites 
for endo- and exocytosis [58–60]. Thus, ANX2 may have a role in 

directing CD36 to specific sites at the PM for lipid trafficking. 
These implied roles for PHB1 and ANX2 in CD36-mediated FA 
transport warrant investigation to increase our understanding 
of these interactions.

3. CD36 and cancer
The importance of lipid metabolism in cancer has been real-
ized in recent years [61–63]. Progression of carcinomas to epi-
thelial-to-mesenchymal (EMT), chemotherapy resistance, and 
metastasis is linked with increased LCFA uptake by tumors 
[64,65]. Recent studies of our group demonstrated the role of 
adipocyte and endothelial CD36 in LCFA mobilization from 
WAT and their bioavailability for cancer cells [40,63]. However, 
CD36 is also expressed by cancer cells, in which its glycosyla-
tion is relatively low, and the function is debated [40]. Increased 
expression of CD36 in tumor epithelium is associated with poor 
prognosis of various GI carcinomas as well as of ovarian can-
cer, glioblastoma, oral squamous cell carcinoma, and melanoma 
[66]. Interestingly, it is low CD36 expression that marks a poor 
prognosis for kidney renal clear cell carcinoma and pancreatic 
adenocarcinoma [67].Conflicting results have been published for 
breast cancer [68,69]. Despite this controversy, there appears to be 
a clear link of high CD36 expression, particularly in combina-
tion with CAV1 expression, and metastasis [70]. Pharmacological 
intervention results are consistent with cell surface CD36 being 
an important promoter of cancer aggressiveness [71]. Studies 
have identified CD36 expression as a driver of EMT in cervical 
[72], ovarian [73], colon [74], breast [75], hepatocellular carcinoma [76], 
and pancreatic [77] cancers.

CD36 expression in the tumor microenvironment is also a key 
component of tumor progression. It has been reported that 
CD36-mediated uptake of oxidized lipids by leukocytes under-
mines anti-tumor immune response [66,78,79]. Increased CD36-
mediated uptake of oxidized lipids by killer T-cells causes them 
to become dysfunctional and switch from a cytotoxic to immu-
nosuppressive role [79]. Studies investigating tumor-associated 
macrophages (TAMs) show that blocking CD36-mediated 
uptake of oxidized lipids by TAMs significantly reduces 
tumor progression by reducing pro-tumor cytokines produced 
from TAMs [80]. Interestingly, in breast cancer down-regula-
tion of CD36 expression in cancer-associated fibroblasts is 
linked with reduced tumor cell proliferation [81]. The CD36-
interacting proteins have been individually implicated in pro-
moting cancer progression. Elevated PHB1 is associated with 
increased metastasis in lung [82] and prostate [83] cancers, while 
both PHB1 and ANX2 have been implicated in breast cancer 
metastasis [84,85]. A possible role of the PHB1/ANX2/CD36/
CAV1 interactome in cancer progression remains to be deter-
mined and put into the context of what is known about other 
proteins, such as FATP1, which also regulate FA transport in 
cancer cells [86].

4. Targeting CD36 as a novel therapy for metabolic 
and metastatic disease
Despite the paucity of the FAT complex functions, its directed 
targeting may still pose an attractive approach for treating met-
abolic diseases and warrants further investigation. Clinical stud-
ies targeting CD36 signaling in cancer are underway [66]. Those 
that have been completed have largely failed due to off-tar-
get and adverse side effects, suggesting a refined approach is 
needed to increase the accuracy of inhibiting CD36 in target 
tissues [87,88]. Our group has used homing peptides to direct 
experimental therapies to specific cell types [89–93]. In brief, this 
approach utilizes combinatorial phage-displayed peptide librar-
ies to identify peptide sequences for homing affinity to target 
cells [94]. After screening, candidate peptides are validated for 
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receptor-blocking properties. For example, a peptide mimick-
ing the PHB1-binding site in ANX2 has been shown to block 
FA transport [39]. Potentially, receptor-homing peptides could be 
used to deliver molecules neutralizing CD36 complex transport 
function and signaling specifically in WAT, hepatocytes, or other 
cells for the treatment of obesity, hepatosteatosis, type-2 dia-
betes, and metastatic disease. Furthermore, specific targeting of 
CD36 in cancer cells using phage-display may be an approach 
to interfere with tumor lipid metabolism, hence making che-
motherapy more effective. However, the notion that the loss of 
PHB1 in adipocytes and in endothelial cells has opposite effects 
on metabolism [95] reiterates the point that targeting molecules 
in the FAT complex may need to be directed to specific cell types 
in order to be beneficial.

Increased interest in the relevance of lipid trafficking in disease 
will undoubtedly advance our understanding of metabolic and 
malignant disease. However, several aspects of what role the 
PHB1/ANX2/CD36 complex plays requires further investiga-
tion. For instance, CD36 has been shown to bind various ligands 
resulting in differential activation of downstream pathways, 
especially regarding Src family kinases and GPCRs. Detailed 
mechanisms showing how different classes of lipids binding 
the PHB1/ANX2/CD36 complex alters its interaction with 
secondary messengers, including any conformational changes, 
post-translational modification sites, and protein–protein inter-
actions needs to be elucidated. Furthermore, the premise that 
this complex may act as a lipid-sensing pathway affecting intra-
cellular lipid trafficking and metabolism in multiple cell types 
is intriguing. Detailed analyses of the functions of PHB1 and 
ANX2 after dissociation from the complex, especially if novel 
roles are identified for their involvement in lipid metabolism, 
protein synthesis, and mitochondrial function, would be import-
ant advances for linking lipids with chemoresistance and cancer 
progression. Future studies will establish and build on the rel-
ative importance of the FAT complex proteins in cells of WAT 
and BAT vs other benign and malignant tissues.
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