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Abstract
Zebrafish (Danio rerio) is one of the most widely used model organisms in collective behav-

ior research. Multi-object tracking with high speed camera is currently the most feasible way

to accurately measure their motion states for quantitative study of their collective behavior.

However, due to difficulties such as their similar appearance, complex body deformation

and frequent occlusions, it is a big challenge for an automated system to be able to reliably

track the body geometry of each individual fish. To accomplish this task, we propose a

novel fish body model that uses a chain of rectangles to represent fish body. Then in detec-

tion stage, the point of maximum curvature along fish boundary is detected and set as fish

nose point. Afterwards, in tracking stage, we firstly apply Kalman filter to track fish head,

then use rectangle chain fitting to fit fish body, which at the same time further judge the head

tracking results and remove the incorrect ones. At last, a tracklets relinking stage further

solves trajectory fragmentation due to occlusion. Experiment results show that the pro-

posed tracking system can track a group of zebrafish with their body geometry accurately

even when occlusion occurs from time to time.

Introduction
Collective motion of animal groups is one of the most common yet spectacular phenomenon
in nature, which has attracted great attention of scientists from many disciplines. Various theo-
retical models have been developed to explain and simulate such collective motion including
boids model, Vicsek model, etc. [1–6]. By studying such collective behavior, scientists are able
to investigate neural cognitive mechanisms behind such behaviors and the research findings
may also serve as source of inspiration for man-made systems. For example, simulated evolu-
tionary algorithms were proposed to solve optimization problems [7, 8], collective behavior
models were applied to help model complex traffic and transportation processes [9] and
develop intelligent robots [10]. Multi-object tracking via video camera makes it possible to
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discover new principles underlying these collective behaviors because it can accurately acquire
motion data of different organism groups without tedious manual work or pasting markers on
the tracked objects and the trajectory data of them is essential for quantitatively analyzing their
collective behavior [11–25].

Zebrafish (Danio rerio) is widely adopted as a model organism by biologists. By tracking a
single zebrafish (which have been accomplished by existing computer softwares such as ANY-
maze1 and EthoVision1) biologists can investigate individual behavior of zebrafish under var-
ious circumstances. In order to study their social behavior, multi-object tracking is an effective
way. Fish swim in 3D space and 3D tracking is certainly most informative for investigating
their behavior [19], but considering that the water is shallow in many experiments and the
shape of fish group is more spread in horizontal plane than vertical plane, 2D tracking is accu-
rate enough to describe their trajectories.

Most of the existing 2D multi-object tracking systems treat each tracked individual as a sin-
gle point. Miller et al. developed a system to track a fish group by firstly clicking on the snout
or body of each fish manually [15], which requires large amount of human effort when the fish
group is large. EthoVision (2.3 and more recent versions) [11, 26, 27], a tracking system widely
used by biologists, can detect and track the barycenter of different kinds of organisms. How-
ever, the number of objects is limited and when occlusion occurs, the identity of the objects is
unable to be remained, what’s worse, the strict luminosity condition is necessary to guarantee
the performance of tracking. Color detection based tracking systems (such as EthoVision
Color-Pro1) use color tags to efficiently resolve the individual identification problem even
when occlusion occurs [21]. Ylieff et al.[28] used color plastic pearls attached under the dorsal
fin of fish to simultaneously track up to 3 fish per aquarium. Delcourt et al. [29] used visible
implant elastomer (VIE) tags to simultaneously track 4 glass eels (Anguilla anguilla). To guar-
antee that the color differentiation is sufficient for the tracking system to differentiate the indi-
viduals, the number of simultaneously tracked individuals is limited. And those tags may
potentially affect social behaviour of tracked individuals. Delcourt et al. proposed a multitrack-
ing system which can detect and track barycenter of up to 100 fish [13]. The correct identity of
each individual can be recovered after occlusion events, but the system is not capable of long
time tracking. Qian et al. proposed a novel fish head detector based on ellipse fitting and track
a group of fish based on fish head detection [24]. But when severe occlusion occurs, using only
image features and motion continuity of fish head is not enough to ensure the correct identity
of each individual. Recently, ‘fingerprinting’ based tracking system such as idTracker proposed
by Alfonso et al. [25] found another way to accomplish the task, that is, to use a set of traits to
recognize each tracked object, thus, after occlusion the identity of each object will be remained.
The limitation of it is when the number of objects is large, the error rate of identification will
increase significantly due to similar appearance of the tracked objects.

However, in all the above mentioned point based tracking systems, fish body is approxi-
mated as a single point and its highly dynamic and complex body geometry which is valuable
for research of fish swimming performance and hydrodynamics [30, 31] cannot be adequately
described. Blob-contour based tracking systems such as [12] can track complex contour of ani-
mals, but they suffer from high time complexity resulting from large amount of samples. And
the tracking performance is not robust when occlusion occurs. Body model based tracking is
another strategy to achieve the geometry of fish body. Different mathematical models have
been proposed to model fish body. The state vector in tracking system is thus composed by
parameters of the fish model and variables related to the motion of the object. Mirat et al. sepa-
rated fish body into two parts, namely head and tail part [20]. The head part is regarded as lin-
ear, the tail part may bend as a curve. The tail-angle was investigated and used to analyze the
locomotion of fish. But this tail-angle definition only considers the start and end point of tail
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part which ignores specific shape of fish tail. Fontaine et al. also separated head and tail part
and applied B-spline basis functions to describe the body wave [16]. This novel model com-
bined with iterative Kalman filter for contour tracking achieved good results. However, the
method is semi-automated which need manual initialization and only one zebrafish is tracked,
when applied to track a fish group, it will suffer from relatively high dimensionality and the
tracking procedure requires high frame rate (1500fps). What’s more, the parameters of these
fish models do not have direct physical meanings.

In order to overcome these limitations, this paper proposes a chained rectangle fish body
model. The whole fish body is discretized into several linked rectangles with adaptable sizes.
The head of fish is tracked first and then the rectangle chain of the body part is fitted. In body
fitting stage, the correctness of head tracking result will be verified and some of tracking errors
can be eliminated. A novel fish head detector is proposed which can accurately detect the loca-
tion and orientation of each fish head via curvature when the fish head is not occluded. In the
tracking stage Kalman filter is applied to track fish head effectively and accurately. After the
head of each fish is successfully tracked, the body rectangles of body part can be accurately fit-
ted. And when severe occlusion occurs, the motion continuity of fish head and body can help
to resolve the association ambiguity at most times.

The Proposed Tracking System
The proposed tracking system is composed of three main stages, namely fish detection, fish
tracking and tracklets relinking (as shown in Fig 1). The first two stages are repeated until all
the images have been processed to produce preliminary tracklets. The tracklets are then
relinked to create complete trajectory for each fish.

2.1 Ethics statement
All experimental procedures were in compliance with the Institutional Animal Care and Use
Committee (IACUC) of Shanghai Research Center for Model Organisms (Shanghai, China)
with approval ID 2010-0010, and all efforts were made to minimize suffering. This study was
approved by the Institutional Animal Care and Use Committee (IACUC), and written
informed consent was obtained.

2.2 Fish model
The simplest fish model used by most existing tracking systems is ‘point model’ [11, 13, 15, 24,
25], meaning that a fish is represented by a 2D point location. However, as fish propels itself by
bending its body into a backward-moving propulsive wave that extends to its caudal fin or uses

Fig 1. Systemworkflow. The proposed tracking system has three main stages, namely fish detection, fish tracking and tracklets relinking. The first
two stages are repeated until all the images have been processed. Tracklets relinking is a postprocessing stage which further solves trajectory
fragmentation caused by occlusion and detection error.

doi:10.1371/journal.pone.0154714.g001
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its median and pectoral fins, forming a curve like shape [32], this kind of deformation is highly
non-rigid, so it is not sufficiently accurate to model it as a single point plus orientation.

From the top view, the motion of zebrafish group swimming in shallow water (about 10cm
deep) is approximately restricted within a plane. The fish body consists of an almost rigid fish
head [33] and a curve-like fish body part. And fish body has vertebras that act as joints to form
tail geometry [34]. Inspired by this observation, we model the fish body as a chain of rectangles
with adaptive sizes as shown in Fig 2a. The rectangles are denoted by reci(i = 1, . . ., nr from fish
head to tail) where nr is the total number of rectangles, the length and width of reci is defined as
leni and widi respectively. len1 is greater than leni,(i = 2, . . ., nr) to guarantee the nose of fish in
the image is within the boundary of rec1 (This strategy is also helpful for head rectangle similar-
ity measurement). The joint of two adjacent rectangles reci and reci+1 is denoted as Ji = (xi, yi)
(i = 1, . . ., nr−1). The midpoint on front edge of rec1 is denoted as G = (x, y).

In our implementation, nr is set to 8 (meaning there are 8 rectangles in total including head
rectangle), as we found that this 8-rectangle model achieves a good balance between model
complexity and description accuracy of body geometry. The length of each body rectangle is
set to 1/8 of average fish length. The length and width of reci are shown in Table 1.

Considering that the fish in our experiments are of almost the same size, the rectangle sizes
for each fish are the same and predefined. Thus, the parameters of the fish model are the loca-
tion and orientation of each rectangle. If the size of tracked fish vary significantly, the sizes of
the body rectangles can also be adjusted and they can be determined in detection stage when a
fish is initially detected.

Fig 2. Fish detection. (a). Fish model. The whole fish body is discretized into 8 linked rectangles with adaptable sizes. Green
point (pointN) denotes fish nose point. Yellow points mark the joint points. Blue point (pointG) and red point (pointO) is the
midpoint on front edge of rec1 and back edge of rec8 respectively; (b). Fish model mapped onto real image; (c). One sample
image captured with a high speed camera; (d). Background image achieved by calculating average pixel value of a large number
of images with fish in the tank; (e). Result of image background subtraction, fish head detection and body fitting by the proposed
system.

doi:10.1371/journal.pone.0154714.g002
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2.3 Fish detection and pose estimation
One frame of the captured fish school is shown in Fig 2c. The background image Fig 2d is cal-
culated by computing the mean image of 18000 successive frames. After background subtrac-
tion, the pixels within fish body area are significantly different from the background pixels,
what’s more, the curvature of fish boundary at head/tail positions is significantly greater than
the curvature at other positions. Taking these features into consideration, we propose a four-
step method to detect fish head and estimate fish pose accurately.

1. Fish boundary extraction
The image after background subtraction is firstly transformed into a binary image using
image thresholding method. Then the fish boundary can be obtained by ‘bwboundaries’
function in MATLAB [35]. The boundary points calculated by ‘bwboundaries’ form an
ordered point set, then the points are resampled so that the distance between adjacent points
is equal. The points after resampling are still ordered, called boundary point set, written as
Bi = (xBi

, yBi
)(i = 1,.., nbw), nbw is the number of points in the set.

2. Curvature computation and nose point detection
The curvature κ at each point on the fish boundary curve is defined as the infinitesimal angle
between tangents to that curve at the ends of an infinitesimal segment of the boundary curve
to the length of that segment (written as dφ/ds, φ is the tangential angle, s is length of the seg-
ment). Assuming the boundary curve is parameterized by arc length, φ is defined as (cos φ,
sin φ) = (x0, y0). Curvature κ is positive if the curve bends to the left and negative if the curve
bends to the right. The boundary curve here is represented by discrete point set Bi, so we use
an approximation method to calculate curvature. As the resampled points are close enough

to each other, the length of arc AB
_
(written as lAB_ , A, B are two adjacent points in the bound-

ary point set) can be estimated by the length of line segment AB. The unit tangent at point Bi
(written as φ(Bi)) can be estimated by coordinate of left and right adjacent point of Bi. Thus
the curvature at each point Bi on fish boundary is approximately calculated by:

CðiÞ ¼ φðBilÞ � φðBirÞ
lBilBir_

φðBiÞ ¼ atan2ðyBiþ1
� yBi�1

; xBiþ1
� xBi�1

Þ
ð1Þ

in which atan2() refers to four-quadrant inverse tangent, Bil and Bir are point on the left and
right side of Bi respectively (as shown in Fig 3) and l

BilBi

_ equals to l
BiBir

_ . Considering that

the computed fish boundary is not smooth enough for estimating curvature with two points
too close to each other, we do not use the adjacent points of Bi but the left and right neighbors
8 unit arc length away from it, that is, l

BilBi

_ and l
BiBir

_ equal to 8. The points at intersection

corner (such as the green points in Fig 4c) which are not tail or nose points also have rela-
tively larger absolute curvature value but is negative, so they won’t be misjudged as tail or
nose points. The resulting curvature curve is shown in Fig 4.

Table 1. Length and width of each rectangle.

rectangle no. 1 (head rectangle) 2 3 4 5 6 7 8

length (pixel) 50 30 30 30 30 30 30 30

width (pixel) 35 35 35 26 20 15 11 8

doi:10.1371/journal.pone.0154714.t001
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It can be seen from Fig 4b that the curvature curve has two obvious local maximum values.
The lower one corresponds to the nose point (denoted asN) and the relative larger one corre-
sponds to tail point (denoted as O). Thus by locating the two local maximum points, nose
point can be detected.
When occlusion occurs, the curvature curve may have more than two candidate maxima of
nose and tail. In these circumstances, the threshold is still valid for nose detection if the fish
head is not occluded. As shown in Fig 4c and 4d, tail of one fish is occluded, but two noses
can still be detected.

3. Head orientation computation and head rectangle determination
The left and right half of zebrafish head are laterally symmetric about their body axis [33].
Thus the head orientation can be determined by nose point N and its neighbor points Bil
and Bir, as shown in Fig 3. Fish head orientation is defined as the direction of perpendicular
bisector of segment Bil Bir. Now we have nose point and head orientation, thus the head
rectangle rec1 of each fish can be uniquely determined.

4. Pose estimation based on rectangle chain fitting
The final step is to estimate fish pose by fitting the body rectangle chain. As we have no
prior information about the pose of each fish before detection, for each body rectangle, we
have to generate angles randomly to search for all possible configurations. Firstly, npb ran-
dom angles ranging between [0, 2π) are generated. Because the length and width of each
body rectangle reci(i = 2, . . ., nr) are predefined and joint J1 (as shown in Fig 2a) is deter-
mined after head rectangle rec1 has been fitted, one random angle corresponds to one rect-
angle. The rectangle that covers the largest area of fish body region in the image is chosen to
be rec2. When the first body rectangle rec2 is determined, joint J2 is determined at the same
time. Using similar strategy, the remaining rectangles of fish body can be determined in the

Fig 3. Head orientation computation. N (yellow point) is the detected fish nose point, Bil and Bir (blue points) are points on the left and right side of N on
the fish boundary 8 unit arc length away. Blue arrow indicates the orientation of head.

doi:10.1371/journal.pone.0154714.g003
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same way as rec2. After all the head and body rectangles are determined, the total cover ratio
of the 8 rectangles can be calculated. If cover ratio is less than 80% of the fish region, the
detection result of this fish is considered to be problematic and it will be removed from the
final detection result of this frame. The detection result of a whole image is shown in Fig 2e.

2.4 Fish tracking
It is observed as discussed in section 2.2 that the motion of head region in top-view image is
almost rigid. It therefore makes sense to firstly track the head region and then track the

Fig 4. Fish head and tail detection. (a). Sample image of one single fish; (b). Boundary curvature curve of the fish in (a); (c). Sample
image of two overlapping fish; (d). Boundary curvature curve of the two fish in (c). It can be seen that the points at intersection corner
(such as the green points in (c)) won’t be misjudged as tail or nose points. The two green points in (c) are also plotted in the figure.

doi:10.1371/journal.pone.0154714.g004
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deformable body part. This two-staged tracking shows good performance in the experiments.
The two stages will be introduced respectively.

1. Head tracking
In most of the time, the 8 rectangles of each fish can be accurately detected in detection
stage. And the frame rate of the camera is relatively high (100fps), so fish displacement and
body deformation between two consecutive frames are relatively small, and the state varia-
tion in several consecutive frames is nearly uniform. The motion of fish can be accurately
predicted using simple linear Bayesian filter like Kalman filter [36]. In addition, Kalman fil-
ter is more efficient than other algorithms such as particle filter [37]. Hence, in our system,
Kalman filter is applied to accomplish the tracking task.
In our system, the state vector of fish head is composed of 6 variables, i.e., the coordinate of
J1 (as shown in Fig 2a) and orientation of head rectangle at current and previous frame (it
will be explained later in section 3.3 why J1 is used instead of nose point N or midpoint G on
front edge of rec1). The coordinates of J1 at frame t is denoted as ðxt1; yt1Þ, and head orienta-
tion is yt1. So the state vector X

t is defined as [xt, yt, θt, xt−1, yt−1, θt−1]T. The observation vec-
tor Zt is defined as [xt, yt, θt]T (we drop the subscript of Xt and Zt for ease of notion).
The state and observation equation in Kalman filter can be described as

Xt ¼ FXt�1 þ ot

Zt ¼ HXt þ nt
ð2Þ

where F andH are the state transition and observation matrix of the target at time t respec-
tively, ωt and νt are the noise of state and observation, both of them are zero-mean Gaussian
noise.
The first step of Kalman filter is to predict the state vector at time t. In our case, we assume
that in most circumstances, the velocity of fish head is constant, thus the prior estimation of

state vector X̂ t and its error covariance P̂t at time t can be predicted by:

X̂ t ¼ FXt�1

P̂ t ¼ FPt�1FT þ Qt

F ¼

2 0 0 �1 0 0

0 2 0 0 �1 0

0 0 2 0 0 �1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

2
6666666666666666664

3
7777777777777777775

ð3Þ

where Qt is the covariance matrix of state noise ωt.
The second step is data association aiming at associating each tracker with each measure-
ment at current frame. Data association should follow the one to one criterion, which
means that one tracker should be associated with at most one measurement and each mea-
surement should be associated with at most one tracker. In our system, we formulate the
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data association task as a global optimization problem and employ Kuhn-Munkres algo-
rithm to calculate a global optimum solution [38]. The cost matrix C(i, j) represents the cost
of each tracker i being associated with each measurement j, defined as:

Cði; jÞ ¼ exp ð�ðNCCði; jÞ þ Vði; jÞÞÞ ði ¼ 1; :::; n; j ¼ 1; :::;mÞ ð4Þ

the objective function is:

t ¼ argmin
A

Xn
i¼1

Xm
j¼1

Cði; jÞ � Aði; jÞ ð5Þ

subject to:

Xn
i¼1

Aði; jÞ ¼ 1 and
Xm
j¼1

Aði; jÞ ¼ 1 ð6Þ

where NCC(i, j) is normalized-cross-correlation (NCC) between the head rectangle image
patches of predicted tracker i and measurement j [39]. We choose NCC to measure image
similarity between predicted tracker i and measurement j because NCC is robust under
illustration change and slight partial occlusion, and it is widely used in existing tracking sys-
tems [18]. NCC of head rectangle image patches of predicted tracker i (denoted as I) and

measurement j (denoted as I0) after rotating to horizontal position is calculated as:

NCCði; jÞ ¼

Xh�1

dy¼0

Xw�1

dx¼0

Iðdx; dyÞI 0ðdx; dyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXh�1

dy¼0

Xw�1

dx¼0

Iðdx; dyÞ
 !2 Xh�1

dy¼0

Xw�1

dx¼0

I 0ðdx; dyÞ
 !2

vuut ð7Þ

h, w is height and width of head rectangle image patch respectively. V(i, j) in Eq 4 measures
the orientation difference between predicted head rectangle and measurement’s, which is
measured by von Mises distribution [40] and is calculated as:

Vði; jÞ ¼ exp ðk cos y � mð ÞÞ
2pI0ðkÞ

ð8Þ

where I0(k) is modified Bessel function of order 0. In our experiment, k is set to 4, μ is set to
the head orientation of measurement j at frame t. If NCC(i, j) is smaller than threshold thrncc
or V(i, j) is smaller than threshold thrv, then C(i, j) will be set to Inf, meaning that tracker i
is impossible to be associated with measurement j. If n 6¼m, then dummy nodes are added
and the cost will be set to Inf to guarantee that no node will be associated with them.
After the above procedures, the head rectangle rec1 of each fish at current frame is detected
and tracked. Three situations may occur:

a. Each tracker is associated with exactly one measurement.

b. Some trackers are not associated with any measurements. In this case the tracker is con-
sidered to be losing its target, then the state vector is updated using state of the previous
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two consecutive frames as:

xt ¼ 2xt�1 � xt�2

yt ¼ 2yt�1 � yt�2

yt ¼ 2yt�1 � yt�2

ð9Þ

8>>><
>>>:

If the length of the trajectory up to current frame is less than 2, then the target will be
regarded as a tracking error, the tracker will be terminated and removed from the final
tracking results. If one tracker has been losing its target for longer than 5 frames, then the
tracker will be terminated.

c. Some measurements are not associated with any trackers. This happens when occlusion
ends, some fish are successfully detected again, but the corresponding trackers before
occlusion have been terminated. We regard the unassociated measurements as newly
emerging objects and initialize a new tracker for each of them. The interrupted trajecto-
ries will be relinked in tracklets relinking stage.
When data association finishes, the state vector and error covariance matrix are updated by:

Xt ¼ X̂ t þ KtðẐ t � HX̂tÞ

Pt ¼ ðI � KtHÞP̂t

H ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

2
666664

3
777775

ð10Þ

in which Kt is Kalman gain at time t, calculated as:

Kt ¼ P̂ tHTðHP̂tHT þ RÞ�1 ð11Þ

R is the covariance matrix of observation noise νt.

2. Body pose tracking
When the head tracking stage is finished, the head location and orientation of most fish can
be successfully estimated. Body rectangle chain fitting is thus relatively easy because the
joint J1 has been determined. Body tracking stage can on the other hand help verify whether
the result of head tracking stage is correct.
Assuming the coordinate of J1 obtained in head tracking stage is (xt, yt), then, npb random
angles are generated by von Mises distribution (the mean value μ is set as the orientation of
rec2 in the last frame). For each random angle, a rectangle is reconstructed. The one which
covers the largest fish body area is chosen, the corresponding orientation is orientation of
rec2 at current frame. After orientation of rec2 is determined, the remaining rectangles rec3-
rec8 can be determined as rec2.
After all the body rectangles are determined, the total cover ratio of the 8 rectangles (includ-
ing head rectangle) is calculated as in detection stage. If cover ratio is less than 80% of the
fish region, the tracking result of this fish at this frame is considered to be problematic and
the tracker will be terminated.
By applying this strategy, some tracking errors can be eliminated. Unfortunately, some tra-
jectories may be split, so we propose a trajectory relinking stage to reconnect the interrupted
trajectories.
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2.5 Tracklets relinking
After the above stages, we have obtained 2D trajectory of each fish in the fish school. However,
due to occlusion and detection error, the 2D trajectories of some fish may be fragmented into
several tracklets. So a trajectory relinking stage is required to obtain complete trajectories for
the fish.

Tracklets relinking can be formulated as a linear assignment problem. Several existing 2D
tracking systems employed Kuhn-Munkres algorithm to relink the trajectories [38, 41], which
is a combinatorial optimization algorithm that solves the assignment problem in polynomial
time and can guarantee that the resultant trajectories are globally optimal according to a given
objective function. However, the number of resulted trajectory which is an important prior
cannot be specified and taken advantage of in their systems. So in our tracking system, we for-
mulate the relinking problem as a minimum cost maximum flow (MCMF) problem, in which
the total flow can be specified so that the number of relinked trajectories can be controlled. In
this way, relinking errors can be reduced.

In an MCMF problem, the objective is to minimize the total cost of a directed weighted net-
work, while the total flow is maximized or equals to a predefined value. In the trajectory relink-
ing case, the flow should be binarized, which means that the capacity of each edge in the graph
should be restricted to either 0 or 1, Fig 5 shows one sample of the MCMF graph.

For each tracklet (marked as Γi), we set two nodes in the graph (namely Ti and Ti0 in Fig 5)
and there is one edge starting from the source S to node Ti, and another edge starting from Ti0

to the sink E. Let cst(i, j) and cap(i, j) denote the cost value and flow capacity of each edge in
the graph respectively, which are defined as:

capðS; iÞ ¼ 1

capði0; EÞ ¼ 1

capði; i0Þ ¼ 1

capði0; jÞ ¼ 1; if trajectory i and j satisfy Eq13

ð12Þ

stj � edi > 0

stj � edi < maxinterf

Dði; jÞ < maxinterd

ð13Þ

where sti and edi are the start frame and end frame of tracker i respectively, D(i, j) is the Euclid
distance between point J1 in the last frame of tracker i and the first frame of tracker j. In our
experiment,maxinterf is set to 6 andmaxinterd is set to 80.

cstðS; iÞ ¼ 0

cstði0; EÞ ¼ 0

cstði; i0Þ ¼ 0

cstði0; jÞ ¼ exp ðDði; jÞÞ � exp ð�Vði; jÞÞ; if capði0; jÞ ¼ 1

ð14Þ

where V(i, j) is the same as Eq 8 which measures the similarity of two angles. k is still set to 4
and here μ is defined as the head orientation at the point of tracklet i. In our system, the
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information of body rectangles is not used in tracklets relinking, the reason is that after a few
frames, the body geometry may greatly change, which is not robust enough for tracklets
relinking.

After building the directed weighted graph, we enumerate the possible total flow of the
graph and generalized Ford-Fulkerson algorithm [42] is applied to solve the MCMF problem,
the time complexity of the algorithm is O(kfnm), n,m is the number of nodes and edges in the
graph respectively, f is the value of flow, k is the number of enumerated flow.

Experiments and Discussions

3.1 Materials and setup
In order to evaluate the performance of the proposed tracking system, we captured two videos
of zebrafish (Danio rerio) school with different group sizes (10 and 20 fish respectively). The
zebrafish swim in a 20cm × 20cm × 20cm transparent acrylic tank. The four walls of the tank
are pasted with white paper to prevent mirror effect that may affect fish behavior and tracking

Fig 5. MCMF graph.Node S and E are source and sink node respectively. For each tracklet Γi, two nodes Ti and Ti0 are
added in the graph. There are directed edges from S to each Ti, from each Ti0 to E, and from each Ti to each Ti0. For
tracklets Γi and Γj that may be trajectory of identical fish, one directed edge form Ti to Tj is added.

doi:10.1371/journal.pone.0154714.g005
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system. The tank was horizontally placed above a planar light source made up of a white LED
array covered by a diffusion panel. The light source is placed at bottom of the water tank
because in this way the camera captures backlit images, thus the boundary of the objects (fish)
is clearer, and the object body is darker, without too much texture features, which facilitates
the tracking task. One high speed camera (IO Industries Canada, Flare 4M 180-CL,
2048v×2040h pixels at 100fps) is mounted about 40cm above the tank, the imaging plane is
almost parallel to the water surface. The experiment setup is shown in Fig 6. The captured vid-
eos are firstly stored in DVR Express (IO Industries Canada, DVR Express1 Core Camera
Link Full, monochrome, 10×8 bit, Full, 1TB) when the experiment is in process and are then
exported as bmp format images to a PC after the experiment is finished.

3.2 Evaluation of the proposed system
In this subsection we present the tracking results on two data sets (written as D1 and D2), each
data set is a video clip that contains 2000 frames in total. The size of fish school in the two data
sets are 10 and 20 respectively. Fig 7a shows the tracking result of the 10-fish group. Fig 7b
shows the tracking result of the 20-fish group.

We have quantitatively evaluated the detection and tracking performance of the proposed
system.

1. Performance of detection
We selected 300 frames (frame No.1–300) from each of the two original videos (named DS1
and DS2 respectively) and manually annotated the nose point and correct identity of each
fish (when occlusion occurs but the nose point can be recognized, it will also be annotated).
The body fitting performance is judged by human eyes, because we have removed the fitting
results whose cover ratio is lower than 80%, the possible fitting failure is mostly caused by
occlusion, body rectangles being wrongly fitted onto another fish, which can be easily

Fig 6. Experiment setup. The zebrafish school swim in a transparent acrylic tank horizontally placed above
a white LED array covered by a diffusion panel. One high speed camera is mounted above the tank.

doi:10.1371/journal.pone.0154714.g006
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judged by human eye. The performance evaluation of detection is all based on the 300 anno-
tated frames.
Miss ratio and error ratio are applied to evaluate the performance of detection stage, which
are calculated as:

Miss ratio ¼ total number of undetected fish in all frames
number of fish � number of frames

Error ratio ¼ total number of wrongly detected fish in all frames
number of fish � number of frames

ð15Þ

The correct detection of a fish is defined as: (1) the 8 rectangles cover over 80% of the fish
body area in the image after background subtraction (this has been checked in detection
stage). (2) the distance between the detected fish nose and annotated groundtruth is less
than 10 pixels (the width of fish head is about 35 pixels). (3) the fish body is correctly fitted
(checked manually).
To quantitatively investigate the influence of occlusion on detection performance, we
counted the number of occlusions in video clips DS1 and DS2. When the fish bodies of two
or more fish overlap, then we say one occlusion is detected, which also means that in one
frame, there may be more than one occlusion. We calculated the proportion of miss caused
by occlusion and proportion of error caused by occlusion respectively. The evaluation
results are listed in Table 2.
We can conclude from the result that when the density of fish group doubles, the number of
occlusions increases dramatically, which is consistent with the content in [25]. Nearly two
occlusions occur in each frame on average. Both miss ratio and error ratio increase a lot,
which illustrates that density of fish group significantly affects the performance of detection
stage. Accordingly, it is essential to consider about occlusion in tracking stage such as imple-
menting tracklets relinking in our tracking system.
To test the performance of fish body fitting, we calculated the proportion of detection errors
due to incorrect fitting and proportion of incorrect fitting due to occlusion. The results are
shown in Table 3.

Fig 7. Tracking results. Z-axis represents the frame number, X-axis and Y-axis are coordinates of the image
plane. Different colors indicate different individuals. (a). Tracking results of 10 fish for 2000 frames; (b).
Tracking results of 20 fish for 2000 frames.

doi:10.1371/journal.pone.0154714.g007
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According to the results, we may conclude that when the occlusion frequency increases,
greater percentage of detection errors are due to incorrect fitting. In those cases that fish
head is not occluded but fish body is, the heads can still be correctly detected while the body
rectangles may be fitted onto another fish. Moreover, nearly all fitting failures are caused by
occlusion (in our experiment the ratio is nearly 100%). That is to say, if the fish body is not
occluded, the body fitting accuracy of the proposed body fitting method is almost 100%.
These fitting failures can be solved later in tracking stage.

2. Performance of tracking
The tracking performance of the proposed system is compared with other two methods.
One is the proposed system without body fitting. That means, only use the head detector
and head tracking of the proposed system. The aim of comparing with this method is to ver-
ify the effectiveness of body fitting in judging the head tracking results and removing the
incorrect ones. The other one is a recently proposed open source 2D tracking system:
idTracker [25]. idTracker is one of the ‘fingerprinting’ based tracking system [22] which
uses a set of traits to recognize each tracked individual, the advantage of it is that it can iden-
tify each individual even after severe occlusion and it can be applied to track different
objects, but when the density of objects is higher, identification errors may occur. For ani-
mal behavior research, correctness of the identification is very important [25]. Considering
this, the aim of our tracking system is firstly to ensure the correctness of the tracking results,
integrity of the trajectories is in second place. In the tracklets relinking stage, we chose more
stringent threshold so that only those trajectories without ambiguities are finally relinked.
In evaluation of tracking performance, Correct Tracking Ratio (CTR) is analyzed based on
the groundtruth image annotated manually (DS1 and DS2), Running time, Average Inter-
ruption Times (AIT) and Correct Identification Ratio (CIR) are analyzed based on the
whole data set D1 and D2.
Firstly, we tested the running time of the proposed system and idTracker on the two whole
data sets D1 and D2. Both the proposed system and idtracker are implemented with
MATLABTM. Each of the two video clips contains 2000 frames with resolution equals to
2048 × 2040, frame rate equals to 100fps. The computer hardware includes a quad-core
Intel Core i5-2500, 3.30GHz CPU, 8GB RAM. To run idTracker, we compressed the two
video clips to 2% of the original file size. For the proposed method, we used the original
video to guarantee the high accuracy of fish body fitting. The results are shown in Table 4.
Accoding to the results, the proposed system without body fitting requires less running time
than idTracker, and much more time (more than 95%) is spent on fish body fitting.

Table 2. Evaluation of detection performance.

Data Set # of occlusions per image Miss ratio (%) Miss due to occlusion (%) Error ratio (%) Error due to occlusion (%)

DS1 0.13 2.53 45.95 0.93 50.00

DS2 1.93 4.98 94.79 1.13 84.62

doi:10.1371/journal.pone.0154714.t002

Table 3. Evaluation of fish body fitting.

Data
Set

Proportion of detection errors due to
incorrect fitting(%)

Proportion of incorrect fitting due to
occlusion(%)

DS1 46.67 100.00

DS2 88.14 100.00

doi:10.1371/journal.pone.0154714.t003
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To evaluate the performance of the tracking stage, we use the following three indices to mea-
sure the tracking performance.

• Correct Tracking Ratio (CTR)
CTR describes the percentage of correctly tracked frames of a single fish that calaulated as:

CTR ¼ Sðnumber of correct frames of a single fishÞ
number of fish � number of frames

ð16Þ

For the proposed system, we calculated CTR before and after tracklets relinking (trajecto-
ries after tracklets relinking are also called final result). The correct tracking of a fish is
defined similar to correct detection: (1) the 8 rectangles cover over 80% of the fish body
area in the image after background subtraction (this has been checked in tracking stage);
(2) the distance between the tracked fish nose and annotated groundtruth is less than 10
pixels. To further evaluate the performance of fish body fitting, we tested the accuracy of
body fitting after tracklets relinking, which is checked manually. For the compared
idTracker, CTR before and after tracklets relinking refers to the raw output trajectories
and trajectories that contain estimated positions of the individuals during occlusions
(which contains fewer gaps) respectively. The correct tracking of idTracker is defined as:
the tracking result (fish positions) correctly falls on the fish body in the image. The
detailed comparison of the three methods is shown in Table 5.
It can be seen from the results that CTR of the proposed system outperformed idTracker
when fish density is higher, mainly because detection in idTracker is based on blob detec-
tion, when occlusion occurs frequently, the detector will fail and sometimes relinking is
difficult. Our system is based on a fish head detector, when occlusion occurs, fish head can
still be detected if the head part is not occluded. When the proposed system is used with-
out body fitting, CTR would drop a little, because without verifying head tracking results
in body fitting stage, some tracking errors in head tracking remain. It can also be seen that

Table 4. Running time of the proposed system and idTracker.

Method Data Set Running time (/s)

The
proposed
system

without body fitting D1 853.1

D2 1463.4

with body fitting D1 19092.5

D2 34482.5

idTracker D1 1294.9

D2 1521.7

doi:10.1371/journal.pone.0154714.t004

Table 5. CTR of the proposed system and idTracker.

Method Data Set CTR (before relinking) CTR (final result) accuracy of body fitting(%)

The
proposed
system

without body
fitting

DS1 96.67 98.97 —

DS2 95.23 96.45 —

with body fitting DS1 98.93 99.17 99.81

DS2 96.30 97.18 99.12

idTracker DS1 96.75 99.87 —

DS2 82.46 90.11 —

doi:10.1371/journal.pone.0154714.t005
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tracklets relinking further improved the tracking performance and the accuracy of body
shape is higher than 99%.

• Average Interruption Times (AIT)
AIT measures how many times that the trajectory of a single fish interrupt on average per
100 frames, calculated as:

AIT ¼ Sðtrajectory interruption times of each fishÞ
number of fish � number of frames = 100

ð17Þ

The AIT as well as the proportion of trajectory interruption caused by occlusion of the
three methods are shown in Table 6. Note that the proposed system is not identification
remaining, it means that after trajectory interruption, the trajectory in the next frames will
be labeled as a new object, which is different from ‘fingerprinting’ based tracking systems
such as idTracker.
From the result it can be seen that tracklets relinking stage effectively improves the integrity
of the trajectories. After tracklets relinking, AIT reduces nearly 90%, the trajectory continu-
ity of the proposed system is better than that of the proposed system without body fitting.
It also outperforms idTracker when the fish group density is doubled. For the proposed
system, when the frequency of occlusion increases, a higher percentage of trajectory inter-
ruption is caused by occlusion.

• Correct Identification Ratio (CIR)
CIR represents the probability of correct identification of all fish after an occlusion event,
calculated as:

CIR ¼ times that all fish get correct identity after occlusion
number of occlusion events

ð18Þ

the comparison of CIR between the proposed system and the two compared methods is
shown in Table 7.
The result shows that idTracker is capable of correctly recognizing the identification of a
small number of objects (10 fish), even when trajectory interruption occurs, the identity of
each individual can be preserved after interruption, which outperforms the other two sys-
tems. However, when the group density is higher (for example, 20 fish), identification
errors may occur, which is a limitation of ‘fingerprinting’ based tracking systems at present.
It also shows that body fitting does little help to increase CIR because the information of
body rectangles are not used in tracklets relinking in current system.

3. The dependence of tracking performance on detection result
The proposed tracking system applies Kalman filter to accomplish the tracking task which

Table 6. AIT of the proposed system and idTracker.

Method Data Set AIT (before relinking) AIT (final result) interruption due to occlusion(%)

The
proposed
system

without body
fitting

D1 1.43 0.33 12.96

D2 1.37 0.48 96.43

with body fitting D1 1.42 0.16 66.67

D2 1.36 0.17 98.36

idTracker D1 0.22 0.02 100.00

D2 0.46 0.21 93.10

doi:10.1371/journal.pone.0154714.t006
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requires detection before tracking. To investigate to what extent the tracking results depend
on the detection performance, we calculated the probability of correct tracking when detec-
tion is wrong or missing. The evaluation is based on the manually annotated data set DS1
and DS2. The detailed results are shown in Table 8. Four examples of successful correction
of detection failures in tracking stage are shown in Fig 8.
It can be concluded that no matter whether body fitting is performed, the correctness of
tracking result is more dependent on performance of detection when the group density of
fish is higher. When the density of fish is low, most incorrect detection can be corrected in
tracking stage, but when the density of fish group increases (frequency of occlusion
increases), only a small part of detection failures can be corrected. The reason why the cor-
rection performance of the proposed system without body fitting is even a little better than
the system with body fitting is that: for system with body fitting, when calculating correct-
ness of detection and tracking, correctness of body fitting is also taken into consideration,
which to some extent affects the results.

3.3 Discussions
According to our experiment, we found that zebrafish may change their body shape from
straight to bent and then back to straight again in less than 0.2s, we set the frame rate to 100 fps
so that we can track the changing process of fish body shape. Much higher frame rate is not
necessary for our study, moreover, higher frame rate such as 3000fps will lead to poor efficiency
for long time tracking.

From the detection results we find that when occlusion occurs, as long as the fish head is
not occluded, it can still be successfully detected by fish head detector of the proposed tracking
system, which outperforms the tracking systems based on blob detector. When there is sub-
stantial increase of occlusion frequency, more detection failures of head detection and fish
body fitting occur due to occlusion.

There is practically no possibility that a tracker would be assigned to a non-fish object. The
reason is that the water tank is uniformly illuminated, after background subtraction the fish

Table 7. CIR of the proposed system and idTracker.

Method Data Set CIR(%)

The
proposed
system

without body
fitting

D1 88.89

D2 84.62

with body fitting D1 93.33

D2 87.23

idTracker D1 100.00

D2 87.10

doi:10.1371/journal.pone.0154714.t007

Table 8. Proportion of correct tracking with incorrect detection.

Method Data
Set

Proportion of correct tracking with incorrect detection
(%)

The
proposed
system

without body
fitting

DS1 77.78

DS2 28.26

with body fitting DS1 70.97

DS2 28.14

doi:10.1371/journal.pone.0154714.t008
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bodies are extracted from image neatly, thus, there is no chance that a non-fish object remain-
ing in the subtracted image. And we apply Kuhn-Munkres algorithm to perform data associa-
tion which could guarantee that it is a one to one association, there is no chance that a fish is
assigned to two trackers either.

It is verified by the experiment results that the accuracy of body rectangle fitting is over
99%, which provides valuable body geometry data for biologists and physicists to investigate
biological characteristics and hydrodynamics of fish swimming. When severe occlusion occurs
and detection fails for consecutive 5 frames, the trajectory may be interrupted, this problem is
solve by tracklets relinking, after this postprocess, nearly 90% interrupted trajectories can be
successfully reconnected. When two fish overlap and are too close to each other, fish body rect-
angles may be wrongly fitted onto another fish in detection stage, however, using motion conti-
nuity and tracking results of the previous frames, part of the wrongly fitted bodies can be
corrected. The tracking system outperforms the proposed system itself without body fitting in
CTR and AIT in all data sets, and when fish density is higher, the proposed system outperforms
idTracker in terms of both CTR and AIT.

In the tracking system, joint J1 is applied to represent location of the fish head. Fig 9a shows
the trajectory of joint J1 and nose point N of one fish in consecutive frames, it can be observed
from the figure that the trajectory of J1 is smoother, which makes it easier to predict new state
in Kalman filter. So using coordinates of joint J1 in tracking stage helps to improve the perfor-
mance of the tracking system.

The limitations of the proposed tracking system lie in: when the frame rate is low, state pre-
diction and data association is challenging, which may result in more trajectory interruptions
and higher possibility of incorrect identification. And the resolution of the video should be

Fig 8. Examples of successful correction of detection failure. Images in the first row present four examples of detection failures including
detection error, detection missing and duplication detection. The failures are successfully corrected in tracking stage, see images in the second row.

doi:10.1371/journal.pone.0154714.g008
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guaranteed or there may be problems in head detection and body fitting. In tracklets relinking,
only information of head rectangle of each fish is used, which may be not enough for effective
relinking.

The relationship between fish velocity direction and head orientation is also analyzed. The
statistics show that the fish velocity direction (the velocity is defined as displacement of center
of head rectangle rec1 in two consecutive frames) and its head orientation (the orientation of
head rectangle) is inconsistent (see Fig 9b), the probability of the angle difference larger than
10 degree is about 15.93%, when the direction of the fish changes abruptly, the difference will
be even larger. So fish velocity direction instead of head orientation should be used in behavior
analysis because the former one describes the velocity direction of fish motion, while the latter
one is only the orientation of fish head at some moment.

Fig 9. Discussion of tracking result. (a). Trajectory of a fish’s nose point and J1. Green dots plot the trajectory
of nose point N in consecutive frames, blue dots plot the trajectory of J1; (b). Angle difference distribution of fish
velocity direction and its head orientation. X-axis is the angle interval in degree, Y-axis is the possibility of angle
between fish head orientation and its velocity direction dropping in the angle interval.

doi:10.1371/journal.pone.0154714.g009

Tracking Multiple Zebrafish in ShallowWater

PLOS ONE | DOI:10.1371/journal.pone.0154714 April 29, 2016 20 / 23



Conclusion
We have proposed in this paper a tracking system capable of tracking a group of zebrafish
swimming in shallow water. A novel fish model is proposed to represent the fish body. In
detection stage the location and orientation of each fish head is accurately detected via bound-
ary curvature when the fish head is not occluded, and then the fish body is fitted by linked rect-
angles. The tracking stage is done by firstly tracking fish head using Kalman filter, then fitting
the body part and judging correctness of head tracking. Experiment results show that this sys-
tem is capable of tracking a zebrafish group with frequent occlusions. The system can also be
applied to tracking other species of fish with similar appearance.

With the detailed data of fish body geometry obtained by the proposed tracking system,
more research on zebrafish behavior associated with fish body can be accomplished. We per-
formed some analysis on the difference of head orientation and the velocity direction of zebra-
fish, the result showed that direction of fish velocity should be used in behavior statistical
analysis instead of head orientation.

Supporting Information
S1 Video. Tracking result of a group of 10 zebrafish. The left image shows the tracking result
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(ZIP)
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