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Thousands of high‑quality 
sequencing samples fail to show 
meaningful correlation between 5S 
and 45S ribosomal DNA arrays 
in humans
Ashley N. Hall1,2, Tychele N. Turner3* & Christine Queitsch1*

The ribosomal RNA genes (rDNA) are tandemly arrayed in most eukaryotes and exhibit vast copy 
number variation. There is growing interest in integrating this variation into genotype–phenotype 
associations. Here, we explored a possible association of rDNA copy number variation with autism 
spectrum disorder and found no difference between probands and unaffected siblings. Because 
short-read sequencing estimates of rDNA copy number are error prone, we sought to validate our 45S 
estimates. Previous studies reported tightly correlated, concerted copy number variation between the 
45S and 5S arrays, which should enable the validation of 45S copy number estimates with pulsed-
field gel-verified 5S copy numbers. Here, we show that the previously reported strong concerted copy 
number variation may be an artifact of variable data quality in the earlier published 1000 Genomes 
Project sequences. We failed to detect a meaningful correlation between 45S and 5S copy numbers 
in thousands of samples from the high-coverage Simons Simplex Collection dataset as well as in 
the recent high-coverage 1000 Genomes Project sequences. Our findings illustrate the challenge of 
genotyping repetitive DNA regions accurately and call into question the accuracy of recently published 
studies of rDNA copy number variation in cancer that relied on diverse publicly available resources for 
sequence data.

The genes encoding the ribosomal RNAs are present in long tandem arrays in most eukaryotes, often referred 
to as the ribosomal DNA (rDNA). Most eukaryotic genomes contain two types of rDNA arrays: the 45S, encod-
ing the 18S, 5.8S, and 28S rRNAs, and the 5S, encoding the 5S rRNA. Because of their repetitive nature, both 
rDNA arrays are susceptible to expansion and contraction, which can lead to vast copy number differences 
among individuals1,2. The phenotypic consequences of natural variation in rDNA copy number remain largely 
unexplored3, although a number of human disease phenotypes have been linked to rDNA copy number.

Changes in rDNA copy number have been identified in some cancer and aging studies. The 45S and 5S copy 
numbers change in some human cancers, in which cancerous tissue has a higher or lower rDNA copy number 
than a matched control4–8. In some tissues such as the brain, heart, and adipose tissue, 45S rDNA copy loss has 
been observed with age9–11. However, one study argues that rDNA instability is only observed in brains of indi-
viduals affected by dementia, and is absent in aging brains of healthy individuals12. In contrast, a recent study on 
aging mice found that 45S rDNA copy number increases in the blood with age in mice13. Additional studies in 
mice and rat cell lines report a lack of change in rDNA copy number with age14–16. In both cancer and aging stud-
ies, not all cancers and not all aging tissues or organisms appear to display changes in rDNA copy number1,4,17,18. 
In short, there is no universal agreement on whether rDNA copy number changes with age or cancer.

In addition, an individual’s inherited rDNA copy number may be of interest for GWAS studies. In humans, 
rDNA copy number is associated with differences in global gene expression and mitochondrial abundance1. 
These differences may modify the effects of trait-associated variation. There are a few studies that report potential 
effects of rDNA copy number on disease: Higher 45S rDNA copy numbers are found in people with schizophrenia 

OPEN

1Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA  98195, 
USA. 2Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA  98195, 
USA. 3Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus, 
Box 8232, St. Louis, MO 63110, USA. *email: tychele@wustl.edu; queitsch@uw.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-80049-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |          (2021) 11:449  | https://doi.org/10.1038/s41598-020-80049-y

www.nature.com/scientificreports/

and Alzheimer’s disease19–22, and higher copy number of the 18S and 5.8S rDNA genes from peripheral blood 
predicts increased severity of lung cancer. If accurate rDNA copy number estimates were more readily available, 
integrating rDNA copy number into future genotype–phenotype analyses would be of great interest.

Moreover, the 45S and 5S arrays are reported to covary in copy number in mouse and human, an effect termed 
concerted copy number variation23. This finding was interpreted as evidence for natural selection maintaining 
balanced 45S and 5S copy numbers to ensure proper rRNA dosage. The reported strong concerted copy number 
variation implies that the repetitive rDNA arrays undergo compensatory contractions or expansions across 
several distant genomic loci through yet undiscovered molecular mechanisms.

Although the mechanisms underlying the balanced dosage of the 45S and 5S rRNAs are not fully understood, 
it is well appreciated that rRNA expression is not primarily a function of rDNA copy number24. In exponentially 
growing human and yeast cells, about half of the 45S rDNA copies are epigenetically silenced25,26. It is unknown 
whether a similar proportion of 5S copies are silenced in mammals; however, 5S silencing is demonstrated in 
Arabidopsis thaliana and Xenopus laevis27. In yeast, where the 45S and 5S are encoded in the same array, severe 
reduction of rDNA copy number results in all rDNA copies being expressed24. Similarly, mutations interfering 
with epigenetic silencing cause the expression of additional 45S rDNA copies in mammals (or of the singular 
repeat in yeast)28,29. Together, these data suggest that rRNA dosage is largely controlled through transcriptional 
regulation rather than by changing rDNA copy number.

However, in addition to being a potentially interesting biological phenomenon, concerted copy number 
variation holds promise for confirming the quality of rDNA copy number estimates. A key limit to incorporat-
ing rDNA copy number into genotype–phenotype associations is the ability to accurately quantify these geno-
types. Because rDNA copy number estimates by short-read sequencing are error-prone due to batch effects30, 
sequencing-based estimates should be validated by methods such as contour-clamped homogenous electric 
field gel electrophoresis (CHEF gels), which can separate megabase-sized DNA fragments. The human 45S 
arrays are too large and too numerous to be accurately quantified by CHEF gels, however the 5S can be readily 
measured31. Combining 5S estimates by CHEF gels with a linear model relating 5S and 45S array copy numbers 
from sequencing data could permit the assessment of the accuracy of 45S rDNA copy number genotypes. Here, 
we sought to develop and use this method in order to facilitate the inclusion of 45S rDNA copy numbers in 
genotype–phenotype association studies for autism spectrum disorder.

We analyzed concerted copy number variation between the 45S and 5S rDNA arrays in multiple datasets 
covering several thousand samples. The first data set encompasses the 163 samples of the low-coverage 1000 
Genomes Project in which concerted copy number variation was previously reported. We expand on this dataset 
by including two far larger datasets of newly generated high quality, high-coverage sequencing data for both the 
1000 Genomes Project and the Simons Simplex Collection. All sequencing samples for the high-coverage 1000 
Genomes Project and the Simons Simplex Collection were generated by the New York Genome Center with a 
single sequencing method. In contrast, the original, low-coverage 1000 Genomes Project data were generated 
in multiple genome centers using various methods. We estimated rDNA copy number by short read sequencing 
read depth in all three datasets.

Unlike previously reported, we observe only weak correlations between the 45S and 5S rDNA arrays in the 
Simons Simplex Collection and high-coverage 1000 Genomes Project collection. We confirm that our analysis 
pipeline identifies the previously reported strong concerted copy number variation in the low-coverage 1000 
Genomes Project data, and we show that concerted copy number variation is far weaker in the high-coverage data 
for the same samples. Furthermore, we show that copy number estimates between high and low-coverage data 
correlate poorly. The weak correlation between the 45S and 5S rDNA arrays is not an artifact of cell passaging 
between the initial 1000 Genomes Project sampling and the recent high-coverage resequencing effort because 
we observed the same result in the Simons Simplex Collection samples derived from blood. We recently reported 
that rDNA copy number estimation from whole-genome short-read sequencing data is sensitive to even subtle 
variation in sample processing and coverage in technical replicates30. Our results on the lack of concerted copy 
number variation call into question several recently published associations of rDNA copy number with cancer 
and aging.

Results
Meaningful concerted copy number variation is not present in the Simons simplex collec‑
tion.  Our initial goal was to estimate rDNA copy number in the Simons simplex collection to determine 
if rDNA copy number is associated with autism spectrum disorder. Autism spectrum disorders associate with 
variants in hundreds of genes, including single nucleotide, tandem repeat, and copy number variants32–34. rDNA 
copy number variation has not been assessed in autism spectrum disorder; however, it has been hypothesized 
that higher rDNA copy number associates with a more severe intellectual disability due to the increased poten-
tial for rRNA translation35. The Simons Simplex Collection has sequenced hundreds of families with a child 
affected by an autism spectrum disorder36–40. We estimated rDNA copy number in 7,268 individuals from fami-
lies in which both of the parents, the proband, and an unaffected sibling were sequenced. We detected no dif-
ference in rDNA copy number based on autism status (Fig. 1a), using read coverage estimates (Student’s paired 
t-test, p = 0.9365)23. We asked whether within probands, rDNA copy number associates with degree of intel-
lectual disability by comparing individuals with an IQ of <  = 50 to those with an IQ of >  = 100. We detected a 
statistically significant difference (nominal p = 0.03, Welch two-sample t-test) of individuals with an IQ <  = 50 
having on average eleven more rDNA copies than those with IQ >  = 100, consistent with the published hypoth-
esis (Fig. 1b). However, eleven additional rDNA copies seem unlikely to be biologically relevant, given an aver-
age copy number of ~ 250 and epigenetic silencing of many copies. Testing additional cutoffs for IQ—including 
assessing individuals with IQ < 70 versus those with IQ >  = 70, the cutoff for severe versus not severe intellectual 
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disability, yielded similar results (Supplemental Fig. 1). With more stringent IQ cutoffs, nominal significance 
was abolished. Because we previously reported that rDNA copy number estimates based on short-read whole 
genome sequencing data can be error prone, with eleven copies certainly being within the range of error30, we 
sought to validate rDNA copy number in a subset of samples by alternate methods.

Our preferred alternate method to estimate rDNA copy number is the CHEF gel. CHEF gels are the gold 
standard to estimate rDNA copy number, but they have limitations. In humans, the 45S rDNA array makes up 
the short arm of each of the 5 acrocentric chromosomes, so when assessing rDNA copy number by CHEF gel 
ten distinct bands should be observed. No previous study has ever observed ten distinct bands in a 45S CHEF 
gel, possibly because some rDNA loci are too large to be resolved31. In contrast, the 5S rDNA, residing in a single 
locus, can be readily measured by CHEF gels. Given the previously reported concerted copy number variation 
between the 5S and 45S rDNA arrays23, we planned to validate the 5S rDNA copy number estimates by CHEF 
gels to infer the accuracy of the sequencing-based 45S rDNA copy number estimates.

To this end, we first estimated 5S rDNA copy number in the Simons Simplex Collection to determine the 
strength of concerted copy number variation. We found weaker correlation than what was reported previously: 
The 18S and 5S copy numbers correlate with a Spearman coefficient of 0.24, while in the initial study using 1000 
Genomes Project data the Spearman coefficient was 0.61 (Fig. 1c, Table 1). As we were primarily interested in 

Figure 1.   rDNA copy number estimates and correlations of 45S and 5S rDNA regions in the Simons Simplex 
Collection. (a) rDNA copy number distributions for probands (n = 1774) and unaffected siblings (n = 1774) in 
the Simons Simplex Collection. Paired t-test p-value: 0.937. (b) Comparison of 18S copy number in probands 
with low (I <  = 50, n = 298) and high (I >  = 100, n = 500) IQ scores. Welch Two Sample t-test p-value = 0.01533, 
average difference between groups is 9 copies. (c–e) Correlations of each the 18S, 5.8S, and 28S regions of the 
45S rDNA array to the 5S rDNA array with Spearman’s rho indicated (n = 7210).

Table 1.   Correlations between 45S and 5S rDNA copy numbers in the Simons simplex collection. The 
Spearman correlation coefficient and linear models that describe the relationships between the 45S and 5S 
rDNA copy numbers are shown.

SSC (n = 7210)

y x Spearman Spearman p-value Linear model Multiple R-squared

5S 18S 0.244  < 2.2E-16 y = 0.127x + 213 0.061

5S 5.8S 0.297  < 2.2E-16 y = 0.134x + 214 0.094

5S 28S 0.292  < 2.2E-16 y = 0.155x + 215 0.093
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predicting 45S rDNA copy numbers from 5S rDNA copy numbers, we tested a linear model relating the copy 
numbers. This linear model is not predictive; the R2 value is 0.061. As expected, we observe similar trends when 
analyzing the 28S and 5.8S copy numbers in relation to the 5S number (Fig. 1d,e, Table 1).

Concerted copy number variation in high‑coverage 1000 Genomes Project data is weak.  We 
next tested if weak concerted copy number variation was specific to the Simons Simplex Collection dataset. The 
1000 Genomes Project recently released a new dataset of higher coverage sequencing data for approximately 
2500 samples (Michael Zody, personal communications). The sequencing data from the high-coverage dataset 
were generated by a single sequencing center with a single library preparation and sequencing method and a 
target genome coverage of ~ 30×. This sequencing center also generated the Simons Simplex Collection dataset. 
We estimated rDNA copy number in 2,419 of the high-coverage 1000 Genomes Project samples which displayed 
normal karyotypes. We observe a weak but significant correlation between each the 18S, 5.8S, and 28S copy 
numbers with the 5S copy number: The Spearman coefficients are 0.084, 0.111, and 0.118, respectively (Fig. 2a, 
Table 2, and Supplemental Fig. 2). Despite the significance of the correlation, there is no predictive power to the 

Figure 2.   Correlations of the 5S and 45S rDNA copy numbers in 1000 Genomes Project data. (a) Correlation 
of the 18S to the 5S in the high-coverage 1000 Genomes Project data (n = 2419). (b) Correlation of the 18S to 
the 5S in the subset of 1000 Genomes Project data samples also analyzed in the low-coverage dataset (n = 163). 
(c) Correlation of the 18S to the 5S in the low-coverage 1000 Genomes Project data (n = 163). (d,e) Comparison 
of rDNA copy number estimates for the same cell lines sequenced separately in the high-coverage and low-
coverage 1000 Genomes datasets for the 18S locus (d) and the 5S locus (e). Spearman’s rho is indicated in each 
panel, n = 163.

Table 2.   Correlations between 45S and 5S rDNA copy numbers in the high-coverage 1000 Genomes Project 
dataset. The Spearman correlation coefficient and linear models that describe the relationships between the 45S 
and 5S rDNA copy numbers are shown.

High coverage data (n = 2419)

y x Spearman Spearman p-value Linear model Multiple R-squared

5S 18S 0.084 3.69E−05 y = 0.037x + 258 0.005

5S 5.8S 0.111 4.90E−08 y = 0.044x + 255 0.010

5S 28S 0.118 6.97E−09 y = 0.061x + 255 0.011
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relationship between the 45S and the 5S copy numbers: For example, a linear model relating the 18S and 5S copy 
numbers has an R2 value of 0.005 (Table 2).

The weak concerted copy number variation signal in the high-coverage 1000 Genomes Project dataset is not 
simply due to an increased number of samples. If we exclusively analyze the high-coverage samples that were a 
part of the low-coverage study (n = 163), we still observe a much weaker correlation than previously reported: 
the 18S and 5S correlate with a Spearman coefficient of 0.194 (Fig. 2b, Table 3, and Supplemental Fig. 2). Our 
results raise the question whether differences in analysis methods or differences in data quality are responsible 
for the observed discrepancy with the previously reported findings23.

Our pipeline reproduces concerted copy number variation observed in low‑coverage 1000 
Genomes Project data.  A key difference between our analysis and the original study in which concerted 
copy number variation was reported lies in the alignment pipelines and post-alignment corrections. We used 
BWA for alignment41, while bowtie2 was used in the original study23,42. Additionally, the original study used a 
correction for pseudogene content, which we did not perform because no significant differences in concerted 
copy number variation were observed with or without corrections23. To ensure that our analysis pipeline identi-
fies the previously reported concerted copy number variation, we applied it to 163 of the 168 low-coverage 1000 
Genomes Project samples previously studied.

Consistent with the original study, our analysis pipeline detected strong concerted copy number variation 
between the 45S and 5S loci in the low-coverage 1000 Genomes Project data. The 18S, 5.8S, and 28S rRNA gene 
copy numbers correlate to the 5S copy number with Spearman coefficients of 0.56, 0.79, and 0.69 (Table 4, Fig. 2c, 
Supplemental Fig. 2). These coefficients are similar to those previously published, which are 0.61, 0.80, and 0.73, 
respectively23. We conclude that the failure to detect strong concerted copy number variation does not arise from 
differences in copy number estimation methods but is likely due to differences in the datasets used for analysis.

Indeed, we find that the low-coverage and high-coverage data yield different rDNA copy number estimates 
for the same cell lines. In comparing 18S estimates of the same cell lines in the two different datasets, the rDNA 
copy numbers only correlate with Spearman coefficients of 0.49. The 5S locus shows a Spearman correlation of 
0.52 between the two datasets. These values are far lower than would be expected when analyzing the same cell 
lines (Fig. 2d,e, Supplemental Fig. 3). The scenario that rDNA copy numbers have changed between samplings 
for low- and high-coverage data generation is unlikely as there are several reports documenting that rDNA copy 
number is largely stable in cell lines14,43. Taken together, our results are consistent with previous reports that 
different library preparations of the same samples often yield different rDNA copy number estimates30.

Low‑coverage 1000 Genomes Project sequencing data come from multiple sources.  We 
wanted to further explore which differences in the low- and high-coverage datasets lead to different rDNA copy 
number estimates and the lack of meaningful concerted copy number variation. One difference between the 
datasets is that the low-coverage 1000 Genomes sequencing data were produced by any of seven sequencing 
centers, while the high-coverage data were produced by a single center. The seven sequencing centers used vari-
ous library preparation methods44, and library preparation methods and batch effects can influence rDNA copy 
number estimates30. Moreover, some samples included reads from multiple library preparations and/or sequenc-
ing centers, turning the low-coverage copy number estimates into composite estimates from different libraries.

Table 3.   Correlations between 45S and 5S rDNA copy numbers in the subset of high-coverage 1000 Genomes 
Project data also analyzed in the low-coverage dataset. The Spearman correlation coefficient and linear models 
that describe the relationships between the 45S and 5S rDNA copy numbers are shown.

High coverage data (n = 163)

y x Spearman Spearman p-value Linear model Multiple R-squared

5S 18S 0.194 1.36E−02 y = 0.091x + 251 0.029

5S 5.8S 0.217 5.73E−03 y = 0.091x + 251 0.041

5S 28S 0.232 3.08E−03 y = 0.121x + 251 0.042

Table 4.   Correlations between 45S and 5S rDNA copy numbers in the low-coverage 1000 Genomes Project 
dataset. The Spearman correlation coefficient and linear models that describe the relationships between the 45S 
and 5S rDNA copy numbers are shown.

Low Coverage Data (n = 163)

y x Spearman Spearman p-value Linear model Multiple R-squared

5S 18S 0.555  < 2.2E−16 y = 0.332x + 132 0.308

5S 5.8S 0.790  < 2.2E−16 y = 0.355x + 136 0.601

5S 28S 0.693  < 2.2E−16 y = 0.366x + 150 0.453
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For each of the 163 low-coverage 1000 Genomes Project samples, we split the sequencing files by library 
preparation ID. Library depths varied by nearly two magnitudes: chromosome 1 coverage for individual librar-
ies ranged from 0.24× to 14.4×, with an average of 5.4×. When we analyze rDNA copy number estimates from 
individual libraries by sequencing center, we find that some centers produced sequence data that biased rDNA 
copy estimates toward higher or lower values (Supplemental Fig. 4). As it is unlikely that certain centers were 
assigned samples with abnormally high or low rDNA copy number, the observed bias likely arose through differ-
ences in library preparation methods. This bias was not observed in the high-coverage data for the same samples, 
which supports the notion that sample assignment was not biased.

Of the 163 low-coverage samples, rDNA copy number estimates for 54 samples were based on sequencing data 
generated from multiple libraries (Fig. 3). Of these 54 samples, some samples, such as NA12154 and NA0700, 
contained multiple libraries that yielded 18S estimates very similar to both each other and our high-coverage 
data estimate. Others, such as NA11892 or NA12778, contained one library with an estimate very similar to our 
high-coverage data estimate but also other libraries with estimates near zero copies. The libraries with severe 
underestimates of rDNA copy number tended to have lower coverage, suggesting that read depth may influence 
rDNA copy number estimates.

Sequencing coverage does not account for the magnitude of rDNA copy number differences 
observed between the high and low‑coverage 1000 Genomes Project datasets.  We next inves-
tigated if depth of read coverage drives the differences in rDNA copy number estimation between the high- 
and low-coverage 1000 Genomes Project datasets. We performed downsampling experiments on four samples 
spanning the range of rDNA copy numbers estimates from the high-coverage 1000 Genomes Project dataset. 
Randomly downsampling of the high-coverage data to 400, 300, 200, 100, 50, and 10 million reads ten times 
each reveals that reducing coverage does affect rDNA copy number estimates to a small degree. Reassuringly, the 
average of ten independent downsamplings for a sample was close to the copy number estimate of the full dataset 
(Fig. 4). For example, NA07357 had an estimated copy number of 252 in the high-coverage dataset. Its average 
copy number from downsampling ten times to 10 million reads was 249. Nevertheless, the range of copy number 
estimates increased with decreased coverage. At 10 million reads, the range of 18S estimates for NA07357 varied 
from 222 to 272, while at 100 million reads it varied from 244 to 260.

For comparison, the individual libraries for the low-coverage 1000 Genomes Project samples have a mean 
coverage of 5.4× for chromosome 1. The comparable samples in the downsampling experiment would be those 
with 100 million reads, which have a chromosome 1 coverage of approximately 4.5×. For the four samples ana-
lyzed, at ~ 4.5× coverage, the copy number estimates are at most ± 13 copies of the full dataset estimate. Even at 
10 million reads (~ 0.45× coverage), copy number estimates are at most ± 43 copies of the full dataset estimate. 
Meanwhile, comparing the high- and low-coverage estimates, the low-coverage libraries underestimated the 18S 
by an average of 57 copies. The different libraries ranged from underestimating by 371 copies to overestimating by 
110 copies as compared to the high-coverage data. These differences are much larger than what can be explained 
by differences in sequencing coverage alone. We conclude that the vast discrepancies in copy number estimates 
between datasets are not due to sequencing coverage, and hypothesize that the discrepancies may have arisen 
through batch effects or technical differences in library preparation.

Simons Simplex Collection and high‑coverage 1000 Genomes Project data are likely higher 
quality than the low‑coverage 1000 Genomes Project data.  To test the above hypothesis, we ana-
lyzed the correlation of copy number estimates of the three 45S components to each other, an approach previ-
ously used as a quality metric1. Because these components are part of the same array, they should correlate 

Figure 3.   Comparison of 18S copy number estimates for different libraries made from the same cell lines. Of 
the low-coverage 1000 Genomes Project samples, 54 contained data from multiple sequencing libraries. Orange 
squares denote the high-coverage 1000 Genomes Project estimate. Open black circles indicate individual library 
estimates for each sample. Samples are ordered by high-coverage 18S estimate.
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highly. As expected, the high-coverage data showed somewhat higher intra-45S correlations than the low-cover-
age data. For example, the 18S and 28S copy numbers in the high-coverage dataset have a Spearman correlation 
of 0.97 (Fig. 5a, Table 5). In the 163 samples analyzed in both the high- and low-coverage data, the 18S and 28S 
copy numbers in the high-coverage dataset showed a Spearman correlation of 0.97 but has a Spearman correla-
tion of 0.92 in the low-coverage dataset (Fig. 5b,c, Tables 6 and 7). This trend is reinforced by analysis of a linear 
model relating the two copy numbers. For the 163 samples analyzed in both 1000 Genomes Project datasets, 
the R2 value for the high-coverage dataset was 0.95 while it was 0.85 for the low-coverage dataset (Tables 6 and 
7). Analysis of the correlation of the 18S to the 5.8S and the 28S to the 5.8S show the same trends between the 
three datasets (Supplemental Fig. 5) The improved intra-45S correlations suggest that the rDNA copy number 
estimates in the high-coverage 1000 Genomes Project dataset are of higher quality.

There are three different data quality metrics that can be analyzed with the Simons Simplex Collection data. 
As with the 1000 Genomes Project data, we first assessed intra-45S correlations, finding similarly high Spearman 
correlations: The 18S and 28S copy numbers showed a Spearman correlation of 0.943, and a linear model relating 
the two had an R2 value of 0.90 (Fig. 5d). The family structure of the Simons Simplex Collection permits analy-
sis of rDNA copy number heritability. We found high heritability of both 45S and 5S rDNA array components 
(h2 = 0.94 for the 18S, h2 = 0.92 for the 5S) (Fig. 5e,f, Supplemental Fig. 6).

Unique to this study, we can also assess reproducibility of rDNA copy number estimates through use of 
monozygotic twins and duplicate samples. The Simons Simplex Collection includes four pairs of monozygotic 
twins that showed perfect correlation of 18S copy number. Additionally, some individuals in the Simons Simplex 
Collection enrolled in other studies and were therefore sequenced twice, albeit by the same sequencing facility. 
These duplicate samples were identified from shared SNVs, and would be expected to share rDNA copy numbers. 
Although duplicate samples can show considerable deviation from one another due to technical issues30, we 
found reasonably high correlation between the 18S copy number estimates arising from the duplicated samples 
(Spearman correlation 0.81, Fig. 5g, Table 8). The 5S copy number estimates also showed high correlation between 
the twin and duplicated samples (Spearman correlation 0.902, Fig. 5h). Similar to the comparisons between the 
high- and low- coverage 1000 Genomes Project data, the correlation of 28S and 5.8S estimates in the twin and 
duplicate samples of the SSC was lower than that of the 18S (Supplemental Fig. 6). These values are still substan-
tially higher than the correlation values between the same regions in the high- and low- coverage 1000 Genomes 
Project, indicating that the replicate sequencing events in the Simons Simplex Collection produce more similar 
rDNA copy number estimates. Together, the heritability data, intra-45S correlations, and duplicated samples 
give confidence in the Simons Simplex Collection rDNA copy number estimates.

We conclude that co-variation between the 45S and 5S rDNA arrays in both high-coverage datasets is weak 
and does not allow prediction of the copy number at one array based on the copy number at the other. This lack 
of meaningful concerted copy number variation holds true regardless of whether data were generated using 

Figure 4.   Read coverage downsampling of four high-coverage 1000 Genomes Project samples. (a) NA12154 
has an 18S copy number of 115 in the full dataset. (b) NA07357 has an 18S copy number of 252 in the full 
dataset. (c) Has an 18S copy number of 282 in the full dataset. (d) NA19210 has an 18S copy number of 550 in 
the full dataset. Note different Y axis scales for each graph. Ten independent downsamplings were performed 
per sample.
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Figure 5.   Data quality metrics for rDNA copy number estimates. (a–d) Correlations between the 18S and 
28S regions of the 45S rDNA repeat unit for the (a) high-coverage 1000 Genomes Project data (n = 2,419), (b) 
subset of high-coverage 1000 Genomes Project data also analyzed in the low-coverage dataset (n = 163), (c) 
low-coverage 1000 Genomes Project data (n = 163), and (d) Simons Simplex Collection data (n = 7,210). (e) 
Heritability of the 18S copy number in the Simons Simplex Collection (n = 3,548). (f) Heritability of the 5S 
rDNA copy number in the Simons Simplex Collection. (g,h) Comparison of 18S (g) and 5S (h) rDNA copy 
number estimates for either monozygotic twins (n = 4 pairs) or for individuals sequenced twice in the Simons 
Simplex Collection (n = 13). Spearman correlation indicated is for monozygotic twins and duplicates analyzed 
together.

Table 5.   Correlations between the three rRNA genes encoded in the 45S repeat unit in the high-coverage 
1000 Genomes Project dataset. The Spearman correlation coefficient and linear models that describe the 
relationships between the 18S, 5.8S, and 28S copy numbers are shown.

High coverage data (n = 2419)

y x Spearman Spearman p-value Linear model Multiple R-squared

5.8S 18S 0.973  < 2.2E−16 y = 1.126x + −33 0.955

28S 18S 0.971  < 2.2E−16 y = 0.862x + −27 0.951

28S 5.8S 0.990  < 2.2E−16 y = 0.761x + −0.19 0.983

Table 6.   Correlations between the three rRNA genes encoded in the 45S repeat unit in the subset of high-
coverage 1000 Genomes Project data also analyzed in the low-coverage dataset. The Spearman correlation 
coefficient and linear models that describe the relationships between the 18S, 5.8S, and 28S copy numbers are 
shown.

High coverage data (n = 163)

y x Spearman Spearman p-value Linear model Multiple R-squared

5.8S 18S 0.972  < 2.2E−16 y = 1.157x + −44 0.951

28S 18S 0.970  < 2.2E−16 y = 0.886x + −33 0.951

28S 5.8S 0.990  < 2.2E−16 y = 0.760x + 1.96 0.986
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lymphoblastoid cell lines or whole blood samples. The previously observed concerted copy number variation in 
the low-coverage dataset appears to be an artifact of lower data quality.

Discussion
In this study, we sought to further explore the relationship between the copy numbers of the 45S and 5S rDNA 
arrays. We have previously reported that short-read sequencing estimates of rDNA copy number genotypes are 
error-prone30. Given the previously published concerted copy number variation of the 5S and 45S rDNA arrays 
in humans, we thought this co-variation may provide a useful metric to predict 45S rDNA copy number from 
5S copy number, the latter of which can be readily obtained by pulsed-field gel electrophoresis.

Working with two new, high-coverage sequencing datasets, we found weak concerted copy number variation 
that was not predictive. Sequencing coverage alone did not explain the discrepancy in copy number estimates or 
concerted copy number variation between samples sequenced in both the original low-coverage 1000 Genomes 
dataset and the newer high-coverage 1000 Genomes dataset. Available sequence data for many samples of the 
low-coverage dataset were derived from multiple library preparations from multiple sequencing centers. We 
suspect that differences in library preparation methods lead to these considerable discrepancies in rDNA copy 
number estimates. Because we were able to recapitulate the previously observed concerted copy number varia-
tion from the low coverage 1000 Genomes Project samples, the differences in results between the datasets stem 
from sample preparation methods, not analysis methods.

In addition to the promise of a predictive model, the previously reported concerted copy number variation 
had fascinating implications for biology, in particular for genome maintenance and evolution. Selection for 
strongly concerted copy number variation suggests the existence of mechanisms that “count” and adjust copy 
numbers accordingly, operating across several genomic loci on separate chromosomes. It is not fully understood 
how quantities of the rRNA products of the 45S and 5S arrays are balanced to facilitate ribosome biogenesis. 
Concerted copy number variation could have provided a possible mechanism of maintaining proper rRNA dos-
age by means of balancing their genomic templates. However, vast stretches of 45S rDNA repeats are typically 
silenced, resulting in the total number of 45S rDNA copies not necessarily reflecting the number of transcribed 
copies. Less is known about 5S regulation in mammals, though 5S silencing is prevalent in species such as A. 
thaliana and Xenopus species27,45–48. The abundance of 45S silencing suggests that maintaining concerted copy 
number variation of the rRNA genes is not crucial for balancing rRNA levels.

In support of our findings, this lack of a meaningful correlation between 45 and 5S arrays was previously 
observed in model organism studies. Co-variation between 45 and 5S rDNA copy numbers was weak in a large 
mutant collection of over 2000 strains and 40 natural isolates of Caenorhabditis elegans, which estimated rDNA 
copy number from high-coverage sequence data49. Meaningful covariation between these arrays was also found 
to be lacking in a study of various ecotypes of A. thaliana, and separately in several species of fish50,51. In short, 
our finding that copy numbers at the 45S and 5S arrays show little correlation is biologically plausible and sup-
ported by studies of model organism rDNA.

Some may argue that the observed differences in rDNA copy number between the low- and high-coverage 
1000 Genomes datasets stem from biological differences; i.e. that the studied samples have acquired changes 
in rDNA copy number. We consider this an unlikely scenario. The DNA used for each sequencing effort was 
extracted from lymphoblastoid cell lines, which were propagated for an unknown number of generations from a 
common stock between each study. However, rDNA copy number has been reported as stable both in cell lines14,43 

Table 7.   Correlations between the three rRNA genes encoded in the 45S repeat unit in the low-coverage 
1000 Genomes Project dataset. The Spearman correlation coefficient and linear models that describe the 
relationships between the 18S, 5.8S, and 28S copy numbers are shown.

Low Coverage Data (n = 163)

y x Spearman Spearman p-value Linear model Multiple R-squared

5.8S 18S 0.834  < 2.2E−16 y = 1.086x + −49 0.690

28S 18S 0.920  < 2.2E−16 y = 1.017x + −75 0.853

28S 5.8S 0.930  < 2.2E−16 y = 0.779x + 3.6 0.857

Table 8.   Correlations between the three rRNA genes encoded in the 45S repeat unit in the Simons Simplex 
Collection. The Spearman correlation coefficient and linear models that describe the relationships between the 
18S, 5.8S, and 28S copy numbers are shown.

SSC (n = 7210)

y x Spearman Spearman p-value Linear model Multiple R-squared

5.8S 18S 0.962  < 2.2E−16 y = 1.131x + −49 0.928

28S 18S 0.943  < 2.2E−16 y = 0.956x + −48 0.956

28S 5.8S 0.988  < 2.2E−16 y = 0.849x + −7.5 0.981
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and multicellular organisms such as C. elegans30,49, except for when rDNA copy number is reduced to a level that 
causes fitness defects such as in Saccharomyces cerevisiae or Drosophila melanogaster52,53.

We present our results as a cautionary tale about the challenges of genotyping repetitive DNA. While our 
results suggest that the high-coverage uniform sequencing performed by the New York Genome Center for the 
updated 1000 Genomes Project and the Simons Simplex Collection likely yielded more accurate rDNA copy 
number estimates, there is no certainty without validation through alternate methods. We are reassured by the 
fact that the observed lack of meaningful covariation between 45 and 5S rDNA copy numbers is consistent 
with current biological knowledge. We therefore trust our finding that there is no association of rDNA copy 
number with autism spectrum disorder. However, in light of our findings, we posit that care should be taken 
when drawing biological conclusions based on rDNA copy number estimates from short-read whole genome 
sequencing data. Changes in rDNA copy number have been reported for some cancers and in aging, prompting 
speculation about their role as drivers or essential players in both processes. A subset of these findings rely on 
rDNA copy number estimates from short read sequencing data1,8,23. However, even studies that develop their 
own rDNA copy number estimation methods still compare to short read sequencing data to comment on their 
accuracy4,13. Some of these findings may need to be re-evaluated by applying multiple data quality metrics to 
the analyzed sequence data, by conducting uniform, high-coverage re-sequencing, or by validating rDNA copy 
number through alternative approaches. Even still, better sequencing and bioinformatics methods must be 
developed for the accurate assessment of repetitive DNA regions so that repeat copy numbers can be calculated 
unambiguously. Going forward, we hope that these results will caution researchers about drawing firm conclu-
sions from rDNA copy number estimates based on short-read sequencing data, as public data repositories often 
contain samples generated with various methods and by different sources.

Methods
Alignment and copy number estimation.  Sequence analysis.  Samtools version 1.9 and bwa version 
0.7.15 were used for all analyses.

Reference sequences for the 45S ribosomal DNA (U13369.1), 5S ribosomal DNA (X12811.1), mtDNA, and 
chromosome 1 of the human genome (GRCh38 reference) were downloaded from the NCBI nucleotide database 
with GenBank IDs as indicated in parenthesis. CRAM files were converted to fastq by Samtools fastq and aligned 
to the appropriate reference sequence by bwa mem with default parameters and converted to CRAM files with 
samtools view. Per-base read depth was calculated with Samtools depth outputting all positions, with the—d 0 
flag to eliminate a maximum read depth cutoff.

To estimate ribosomal DNA copy number, average read depth across the whole 5S or 5.8S coding sequence 
was divided by the average chromosome 1 read depth. These regions correspond to positions 271–391 of 
X12811.1 for the 5S and positions 6623–6779 of U13369.1 for the 5.8S For the 18S and 28S subunits, segments 
of these genes previously used for concerted copy number variation analysis were used, and the average read 
depth at these regions was divided by the chromosome 1 depth23. These are positions 3841–3985 of U13369.1 
for the 18S, and 8049–8198 of U13369.1 for the 28S.

Copy number estimates, ribosomal DNA read coverage and average chromosome 1 coverage for all samples 
in this study are provided as supplementary data files.

Statistical analysis.  Analyses were performed in Rstudio version 1.0.153, with R version 3.5.1.

Data availability
High-coverage 1000 Genomes Project data are available at the following website: https​://www.ebi.ac.uk/ena/data/
view/PRJEB​31736​. The following cell lines/DNA samples were obtained from the NIGMS Human Genetic Cell 
Repository at the Coriell Institute for Medical Research: [NA06984, NA06985, NA06986, NA06989, NA06994, 
NA07000, NA07037, NA07048, NA07051, NA07056, NA07347, NA07357, NA10847, NA10851, NA11829, 
NA11830, NA11831, NA11832, NA11840, NA11843, NA11881, NA11892, NA11893, NA11894, NA11918, 
NA11919, NA11920, NA11930, NA11931, NA11932, NA11933, NA11992, NA11994, NA11995, NA12003, 
NA12004, NA12005, NA12006, NA12043, NA12044, NA12045, NA12046, NA12058, NA12144, NA12154, 
NA12155, NA12156, NA12234, NA12249, NA12272, NA12273, NA12275, NA12282, NA12283, NA12286, 
NA12287, NA12340, NA12341, NA12342, NA12347, NA12348, NA12383, NA12399, NA12400, NA12413,, 
NA12414, NA12489, NA12546, NA12716, NA12717, NA12718, NA12748, NA12749, NA12750, NA12751, 
NA12760, NA12761, NA12762, NA12763, NA12775, NA12776, NA12777, NA12778, NA12812, NA12813, 
NA12814, NA12815, NA12827, NA12828, NA12829, NA12830, NA12842, NA12843, NA12872, NA12873, 
NA12874, NA12878, NA12889, NA12890]. These data were generated at the New York Genome Center with 
funds provided by NHGRI Grant 3UM1HG008901-03S1. Sequencing data for the SSC is available through the 
Simons Foundation for Autism Research Initiative (SFARI) and is available to approved researchers at SFARI 
base (http://base.sfari​.org, accession IDs: SFARI_SSC_WGS_p, SFARI_SSC_WGS_1, and SFARI_SSC_WGS_2). 
Copy number estimates used in this study are provided as supplementary data files.
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