
Heliyon 7 (2021) e06236

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

audiomath: A neuroscientist’s sound toolkit

N. Jeremy Hill a,∗, Scott W.J. Mooney b,c, Glen T. Prusky b,c,d

a Stratton VA Medical Center, Albany, NY, USA
b Burke Neurological Institute, White Plains, NY, USA
c Blythedale Children’s Hospital, Valhalla, NY, USA
d Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Auditory stimuli

Python

Software library

Audio latency

Audio jitter

In neuroscientific experiments and applications, working with auditory stimuli demands software tools for 
generation and acquisition of raw audio, for composition and tailoring of that material into finished stimuli, for 
precisely timed presentation of the stimuli, and for experimental session recording. Numerous programming tools 
exist to approach these tasks, but their differing specializations and conventions demand extra time and effort 
for integration. In particular, verifying stimulus timing requires extensive engineering effort when developing 
new applications.

This paper has two purposes. The first is to present audiomath (https://pypi .org /project /audiomath), a sound 
software library for Python that prioritizes the needs of neuroscientists. It minimizes programming effort 
by providing a simple object-oriented interface that unifies functionality for audio generation, manipulation, 
visualization, decoding, encoding, recording, and playback. It also incorporates specialized tools for measuring 
and optimizing stimulus timing.

The second purpose is to relay what we have learned, during development and application of the software, 
about the twin challenges of delivering stimuli precisely at a certain time, and of precisely measuring the time 
at which stimuli were delivered. We provide a primer on these problems and the possible approaches to them. 
We then report audio latency measurements across a range of hardware, operating systems and settings, to 
illustrate the ways in which hardware and software factors interact to affect stimulus presentation performance, 
and the resulting pitfalls for the programmer and experimenter. In particular, we highlight the potential conflict 
between demands for low latency, low variability in latency (“jitter”), cooperativeness, and robustness. We 
report the ways in which audiomath can help to map this territory and provide a simplified path toward each 
application’s particular priority.

By unifying audio-related functionality and providing specialized diagnostic tools, audiomath both simplifies 
and potentiates the development of neuroscientific applications in Python.
1. Introduction

The open-source software library audiomath makes it easy for 
Python programmers to synthesize, record, manipulate, edit, visual-

ize or play sound waveforms. Since these functions are integral to a 
wide variety of use cases in science, engineering, art and entertain-

ment, audiomath’s potential applications are many and diverse. Its 
development was motivated by the need for tools for designing and 
presenting auditory stimuli in neuroscientific research, so we will de-

scribe audiomath from the neuroscientist’s perspective. The software 
is available at https://pypi .org /project /audiomath.

* Corresponding author.

E-mail address: jezhill@gmail.com (N.J. Hill).

We created audiomath as part of the Burke-Blythedale Pediatric 
Neuroscience Research Collaboration, to support field applications 
of neurotechnology—specifically, EEG-based cognitive assessments in 
children with brain injuries, performed at the bedside. This is one com-

ponent of our broader vision of a “scalable neurological assessment 
platform” (SNAP) which consists of multiple reusable software modules. 
Another published component, Shady, allows rendering and real-time 
manipulation of research-quality visual stimuli even on sub-optimal 
hardware [1]. Providing full documentation and support to external 
users is part of our strategy to ensure that modules such as Shady and

audiomath remain usable and future-proof as the platform evolves. 
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Python was chosen as the basis for this platform due to the maturity 
and modularity of the language, the power and minimalism of its syn-

tax, the comprehensiveness of both its standard library and the range 
of high-quality packages available for free from third parties, and its 
consequent high prevalence in scientific communities.

We identified the need for software tools that facilitate—and, to the 
greatest extent possible, enable us to automate—the four main tasks 
enumerated below with minimal effort on the part of the programmer. 
In outlining these tasks, we have underlined the recurring lower-level 
functions that these tasks require:

1. Gathering raw material to make auditory stimuli—depending on 
the experiment, this might include decoding content from existing 
audio files, generating waveforms from simple mathematical spec-

ifications, recording sounds from a microphone, or a combination 
of these.

2. Composing stimuli by manipulating the sound data in memory—

for example, extracting segments of interest, trimming or padding 
to the required length, aligning, windowing, rescaling, resam-

pling, cleaning up, multiplexing and splicing. As part of this pro-

cess visualization and playback are valuable tools for previewing 
the stimulus under construction. Typically, the end-point of this 
pipeline entails encoding the result in some recognized audio file 
format and saving it as a file.

3. Presenting stimuli to the subject. For this, we needed our playback

functionality to meet certain criteria:

• ease of controlling multiple overlapping stimuli independently;

• the capability of playing multi-channel sounds (more than 2 
channels);

• programmatic control of the operating-system’s overall volume 
(because we found that standardizing the system volume by hand, 
as part of an experimenter’s standard operating procedure, is 
overly prone to omission due to human error);

• in some applications, we need to achieve low latency, and/or 
minimal variability in latency (“jitter”)—see Section 3;
from audiomath import Sound, Player, Stack

# Load the sound from file:

stimulus = Sound(’myStimulus.wav’)

# Ensure the stimulus has at least two channels:

if stimulus.nChannels == 1:

stimulus *= [1.0, 1.0]

# ...and no more than two channels:

stimulus = stimulus[:, :2]

# Only those first two channels will be audible. In addition, we want

# a third channel that will be connected to a specialized widget, for

# purposes of hardware-triggered pulse synchronization (see Section \r

# Create a new sound with the same sampling frequency as the stimulus:

marker = Sound(fs=stimulus.fs)

# ...and fill it with a short abrupt-onset 1000-Hz tone burst:

marker.GenerateWaveform(freq_hz=1000, duration_msec=20)

# Stack the stimulus, the tone burst, and a silent channel together:

composite = Stack(stimulus, marker, 0) # could use the ‘&‘ operator

# Create a connection to the sound hardware, and get it ready to play

p = Player(composite)

# Play it:

p.Play()

Listing 1: Example Python code, using audiomath to accomplish the goal,

myStimulus.wav in the first two channels (left and right), simultaneous with 
This goal is expressed in 230 characters or 39 words of English. Disregardi

characters or 34 words/numbers.

2

• in other applications, we might be willing to sacrifice latency but 
require playback to be robust (able to tolerate the use of process-

ing resources by other threads or processes without the sound 
stuttering, skipping or slowing down) and/or cooperative (i.e. to 
allow other processes to play sound at the same time).

4. Capturing sound during the experimental session: some experi-

mental designs require continuous recording of sound data and 
encoding it to file, for example to capture verbal responses by the 
subject, notes dictated by the experimenter, and other events that 
may be relevant to subsequent data analysis.

In summary, the lower-level functions (underlined above) are: 
manipulation, generation, visualization, decoding, encoding, recording, 
and playback. In Section 2, we explain how audiomath enables each 
of these functions. In Section 3 we examine the issue of performance, 
defining criteria by which audio presentation performance can be 
judged, the factors that affect it, and outlining various approaches to 
the problem of recording stimulus timing. In Section 4 we describe the 
methods, included in the audiomath codebase, that we used to gather 
illustrative performance data from a range of hardware and operating 
systems, which we then report in Section 5 before concluding.

2. Design

The goal of any programmer’s toolbox is to provide functionality 
at a certain level while saving the programmer from having to worry 
about implementation details at lower levels. This can be achieved both 
by writing original code and by wrapping third-party code (the purpose 
of wrapping being to ensure that code from different sources operates 
smoothly together, while exposing a consistent level of detail to the 
programmer who uses it). In audiomath, we aim at the level of detail 
exemplified in Listing 1. It allows the Python implementation of an idea 
at this level to be roughly as concise as the English-language expression 
of the same idea, while still being highly readable and maintainable by 
programmers.
ef{s:hardwareSynch})

as shorthand

the sound:

 “Create and present a four-channel stimulus that has the content of the file

a tone burst for synchronization in a third channel, and silence in a fourth.”. 
ng the comments and an initial import statement, the listing uses 270 
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The following subsections describe the way in which audiomath

uses original code and unites the functionality of various third-party 
toolboxes, to implement each of its essential functions. Finally, Sec-

tion 2.7 summarizes the third-party dependencies entailed in these 
solutions, and how audiomath manages them.

2.1. Manipulation

At its core, audiomath represents sounds as numeric arrays, via 
the (required) third-party Python package numpy. numpy is well-

established, well-supported, and ubiquitous in scientific Python appli-

cations [2, 3, 4]. In audiomath, sound arrays are embedded in an 
object-oriented interface, bundling together the raw data and the as-

sociated meta-information into Sound objects. The name audiomath

is inspired primarily by the ability to perform arithmetic operations on 
these objects using elementary syntax—for example, x = 2 * y + z
makes a linear superposition of sounds. Similarly minimal and intuitive 
notation can be used for slicing and splicing along the time dimension, 
selection and multiplexing of channels, resampling, mixing, trimming, 
padding, rescaling, and amplitude modulation.

For more sophisticated types of manipulation, audiomath also pro-

vides wrappers that interface with some optional third-party audio pro-

cessing utilities. For example, it can:

• Time-stretch or pitch-shift a sound (i.e. make it last longer while 
holding pitch constant, or change its pitch while holding duration 
constant). To do this, audiomath simply provides a convenience 
wrapper around the phase-vocoder implementation provided by 
the (optional) third-party Python package librosa [5].

• Process a sound via the SoX utility. As part of audiomath, we 
provide a convenience wrapper around sox, a third-party cross-

platform command-line tool that can perform a range of different 
processing and editing functions on sounds. One of these, of partic-

ular interest to neuroscientists, is the “loudness” effect, which can 
standardize the expected perceived intensity of a sound according 
to international standard ISO 226 [6].

Furthermore, the easy accessibility of the raw numpy array inside 
each Sound object, and the ubiquity of numpy, makes it relatively 
easy for users to implement any sound data transformation or analy-

sis method that is not already implemented in audiomath, either from 
scratch or using third-party audio processing packages such as librosa

and scipy.signal.

2.2. Generation

In its Signal sub-module, audiomath provides routines for syn-

thesizing simple stimulus waveforms such as clicks, sine-waves, square-

waves, sawtooth-waves and triangle-waves, with or without antialias-

ing, and for modulating their amplitude with other waveforms, includ-

ing windowing/tapering functions. There is also support for playback 
of sounds that are functionally generated on-the-fly (i.e. while playing).

2.3. Visualization

Sound waveforms, and/or their amplitude or power spectra, can 
be plotted provided the (optional) third-party Python package mat-

plotlib is installed. Like numpy, matplotlib is an almost-ubiquitous 
standard, used throughout the world by scientists of all fields [4, 7, 8].

2.4. Decoding and encoding

Using routines that are already part of Python’s standard library,

audiomath can read uncompressed .wav files into memory, and write 
them back out to file. It can also decode a wide variety of other audio 
3

formats, or extract the sound track from a variety of video formats, us-

ing the third-party C library AVbin [9]—AVbin binaries are included 
in the package, for the most common platforms. Non-.wav formats can 
also be encoded and written to file—under the hood, this uses au-
diomath’s own wrapper around the popular third-party command-line 
utility ffmpeg, which must be installed separately. (Alternatively, sox
may be used—again, this must be installed separately.)

2.5. Recording

To access the audio input and output hardware, audiomath ships 
with a back-end implementation based on the third-party cross-platform 
C library PortAudio [10], binaries for which are included for a range 
of common platforms. This allows sound to be recorded either into 
memory or direct to file. Recording direct to file additionally requires a 
separate installation of the ffmpeg or sox command-line utilities. The

PortAudio library also enables flexible and precise playback (see next 
section).

2.6. Playback

The default back-end for playback is the PortAudio library (also 
used for recording—see previous section). Across a range of devices, 
we have found that this provides flexibility and reasonable perfor-

mance (see the results of Section 5). An alternative back-end, based on 
the optional third-party package psychtoolbox, is also included—this 
enables access to PsychPortAudio, a customized version of the Por-
tAudio library tailored for precise timing [11, 12]. Users can switch 
to the PsychPortAudio implementation if they want to reduce jitter 
even further.

Programmers may also use audiomath to control the operating-

system’s overall volume. This is accomplished via bindings to Apple-

script on macOS, to PulseAudio command-line utilities on Linux, or to 
Microsoft’s Component Object Model on Windows (which requires the 
third-party Python packages comtypes and psutil).

2.7. Summary of audiomath’s third-party dependencies

To implement each of the required functions described in the fore-

going sections, audiomath brings together functionality already imple-

mented by various third-party developers. Some of these dependencies 
are included in the package when it is installed, some others are in-

stalled automatically when the user installs audiomath via a package 
manager such as the ubiquitous pip, and some others are left to the 
user’s discretion. For reference, they are summarized in Table 1.

With the exception of numpy, audiomath’s functionality degrades 
gracefully in the absence of these dependencies. For example, if the 
user’s operating system is not among the platforms already supported 
by the included AVBin binaries (currently: 64- and 32-bit Windows, 
64-bit macOS and Linux), then audiomath will only be able to read 
audio data from uncompressed .wav files, but other functions will still 
work; or, if the user chooses not to install matplotlib, plotting will 
be disabled but no other functions will be compromised.

3. Understanding playback performance: a primer for 
neuroscientists

When a computer program issues the command to play a sound 
(or modulate it, or stop it), the command may return and allow the 
program to proceed within microseconds; however, the physical sound 
will not start (or change, or stop) until much later. This delay, referred 
to as audio latency, reflects the time taken for the operating system’s 
sound libraries, drivers and hardware to process the command. La-

tencies are highly variable between hardware/driver/operating-system 
configurations—from a few milliseconds to a few hundred milliseconds. 
They are also somewhat variable from one repetition to another on the 
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Table 1. This table lists the third-party dependencies of audiomath. The 
recommended way of installing audiomath is to use the command python 
-m pip install audiomath and this will handle the dependencies listed 
as “automatically installed” and “included”. Optional dependencies can be in-

stalled at the user’s discretion, using pip for Python packages (for example 
with python -m pip install psychtoolbox) and separate methods (in-

dependent of Python) for the command-line utilities.

Name Type Role

Automatically installed alongside audiomath on all platforms:

numpy Python package required for everything audiomath

does

Automatically installed alongside audiomath on Windows:

psutil Python package required for controlling the system 
volume on Windows

comtypes Python package required for controlling the system 
volume on Windows

Included in the audiomath package, ready-compiled for common platforms:

PortAudio binary (C library) enables recording and playback

AVBin binary (C library) enables sounds to be decoded from 
common compressed audio and video 
file formats

Optional add-ons that can enhance audiomath’s functionality:

matplotlib Python package enables plotting of waveforms and 
spectra

psychtoolbox Python package enables playback with very low jitter

librosa Python package enables pitch-shifting and 
time-stretching; (as well as providing a 
library of other sophisticated analysis 
and processing functions)

ffmpeg command-line 
utility

enables audiomath sounds to be 
written to file in a wide range of 
encoded formats

sox command-line 
utility

allows various effects to be applied to 
sound; enables audiomath sounds to 
be written to file in some encoded 
formats

same setup—we define “jitter” as the within-setup standard deviation 
of latencies measured under uniform conditions.

Latency and jitter both matter, for different reasons, to neurosci-

entists. Additional performance criteria may also interact with one’s 
latency settings. We outline multiple performance criteria and their sig-

nificance in Section 3.1 below. Of these criteria, uncertainty in stimulus 
timing, in the form of jitter, tends to demand the largest amount of 
energy when one is engineering neuroscientific experiments and appli-

cations. In Section 3.2 we outline different methods for recording the 
timing of auditory stimuli for the purpose of reducing uncertainty. In 
Section 4 we describe how audiomath unifies these methods to pro-

vide a measurement tool for latency and jitter. In Section 5 we report 
results of such measurements, illustrating some of the factors that affect 
performance.

3.1. Performance criteria and their significance in neuroscience

In the following subsections we define multiple performance 
criteria—latency, jitter, robustness, cooperativeness, multi-channel ca-

pability and programmability—and briefly highlight the significance 
of each. These criteria may matter to differing extents, and they may 
be more or less easy to achieve, depending on whether the applica-

tion is deployed in a laboratory or “in the field” (for example, as a 
bedside test in a clinical setting). In field applications there may be 
less scope for dedicating specialized hardware to each separate task, 
higher likelihood of having to use sub-optimal hardware (often cho-

sen for portability rather than performance), and greater imperative to 
multi-task (for example, in our pediatric applications we often present 
critical stimuli opportunistically, interleaved with entertainment that 
usually requires a browser-based video player).

Often it is necessary to accept a trade-off between criteria. Most ob-

viously, low latency and robustness pull in opposite directions. On the 
4

Windows platform there are further complications, as the lowest la-

tencies are typically only available at the expense of cooperativeness. 
This depends on what the PortAudio library refers to as the host ap-

plication programmer’s interface or “host API”. Host APIs are platform-

specific libraries that allow programmers to interface with sound drivers 
without writing driver-specific code.1 PortAudio, as a cross-platform 
library, offers an additional level of abstraction so that the programmer 
does not need to write host-API-specific code. It does this by rolling the 
selection of host API into the user’s selection of sound device: for ex-

ample, on a given Windows computer, device #4 might be a pair of 
headphones as addressed via the “DirectSound” host API, whereas de-

vice #6 might be the same pair of headphones as addressed through 
the “WASAPI” host API.2 This selection affects performance in multiple 
ways, especially under Windows, as we will discuss below and illus-

trate in Section 5. Therefore, it is valuable to be aware of the available 
choices, which are illustrated in Fig. 1. One motivation in making Por-

tAudio the default back-end for audiomath was that it provides a 
simple way for the user to cut through the complexity of Fig. 1 and 
choose a host API with minimal fuss.

3.1.1. Low latency

Some applications require absolute latency to be as low as possible. 
In neuroscience these are typically closed-loop interactive applications 
that are intended to mimic real-world interaction. Such applications 
need low latency for the same reasons musicians need it: to ensure 
sound perception is sufficiently tightly bound to other sensory inputs 
and to efference copy information from the motor system. This concern 
was highlighted in a study by Scarpaci et al. [14], who manipulated 
the latency of real-time updates to the virtual head-centric position of 
a sound stimulus, which changed as a function of subjects’ head move-

ments while tracking the stimulus. They measured subjects’ errors in 
tracking, reporting equal (baseline) error rates at latencies of 4 and 
18 ms, with increasing errors as latency increased further (32 ms or 
more). Some hardware and software configurations are capable of pro-

ducing latencies below 20–30 ms and some are not. Therefore it is clear 
that neuroscientists would need to select and configure their comput-

ers carefully and validate their performance for this application—and 
indeed for applications involving other response modalities that might 
have even narrower latency tolerances.

Another advantage of lower latency is that it tends to entail lower 
uncertainty in stimulus onset time (although there are exceptions, such 
as the one noted in the next subsection). In other words, as absolute 
expected latency decreases, absolute jitter usually also decreases.

3.1.2. Low jitter
Post-hoc analyses of the brain’s responses to sound are anchored 

first and foremost in knowing when the sounds occurred, relative to the 
response data that are being collected (brain signal data, eye move-

ments, button-presses, etc). This is where jitter matters: even if the 
absolute latency were high, zero jitter would mean that expected la-

tency could be measured once and then compensated-for precisely in 
every analysis thereafter; conversely, non-zero jitter entails uncertainty 
in the timing of each individual stimulus, degrading the power of the 
analysis. Various approaches for recording stimulus timing, and the way 
in which they deal with jitter, are described in Section 3.2. Usually, jit-
ter decreases as the absolute expected latency decreases, but there is 
one notable exception: when using PsychPortAudio, a performance-

optimized version of PortAudio that comes from the Psychophysics 
Toolbox project, it is possible to pre-schedule a sound. Relative to the 
time the command is issued, the scheduled time should be completely 
outside the usual distribution of latencies (so, the effective latency is 

1 For background details regarding Windows audio APIs, see Kirk [13].
2 WASAPI stands for Windows Audio Session Application Programmer’s In-

terface.
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Fig. 1. This figure shows software components that provide Python programmers with access to sound input and output hardware. We show the components that 
are relevant to audiomath and, for comparison, the audio components related to psychopy, which is a separate high-level package also aimed at neuroscientists. 
Both of them make use (directly or indirectly) of cross-platform libraries such as PortAudio which, in turn, wrap the various platform-specific “host APIs” (darker 
boxes). Each host API has advantages and disadvantages relative to the others, including the fact that the driver for a given device may support features of different 
host APIs to differing extents. Therefore, PortAudio (and the Python packages that use it, such as audiomath) provide users with commands by which the desired 
host API can be chosen and configured. The choices available to the audiomath user have been highlighted: blue (mid-intensity) arrows indicate options that use the 
standard PortAudio library, and red (darkest) arrows indicate options that take advantage of PsychPortAudio, a performance-optimized version of PortAudio

that comes from the Psychophysics Toolbox project. Gray (lightest) arrows show connections that are either unrelated to audiomath or outside of the audiomath

user’s control. The figure is incomplete, in the sense that there are many other sound libraries available, unrelated to either audiomath or psychopy, and even 
additional host APIs that PortAudio does not support.
longer than usual) but the resulting jitter is very low, regardless of ab-

solute latency.

3.1.3. Robustness

We use the term “robust” to describe a system that plays and records 
clean audio without skipping, stuttering, crackling or slowing, despite 
concurrent use of CPU or memory resources by one’s own program,3 or 
by other processes on the computer. In traditional laboratory settings, 
an experimenter may be able to dedicate and configure a computer (or 
even a more-expensive specialized audio processor) exclusively for the 
task of auditory stimulus presentation. In this case, the experimenter 
typically does not have to worry about robustness thereafter. In field 
applications, by contrast, robustness may be of greater concern. The 
lower the latency, the higher the risk of disruption—therefore, in some 
situations it may be necessary to run at higher latency for the sake of 
robustness.

3.1.4. Cooperativeness

We call a process “cooperative” if, while using a given sound device, 
it allows other processes to use the same sound device concurrently. 
On Windows, the programmer must unfortunately choose: the lowest-

3 Python in particular may exacerbate the effects of resource contention be-

tween threads of the same process, because of its so-called Global Interpreter 
Lock [15].
5

latency host APIs (WASAPI with aggressively-configured latency set-

tings, or ASIO,4 or WDM/KS5) are non-cooperative, whereas selecting 
a host API capable of cooperation (WASAPI with cooperative settings, 
or MME,6 or DirectSound) results in considerably higher latencies. In 
many neuroscience experiments it may actually be desirable for the 
main process to use the sound hardware uncooperatively, since this 
will prevent incidental interruptions by sounds from other processes. 
However, it is undesirable in more-integrated applications—consider, 
for example, a brain-computer interface designed purely as an access 
method through which users might instruct their computers to perform 
any normal task, including playing music or making calls.

3.1.5. Multi-channel capability

Nearly all sound software, and nearly all sound output hardware, 
is capable of delivering two precisely-synchronized channels simulta-

neously: left and right. We use the term “multi-channel” to refer to 
anything that delivers more than two channels, such as a surround-sound 
system. Even when we need only two channels for stimulus presenta-

tion, it is sometimes critical to have more available—for example, when 
implementing some types of hardware-triggered pulse synchronization, 
as described in Section 3.2.3. In addition to demanding suitably special-

4 ASIO stands for Audio Stream Input/Output.
5 WDM/KS stands for Windows Driver Model/Kernel Streaming.
6 MME stands for Multi-Media Extensions and is sometimes also known as 

WinMM.
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ized hardware, this requirement may constrain one’s choice of software 
(before adding PortAudio support to audiomath, we tried a num-

ber of other audio toolboxes for Python, and found that many of them 
were not multi-channel capable) as well as one’s choice of host API 
(on Windows, the “MME” host API is not multi-channel capable). Luck-

ily, the market for surround-sound entertainment applications has en-

sured that suitably specialized portable hardware is available and well-

supported—we have had good results from 8-channel dedicated USB 
sound adapters that cost around 30 US Dollars, in both performance 
tests and in our auditory brain-computer-interfacing studies [16].

3.1.6. Programmability

In designing audiomath, we aimed to allow programmers to auto-

mate as much functionality as possible, reducing potential sources of 
error by cutting out manual intervention by the experimenter. How-

ever, some software configurations can undermine this. For example, 
Fig. 1 shows that, under Windows, sound hardware can be addressed 
via the ASIO host API and the third-party ASIO4ALL driver. This of-

fers flexibility in configuring buffering and latency settings and can be 
used to achieve very low latencies. However, some of its parameters 
must be accessed by the end-user manually in a graphical user interface 
(GUI): PortAudio can programmatically increase buffer size relative 
to the GUI-configured setting, but cannot decrease it, and has no access 
to the influential “buffer offset” setting. Note that ASIO4ALL is itself 
built on top of the WDM/KS host API—accordingly, we have found 
that comparably low latencies are achievable by having PortAudio
address WDM/KS directly, so we have eventually concluded that there 
is no need to use ASIO4ALL.

3.1.7. Hardware-invariance in latency

Software intended for distribution to collaborators or customers may 
end up running on a wide variety of hardware. It may be desirable for 
performance to vary as little as possible across different hardware se-

tups. We find that the property of invariance is itself affected by one’s 
configuration—particularly, once again, the choice of host API on Win-

dows (DirectSound latencies being highly variable across the setups we 
have measured, and WDM/KS latencies being the least variable).

3.2. Synchronization methods

In the following subsections, we describe four approaches to record-

ing the timing of auditory stimuli: software logging, software-triggered 
pulse generation, hardware-triggered pulse generation and hardware-

synchronized envelope extraction. The audiomath source code repos-

itory contains microcontroller code that can be used to implement 
software-triggered or hardware-triggered pulse synchronization, with 
the option to use both methods simultaneously for measuring audio la-

tencies (see Section 4).

3.2.1. Software logging

In the software logging approach, the computer merely saves a 
record of the times at which sound commands were issued. It requires 
a common clock that can be read by the stimulus presentation pro-

gram and also by whatever system provides timestamps for the response 
data. This approach is used by most applications in the popular brain-

computer interfacing platform BCI2000 [17, 18]. It does not account 
for audio latency or jitter: when these are critical, the best one can do 
is to perform a separate validation using hardware triggering to verify 
that jitter is low enough.7 Validation methods might include, for ex-

7 The definition of “low enough” may differ in different applications—for 
example, ±5 ms may be acceptable when analyzing late or even mid-latency 
event-related potentials in EEG, but not when attempting to distinguish compo-

nents of early brainstem evoked responses that are only one or two milliseconds 
apart.
6

ample, the method developed and reported by Wilson et al. [19] for 
BCI2000, or audiomath’s own method described below in Section 4. 
The assumption is that the latency and jitter are the same during valida-

tion as they will be during subsequent use without the hardware trigger. 
This assumption leaves us vulnerable to non-stationarity of the system’s 
audio latency—either transient variation due to contention over pro-

cessing resources with some background system task, or lasting changes 
due to updates in the drivers or other operating-system components (the 
latter means that the validation procedure must be repeated after any 
system update or reconfiguration).

3.2.2. Software-triggered pulse synchronization

When there is no common clock that both the stimulus presentation 
program and the data acquisition system can read, software logging can-

not be used. Instead, it may be possible to use software-triggered pulse 
synchronization. This relies on the fact that many biosignal recording 
devices can record auxiliary information time-locked to the primary 
signal. One or more auxiliary channels can be used to record stimulus 
timing—typically by marking stimulus onset with the rising edge of a 
5-volt pulse. Immediately before playing a sound, the computer sends a 
message over a serial, parallel or network interface to a specialized syn-

chronization device (“widget”) that generates such a pulse as soon as 
it receives the message. The widget is typically a simple processor that 
performs little or no multi-tasking, so its timing is very precise relative 
to that of the computer. However, the computer’s half of the communi-

cation link will inevitably add a small extra amount of latency and jitter 
to the whole system. Other than this, the software-triggered pulse syn-

chronization approach is no different from the software logging method, 
and suffers all the same problems.

3.2.3. Hardware-triggered pulse synchronization

Like the software-triggered approach, hardware-triggered pulse syn-

chronization also uses a pulse-generating widget. Instead of triggering 
the pulse via digital communication, the computer’s audio output ca-

ble is split so that identical signals run both to the subject’s head-

phones or speakers, and also to an analog input on the widget. The 
widget monitors the sound signal and generates a pulse as soon as it 
detects that the amplitude exceeds some threshold. This is the most 
accurate and precise way to localize stimulus onsets in time, pro-

vided the sound amplitude exceeds the threshold at the right moment. 
A potential complication arises when working with natural sounds, 
which may have gradual onsets to differing extents: the relative on-

set time of two natural sounds may then appear to change according 
to the (arbitrarily-chosen) threshold parameter value.8 This problem 
can be circumvented if the sound software and hardware are capa-

ble of delivering more channels than are needed for actual speakers 
and headphones—each stimulus can incorporate an artificial, abrupt-

onset sound in the extra audio channels, whose corresponding ca-

bles are connected directly to the widget and not to the speakers.9

If the stimuli are monophonic, one can use inexpensive audio cable 
adapters to make this work even with simple stereo hardware (one 
channel for sound, one for synchronization). For stimuli that require 
two or more audible channels, one must take steps to ensure that 
one’s hardware, drivers and host API all have multi-channel capabil-

ity.

8 Our shorthand for describing this effect is the “Pink Floyd problem”, refer-

ring to fact that many of that band’s albums start with such a gradual fade-in 
that they cause a period of uncertainty as to whether or not one actually pressed 
“play”.

9 Luckily, it is generally safe to assume precise time-locking between the 
audible channels and the artificial sounds—precise inter-channel timing is a 
mission-critical feature of even the cheapest soundcards.
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Fig. 2. This circuit extracts the envelope of an audio signal by high-pass-filtering, then rectifying, then smoothing, so that it is suitable for recording in an auxiliary 
channel of a recording device with a low (200 Hz or more) sampling frequency. The circuit was designed to capture sound energy anywhere above 10 Hz, and to 
capture amplitude fluctuations up to 100 Hz. The resistor value R2 was chosen in the context of a 100 kΩ load on the output (from an optical isolation unit used 
to isolate the circuit from the EEG recording device, for safety reasons). Smaller loads (larger load resistances) lead to longer decay times of the circuit’s impulse 
response—to bring this back into the low-double-digit millisecond range, R2 might have to be increased (and C2 reduced accordingly so that the product R2⋅C2 
remains constant).

Fig. 3. This schematic shows our system for estimating the audio latency 𝑎 of stimulus presentation (or the overall latency 𝑠 + 𝑎 of a software-triggered stimulus 
logging and presentation system) by implementing both software- and hardware-timed triggering in a microcontroller-based timing widget. Time is on the horizontal 
axis. Black arrows indicate serial-port communication. The analog output of the computer’s sound-card is connected to an analog input of the microcontroller. Gray 
arrows indicate the audio pathway: processing of the Play() command by the host API, driver and hardware, followed by the microcontroller’s detection of the 
physical sound signal (which takes time 𝑑). Time durations 𝑡ext and 𝑡int are measured by the computer and the microcontroller, respectively. 𝑢1 and 𝑢2 are unknown 
(not directly measurable) latencies of serial-port communication. See text for further details.
3.2.4. Hardware-synchronized envelope extraction

Another approach is to abandon the use of digital pulses and in-

stead record sound intensity directly in an analog auxiliary channel of 
the data recording system, if available. (Note that if this involves plug-

ging the audio signal into an input normally intended for sensors that 
contact the subject, then an optical isolator is required between the au-

dio cable and the auxiliary input, for safety.) Usually the sampling rate 
of the data recorder is too low to capture the full audible frequency 
spectrum—if so, one can instead opt to extract and record the enve-

lope of the sound, using a digital audio processing widget or even a 
passive circuit such as the one shown in Fig. 2. Either way, this ap-

proach allows subsequent analysis to use the envelope information in 
its entirety—or, if it becomes necessary to define onset as a single in-

stant, it can be decided post-hoc how that instant is determined. We 
used this approach in an EEG brain-computer interfacing study [20], 
employing the custom-made passive circuit shown in Fig. 2 to extract 
the sound signal’s envelope.

4. Materials and methods

We will report audio latency results measured using a widget that 
performs both software- and hardware-triggered pulse synchronization, 
in combination with a way of measuring the time between the two 
7

triggers. We used a PJRC Teensy [21] version 3.1 microcontroller as 
the basis for the widget, and added an audio jack. We loaded it with the

PlayerLatency-TeensySketch microcontroller program provided 
in audiomath’s code repository, and used it in conjunction with the 
accompanying Python script PlayerLatency.py.

Fig. 3 shows the system schematically. Immediately before issuing 
the command to play a sound, the computer sends a message over a 
serial connection to the microcontroller (first black arrow). When it re-

ceives this message, the microcontroller reads its internal clock and then 
begins monitoring its audio input, which is connected to the computer’s 
analog sound output. As soon as it has detected the onset of the physical 
sound signal, the microcontroller reads the clock again, and sends its es-

timate of the elapsed time 𝑡int back to the computer over the serial port 
(second black arrow). The computer, meanwhile, measures the time 
𝑡ext taken for the whole round trip, including the two unknown (not di-

rectly measurable) serial communication latencies 𝑢1 and 𝑢2. Starting 
from the sound’s actual physical onset, it takes some small time 𝑑 to 
gather evidence for detecting that the sound is present. The size of 𝑑
can be estimated from separate measurements of 𝑡int, taken while the 
sound is already playing on an indefinite seamless loop (in which con-

text Play() commands have no additional effect on the audio output). 
We have 𝑡ext = 𝑢1 + 𝑡int + 𝑢2 and 𝑠 + 𝑎 + 𝑑 = 𝑢1 + 𝑡int, where 𝑠 is the time 
that it takes for the initial Send() command to return (depending on 
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Table 2. This table shows observed audio latency and jitter (mean and standard deviation of latency across 100 repeti-

tions) measured via the headphone socket of one particular all-in-one Windows computer using the method described in 
Section 4. Performance varies greatly depending on the chosen host API and latency settings. “Suggested latency” refers to 
a configurable parameter exposed by the PortAudio library and by audiomath when initializing sound hardware, except 
in the case marked ∗ (row 2E): this measurement was taken by “suggesting” a latency of 1 ms as in the previous condition, 
but then using PsychPortAudio’s unique pre-scheduling functionality to configure a longer latency of 10 ms, resulting in 
reduced jitter.

Computer Operating system Host API Suggested 
latency

Cooperative? Latency (ms) 
mean ± SD

Quality issues Row

Dell OptiPlex 
7760 AIO

Windows 10

WDM-KS
1 ms × 3.6 ± 0.7 crackling 2A

2 ms × 4.9 ± 0.7 - 2B

WASAPI via 
PsychPortAudio

default × 16.5 ± 2.7 - 2C

1 ms × 6.0 ± 0.9 - 2D

10 ms∗ × 11.3 ± 0.3 - 2E

WASAPI 1 ms × 33.5 ± 6.1 - 2F

DirectSound

20 ms ✓ 48.4 ± 3.3 - 2G

40 ms ✓ 58.0 ± 4.4 - 2H

60 ms ✓ 76.2 ± 5.2 - 2I

MME

20 ms ✓ 35.4 ± 1.0 slight crackling 2J

40 ms ✓ 42.1 ± 2.6 - 2K

60 ms ✓ 65.2 ± 3.9 - 2L
the computer, we found 𝑠 to be between 0.1 to 0.4 ms, with jitter typ-

ically around one third of its magnitude). If we make the assumption 
that 𝑢1 = 𝑢2, then we can estimate 𝑎 = (𝑡int + 𝑡ext)∕2 − 𝑠 −𝑑. In our imple-

mentation we found 𝑑 to be less than 1
10 of a millisecond (mean 0.02 ms, 

SD 0.04 ms) and so we disregard it in our estimates.

5. Results

Performance may be affected by many factors—for example:

• the quality of one’s chosen hardware;

• the way in which the sound hardware interfaces with the computer 
(it may be “on-board”, i.e. integrated into the computer’s moth-

erboard, or it may be a dedicated device attached either via the 
computer’s PCI bus or USB bus);

• the quality of its driver, and which features of which host APIs the 
driver supports;

• the programmer’s choice of host API through which to address the 
driver;

• the programmer’s choice of latency settings (PortAudio offers the 
opportunity to configure a “suggested latency” setting and a buffer 
size, both of which will affect latency and robustness);

• the amount of resources demanded both by other threads of the 
sound-generating process, and by other processes.

The results of our latency measurements (using the method de-

scribed in Section 4) illustrate how some of these factors affect per-

formance. Table 2 shows the profound effect of one’s choice of host 
API when running on Windows. The measurements were taken us-

ing one of our preferred platforms for field applications, an all-in-one 
computer whose sound hardware is not particularly well optimized for 
performance. The results are heavily influenced by one’s chosen “sug-

gested latency” setting, which is an input parameter exposed by both

PortAudio and PsychPortAudio, and accordingly by audiomath, 
during the initialization of the software connection to the sound driver. 
(Note that the “suggestion” is not followed faithfully on Windows—the 
true latency is significantly higher.) It was clearly possible to set this 
setting too low, producing audible artifacts (rows 2A and 2J). Nonethe-

less, it was possible to achieve very low latency (< 10 ms) and jitter 
(< 1 ms) without artifacts, either using our default PortAudio back-

end (row 2B) or using PsychPortAudio (row 2D). Furthermore, by 
increasing latency slightly, it was possible to use PsychPortAudio’s 
pre-scheduling functionality to reduce jitter even further (±0.3 ms, 
row 2E).

These results, and others like them from other computers, have led 
us to offer two sets of default settings in audiomath. If a program 
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starts by announcing itself as a low-latency application by calling the

audiomath function LowLatencyMode(True), a suggested latency 
of 4 ms will be used by default, and on Windows the WDM/KS host 
API will be preferred. Without this declaration, audiomath defaults 
to more robust, cooperative settings: on non-Windows platforms, sug-

gested latency is at least 10 ms (typically leading to actual measured 
latencies of around 20 ms), and on Windows, DirectSound is preferred, 
with a suggested latency of 60 ms (we found this setting to be more ro-

bust than lower values in the context of moderate to high concurrent 
CPU use).10 From here, therefore, we narrow our focus to consider just 
WDM/KS and DirectSound.

All results are subject to variability depending on one’s hardware, as 
illustrated in Table 3. Here we compare a variety of Windows computers 
and sound cards, under WDM/KS and DirectSound. The former shows 
much better hardware-invariance than the latter: the standard deviation 
across the five different onboard sound-cards’ mean latencies is a mere 
1.3 ms under WDM/KS, but 12.4 ms under DirectSound. The results 
also illustrate that a dedicated sound-card may give slight advantages 
(compare 3F vs. 3G), but this advantage may be undone if one chooses 
the wrong host API for the hardware’s driver (the same comparison 
backfires under DirectSound: 3M vs. 3N). We can also see that some 
low-cost multi-channel USB devices can be used with little disadvantage 
(3D vs 3E, 3K vs. 3L). Our results from the same device under macOS 
and Linux, (not shown) also suggest that the USB latencies differ only 
slightly from onboard latencies.

Finally, Table 4 shows the results across three different operating 
systems. We note that, given the right choice of settings, it is possi-

ble to achieve low latency without artifacts on all of them (4C, 4F, 4N, 
4S, 4X). On macOS, low latencies can even be achieved without sacri-

ficing cooperativeness.11 One other observation arising from this table 
is that PsychPortAudio may lack hardware-invariance under Win-

dows: recall that on our Dell computer, its best performance (2D) came 
reasonably close to the overall best (2B) but now we see that on the 
Surface Pro it did not (4J and 4K are nowhere near 4N, 4O and 4P). Un-

der Linux and macOS, its performance is indistinguishable from plain

PortAudio. However, given a sufficiently high target latency for the 
particular hardware, PsychPortAudio’s outstanding contribution lies 

10 Naturally the user still has the option to override either set of defaults, as 
well as the choice of the third path of loading the PsychPortAudio back-end 
(which defaults to using the WASAPI host API on Windows) if low jitter is the 
overriding priority.
11 On Linux, the Advanced Linux Sound Architecture (ALSA) host API can also 
be used in a cooperative mode, in which we have found latency to be very high 
(ca. 150 ms) on our Surface Pro, but encouragingly lower on other hardware 
(ca. 8 ms on our Lenovo Horizon II).
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Table 3. This table shows observed audio latency and jitter (mean and standard deviation of latency across 100 repe-

titions) measured via the headphone sockets of various Windows computers with various different sound cards, using 
the method described in Section 4. Two host APIs are compared: WDM/KS, our choice for low-latency applications, 
shows little variability between setups; by contrast DirectSound, our choice for cooperative applications, has much 
higher variability. For each host API, a suggested-latency value was chosen to be as low as possible, but high enough 
to avoid quality problems on all of the hardware setups. The sound-card marked † was a StarTech ICUSBAUDIO7D. 
The sound-card marked ‡ was a Creative Sound Blaster Audigy 5/Rx—before measuring it, we entered the comput-

er’s firmware settings and disabled the onboard sound-card so that the Sound Blaster was the only recognized sound 
output device.

Operating system Host API Computer Sound-Card Suggested 
latency

Latency (ms) 
mean ± SD

Row

Windows 10

WDM-KS 
(uncooperative)

Jumper EZpad 6 Pro onboard 10 ms 19.9 ± 3.0 3A

Surface Pro 3 onboard 10 ms 17.0 ± 3.0 3B

Lenovo Horizon II onboard 10 ms 16.7 ± 2.9 3C

Dell OptiPlex 7760 AIO
onboard 10 ms 16.3 ± 2.8 3D

dedicated USB† 10 ms 17.6 ± 2.9 3E

Micro-Star MS-7C02
onboard 10 ms 16.4 ± 2.9 3F

dedicated PCI‡ 10 ms 14.5 ± 2.8 3G

DirectSound 
(cooperative)

Jumper EZpad 6 Pro onboard 20 ms 51.9 ± 3.0 3H

Surface Pro 3 onboard 20 ms 76.0 ± 3.2 3I

Lenovo Horizon II onboard 20 ms 74.1 ± 3.1 3J

Dell OptiPlex 7760 AIO
onboard 20 ms 48.4 ± 3.3 3K

dedicated USB† 20 ms 49.2 ± 3.2 3L

Micro-Star MS-7C02
onboard 20 ms 49.1 ± 3.2 3M

dedicated PCI‡ 20 ms 74.9 ± 3.3 3N

Table 4. This table shows observed audio latency and jitter (mean and standard deviation of latency across 100 repetitions) 
measured via the headphone sockets of two portable computers running three different operating systems, using the method 
described in Section 4. In all configurations, it was possible to achieve low latencies (under 10 ms) without audible 
artifacts. “Suggested latency” refers to a configurable parameter exposed by the PortAudio library and by audiomath

when initializing sound hardware, except where marked with ∗: these entries were measured by adopting the best previous 
suggested-latency setting, but then using PsychPortAudio’s unique pre-scheduling functionality to configure a longer 
latency of 10 ms (or 25 ms for the Surface Pro under Windows, where PsychPortAudio could not achieve latencies 
under 10 ms). For each platform, the LowLatencyMode(True) default configuration is marked †, and the more-robust

LowLatencyMode(False) default configuration is marked ‡.

Computer Operating system Host API Suggested 
latency

Cooperative? Latency (ms) 
mean ± SD

Quality issues Row

Surface Pro 3

Ubuntu 
Linux 18.04

ALSA via 
PsychPortAudio

1 ms × 2.8 ± 0.4 crackling 4A

2 ms × 3.6 ± 0.7 crackling 4B

3 ms × 5.0 ± 0.7 - 4C

10 ms∗ × 11.7 ± 0.1 - 4D

ALSA

1 ms × 2.6 ± 0.4 crackling 4E

2 ms × 3.5 ± 0.3 - 4F

3 ms × 4.5 ± 0.4 some clicks 4G

4 ms† × 5.5 ± 0.7 - 4H

10 ms‡ × 12.5 ± 0.8 - 4I

Windows 10

WASAPI via 
PsychPortAudio

default × 16.9 ± 2.7 - 4J

1 ms × 22.8 ± 4.5 - 4K

25 ms∗ × 26.4 ± 0.3 - 4L

WDM-KS

1 ms × 3.3 ± 0.5 some clicks 4M

2 ms × 4.6 ± 0.7 - 4N

3 ms × 6.2 ± 0.9 - 4O

4 ms† × 7.4 ± 1.2 - 4P

DirectSound 60 ms‡ ✓ 102.6 ± 5.4 - 4Q

Late 2013 
MacBook 
Pro 13” 
Retina

macOS 10.13

Core Audio via 
PsychPortAudio

1 ms ✓ 3.0 ± 0.1 - 4R

2 ms ✓ 3.0 ± 0.1 - 4S

3 ms ✓ 3.5 ± 0.1 - 4T

10 ms∗ ✓ 10.1 ± 0.1 - 4U

Core Audio

1 ms ✓ 3.0 ± 0.2 periodic clicks 4V

2 ms ✓ 3.0 ± 0.1 periodic clicks 4W

3 ms ✓ 3.4 ± 0.2 - 4X

4 ms† ✓ 5.3 ± 0.3 - 4Y

10 ms‡ ✓ 15.0 ± 2.2 - 4Z
in its pre-scheduling function, which achieves very low jitter on all plat-

forms (4D, 4L, 4U).

6. Discussion

We have documented the ways in which audiomath enables Python 
programmers to gather raw material to make auditory stimuli, to com-

pose and tailor stimuli in memory, to present stimuli, and to record 
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experimental sessions. These tasks entail manipulation, generation, vi-

sualization, decoding, encoding, recording and playback of audio data. 
It is possible to find many existing software tools—some programmable, 
some not—that offer one or more of these functions. The main advan-

tage of audiomath is that it provides a single programmer’s interface 
that unifies them all, with minimal third-party dependencies.

Among these tasks, the one that tends to consume the great-

est amount of time and energy during development is stimulus 
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presentation—especially the question of precise timing. The au-
diomath package provides new tools for addressing this challenge, 
and for measuring performance. We used these tools to measure au-

dio latency and jitter across a variety of hardware, operating systems, 
and settings. The results show that, given the right choices, low la-

tency (less than 10 ms) and low jitter (less than 1 ms) can be achieved 
even with non-specialized off-the-shelf computer hardware. Nonethe-

less these good results are part of a complex landscape containing many 
traps for the unwary. While retaining flexibility in case the programmer 
should require it, audiomath simplifies the problem by facilitating the 
choice of priorities between low latency, low jitter, or cooperativeness 
and robustness.

Note that the tests reported here were limited to consumer-grade 
sound processing cards—most of them “on-board”, i.e. integrated into 
the computer’s main system board. It is encouraging to find that even 
these inexpensive cards can achieve low enough latencies for most neu-

roscientific intents and purposes. However, note that we have not yet 
been able to report any results representing the de-facto standard for 
low-latency audio, which is to use a professional-grade sound proces-

sor with a driver that supports the ASIO host API natively (i.e. not via 
ASIO4ALL) on Windows. So far, budget limitations have prevented us 
from testing hardware of high enough quality to assess the difference 
this might make. It would be valuable to extend our tests to more-

expensive higher-quality sound processors, to assess the extent to which 
they might ease or remove some of the performance trade-off dilemmas.

For some of the core audio functions—specifically visualization, de-

coding, encoding, recording and playback—the bulk of the code that

audiomath uses “under the hood” is not our own. The tools we wrote 
for these purposes, while often being non-trivial works in their own 
right, are really wrappers around functions from trusted third-party li-
braries. We have described the way in which these dependencies are 
managed in as conservative and modular a way as possible—for exam-

ple, if the third-party visualization library matplotlib has or develops 
some incompatibility with your system, your audiomath applications 
that do not perform visualization (let’s say they only need to perform 
playback) will still work. Such behavior cannot generally be assumed 
with scientific Python packages, which tend to sit on top of deep hierar-

chies of dependencies and be catastrophically vulnerable to weaknesses 
in any one of them.

By contrast, when it comes to generation and manipulation of audio 
content, audiomath provides original implementations. The central 
goal in their design was simplicity of use—hence, adding two sound ob-

jects’ signals together is as simple as writing x + y, doubling a sound’s 
amplitude is as simple as x *= 2, etc. The common operations of splic-

ing (concatenating sounds together in time), and multiplexing (stacking 
channels to create multi-channel sounds) can also be performed with 
minimal typing, using the % and & operators, respectively.12 In imple-

menting these operations, an important design goal was to minimize 
fuss. For example, when adding two sounds to superimpose them, or 
multiplying them to perform amplitude modulation, or multiplexing 
them together, audiomath does not complain about sounds being of 
unequal duration—it automatically pads shorter sounds to the required 
length. Similarly, when adding sounds, multiplying sounds, or splicing 
sounds along the time axis together, audiomath does not complain 
if one of the arguments is monophonic and the other has multiple 
channels—instead, it automatically replicates the monophonic content 

12 When dealing with sound arrays, we have never come across meaningful 
applications of the modulo division operator (the conventional meaning of %

in Python) or bitwise logical AND (the conventional meaning of &), so confu-

sion is very unlikely in typical use-cases provided one is already familiar with

audiomath’s conventions. However, in situations where familiarity cannot be 
assumed, use of such redefined operators is likely to reduce code readability. 
For this reason, functional forms Concatenate() and Stack() are also avail-

able, either as global functions (equivalent to % and & respectively) or as object 
methods (equivalent to %= and &=).
10
up to the required number of channels. This tolerant approach greatly 
reduces the complexity of the code that users have to write.

It is worth noting where the scope of audiomath’s functionality 
stops, relative to some other packages. We do not aim to perform so-

phisticated signal-processing in audiomath, preferring to leave the im-

plementation details to more specialized packages such as scipy.sig-
nal, librosa, or dedicated speech-processing toolboxes. It also cur-

rently requires sound files to be completely loaded into memory before 
playback, lacking the functionality for streaming sounds from a file or 
network in the way offered by (for example) the pyglet package. This 
may be added in future versions.
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