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Abstract: Adulterated, poor-quality, and unsafe foods, including meat, are still major issues for
both the food industry and consumers, which have driven efforts to find alternative technologies to
detect these challenges. This study evaluated the use of a portable near-infrared (NIR) instrument,
combined with chemometrics, to identify and classify individual-intact fresh goat muscle samples.
Fresh goat carcasses (n = 35; 19 to 21.7 Kg LW) from different animals (age, breeds, sex) were used
and separated into different commercial cuts. Thus, the longissimus thoracis et lumborum, biceps femoris,
semimembranosus, semitendinosus, supraspinatus, and infraspinatus muscles were removed and scanned
(900–1600 nm) using a portable NIR instrument. Differences in the NIR spectra of the muscles were
observed at wavelengths of around 976 nm, 1180 nm, and 1430 nm, associated with water and fat
content (e.g., intramuscular fat). The classification of individual muscle samples was achieved by
linear discriminant analysis (LDA) with acceptable accuracies (68–94%) using the second-derivative
NIR spectra. The results indicated that NIR spectroscopy could be used to identify individual
goat muscles.

Keywords: carcass; chemometrics; classification; goat meat; infrared

1. Introduction

Meat identification and authentication is one of the applications for which near-infrared
(NIR) spectroscopy is considered a valuable tool, as reported by different authors [1–7]. The
utilisation of NIR spectroscopy has been reported by different researchers to have great
success in identifying and differentiating between different meat species (e.g., beef, pork,
lamb, and chicken) as well as authenticating different homogenized meat muscle samples
from the same or different animal species [1–8]. The detection of adulterated, unauthentic,
poor-quality, and unsafe meats is still a major task for the meat and food industries [9]. The
meat industry as well as consumers have driven efforts to introduce innovative and reliable
detection techniques that can ensure the authenticity, quality, and safety of both meat and
meat products along the supply and value chains [3,5,10,11].

It has been recognised that the so-called classical analytical techniques are expensive,
laborious, time-consuming, and not appropriate to the modern challenges facing the food
and meat industries. Therefore, the demand to guarantee the authenticity and safety of
both meat and meat products has increased the interest in developing rapid analytical
techniques in food and meat industries [2–5]. Among these rapid techniques, vibrational
spectroscopic techniques, such as NIR, mid-infrared (MIR), and Raman spectroscopies,
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are useful for the determination of meat quality and authenticity because of their intrinsic
characteristics (e.g., rapid, reliable, non-destructive, green, relatively inexpensive) [2–5].

Although NIR spectroscopy has been applied to different commercial and exotic meats
(e.g., beef, lamb, pork, chicken, kangaroo, game, etc.) [12–14], not many reports were found
that evaluated the use of this technique to analyse goat meat samples. Only one study has
been reported that assessed the ability of NIR spectroscopy to characterise and authenticate
the composition of goat meat samples [15]. The authors of this study evaluated the use of
NIR spectroscopy to estimate protein, moisture, connective tissue, ash, and fat contents
in two goat muscles, Longissimus thoracis (LT) and L. lumborum (LL), with great success
(coefficient of determination > 0.70) [15].

Although the focus has been on the adulteration of meat using cheaper alternative
species, few studies have evaluated the adulteration of expensive fresh meat cuts with
cheaper cuts in the same animal species [16]. Typically, the more expensive cuts in a carcass
differ in quality and composition from the inferior cuts or muscles. It is therefore of value
to the industry to be able to distinguish between different muscles in a mixture of meat
products (e.g., high- vs low-value muscle or commercial cuts), thereby providing proof
of provenance and quality; a fillet steak sold as a high-value product due to its inherent
quality characteristics is indeed derived from the Psoas major muscle and not from some
inferior muscle.

Thus, the aim of this study was to evaluate the use of a portable near-infrared (NIR)
instrument combined with linear discriminant analysis (LDA) to identify, as well as classify,
individual and intact goat muscle samples.

2. Materials and Methods
2.1. Samples

Fresh goat carcasses (n = 35) from different breeds and sexes (male, female), production
systems (including commercial farms), and two different experiments were analysed after
being slaughtered in a commercial abattoir in Queensland (Australia). The samples were
obtained from two different experiments, where in experiment 1, both male and female
goat animals were slaughtered, while in experiment 2, only male goats were analysed. The
breeds used in these studies were Boer, Boer crosses, and Australian rangeland goats. The
goat carcasses were weighed after 24 h (range of 6 to 28 Kg cold carcass weight) and cut in
different commercial cuts (e.g., back leg, chump, flap, loin, rack, shoulder), as described by
other authors [17]. In this study, the carcasses were weighed, whereafter the muscles in each
commercial cut were anatomically dissected. In total, six muscles were dissected and collected
for each of the goat carcasses, namely longissimus thoracis et lumborum (LTL), biceps femoris (BF),
semimembranosus (SM), semitendinosus (ST), supraspinatus (SS), and infraspinatus (IS). The total
number of muscle samples collected and scanned was 210 (35 goats × 6 muscles each).

2.2. Near-Infrared Spectroscopy

The NIR spectra of the individual goat muscle samples were collected using a portable
NIR instrument (Micro-NIR 1700. Viavi, Milpitas, CA, USA) operating in the wavelength
range of 950–1600 nm (10 nm wavelength resolution). The spectra collection and instru-
ment set-up were controlled using the proprietary software provided by the instrument
manufacturer (Viavi Solutions, 2015, Milipitas, CA, USA). The spectral data acquisition
settings were set at a 50 ms integration time and an average of 50 scans (MicroNIR Prov 3.1,
Viavi, Milpitas, CA, USA). For every 10 samples, a reference spectrum was collected using
Spectralon®. Each muscle was scanned in triplicate, and the average of these spectra was
used in further chemometric analysis.
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2.3. Chemometrics and Data Analysis

The NIR data were exported into The Unscrambler (version X, CAMO, Norway) for
data analysis and pre-processing. The NIR spectra were pre-processed using the Savitzky–
Golay second derivative (21 smoothing points and second polynomial order) prior to
spectra interpretation and chemometric analysis [18]. In this study, principal component
analysis (PCA) and linear discriminant analysis (LDA) were used to analyse and classify
the muscle samples according to their origin (e.g., type of muscle or breed). The LDA
models were developed using the second-derivative NIR spectra and the muscle types as
input variables. Models were developed using full cross-validation (leave one out) [19,20].
In addition, the Kennard–Stone approach was used to select samples to be allocated into
a calibration and validation set. The ability of the LDA models to classify samples was
evaluated using the percentage of correct (%CC) and incorrect (%IC) classifications using
the validation set [19,20].

3. Results and Discussion
3.1. Spectra Interpretation

Figure 1 shows the NIR raw spectra of all muscle samples analysed. The raw NIR
spectra of the muscles showed three main bands around 976 nm, 1176 nm, and 1428 nm.
These bands were associated with third (976 nm) and second (1428 nm) overtones stretching
of the O-H bond of water [12,21], while the band around 1176 nm might be associated
with the C-H stretching second overtone, associated either with intramuscular fat or lipid
content [22–24]. An effect of scatter can be observed in the NIR raw spectra of the muscle
samples, mainly due to the presence of water. Therefore, the second derivative was used to
improve the interpretation of the NIR spectra of the muscle samples analysed (Figure 2). In
addition, the average of the second derivative of the NIR spectra of each of the individual
muscle samples analysed is also reported in Figure 3. The NIR absorbances throughout
the wavelength range of the individual muscle samples analysed overlapped where main
throughs (bands) were observed at 976 nm, 1167 nm, 1341 nm, and 1420 nm. A possible
explanation for this overlapping might be related to the similarities in the anatomical
location, as well as similar functionality of some of the muscles analysed [14,22]. For
example, both ST and SS tended to differentiate from the other muscles around 976 nm
(water content) and 1167 nm [12,21]. In addition to the differences between ST and SS, BF
tended to differentiate from the other muscles at 1416 nm (water content). A change in the
NIR spectra could also be observed around 1200 nm, which is associated with lipids and
proteins, in muscles such as ST, SS, and IS. Other authors have also reported that differences
between muscles (e.g., in chicken) can be observed in absorbances around 980 nm related
to the O-H second overtone (water), at 1202 nm related to the C-H second overtone (lipids),
and at 1456 nm related to the O-H first overtone (water) [22–24]. The band around 970 nm is
related to the third overtone stretching of an O-H bond associated with water content [12],
while the band around 1143 nm corresponds to the second overtone C-H stretching bonds
associated with intramuscular fat and lipids [22]. It is known that the proximate chemical
composition of meat is influenced by the sex of the animal, where male animals typically
have lower fat and higher moisture content than females [14,25]. Considering that muscles
from different goat ages and sex groups were utilized in this study, we can infer that
some of the differences observed in the NIR spectra can be associated with the intrinsic
differences in intramuscular fat, lipids, and moisture content between animals (age and
sex) and muscles (anatomical position and functionality). It has also been observed that
some of the muscles overlapped around 1392 nm, associated with the second overtone C-H
stretching bond that is related to the lipid content of the samples [22]. Within an animal,
muscles are known to differ in their chemical composition, including their moisture and
intramuscular fat content [25].
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3.2. Principal Component Analysis

Figure 4 shows the PCA score plot and loadings derived from the second-derivative
NIR spectra of the intact goat muscle samples analysed. The PCA analysis showed that
94% of the variance in the NIR spectra of the individual muscle samples is explained by the
first three principal components (PC1 57%, PC2 32%, and PC3 5%). Although it is not clear
from the figures, similar muscle samples tend to cluster together. This trend can also be
observed when PC2 vs PC3 are plotted. Muscles such as SM tend to form a tight cluster,
while BF and LTL are scattered along the different PCs. Overall, it is difficult to observe a
clear separation between the muscle samples when all the samples are analysed together.
The highest loadings in PC1 explained the separation between samples and were observed
around 976 nm (O-H), 1180 nm (C-H), and 1428 nm (O-H), associated with water content.
The highest loadings in both PC2 and PC3 were similar to those observed in PC1, although
some shifts in the wavelength were noticeable. The highest loadings in PC3 were observed
at 1112 nm, 1180 nm, 1242 nm, and 1397 nm; both bands at 1242 nm and 1397 nm were
associated with fat or lipid content [22].
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3.3. Classification

The classification results using LDA based on the second-derivative NIR spectra of
the individual muscle samples are reported in Table 1. The LDA confusion matrix showed
that muscle samples were correctly classified in the range of 63% to 94%, depending on the
type of muscle. The poor classification rates were observed for LTL (63%), ST (74%), and
SM (71%). For the LTL, 13 samples were misclassified, while 10 and 8 were misclassified
for ST and SM, respectively. On the other hand, good to very good classification rates
were obtained for BF (82%), SS (94%), and IS (85%), respectively. For BF, six samples were
misclassified, while for SS and IS, there were only two and five samples misclassified,
respectively. These differences might be attributed to the anatomical and physiological
differences among muscles and can also be explained by differences in fibre orientation,
muscle chemical composition, physiology, anatomical function, and texture [22,25]. Al-
though the mean second derivative of the NIR spectra appears relatively similar for the
different muscle samples analysed, the spectral properties were different, allowing for the
discrimination between different muscles.

Table 1. Linear discriminant analysis confusion matrix for the classification of individual goat
muscle samples analysed intact by near-infrared reflectance spectroscopy. Results correspond to the
validation. In bold is the correct number of samples classified.

LTL BF ST SM SS IS

LTL 22 1 0 6 1 5
BF 0 29 0 3 2 1
ST 0 1 26 1 2 5
SM 1 6 1 25 1 1
SS 0 0 0 0 33 2
IS 0 0 0 2 3 30

LTL: longissimus thoracis et lumborum, BF: biceps femoris, SM: semimembranosus, ST: semitendinosus, SS:
supraspinatus, IS: infraspinatus muscles.

We also attempted to discriminate muscles according to genotype (e.g., Boer buck,
Boer cross, and Australian rangeland). When all muscle samples were analysed together, a
classification rate ranging between 52 and 58% was achieved. Thus, comparisons between
Boer buck and Australian rangeland, Boer cross, and Australian rangeland, as well as Boer
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cross and Boer buck, were made separately. Muscle samples were classified correctly with
an 80% rate when Boer buck and Australian rangeland were compared. For the other two
groups, although an improvement in the classification rate (correct classification around
70%) was achieved, the muscles belonging to the Boar cross were not correctly classified.
This might be explained by the fact that Boer buck and cross goats are more genetically
similar compared with the Australian rangeland animals. The results of this study indicated
that NIR spectroscopy was able to identify the origin of the muscles using intact samples
(thus, there is no need for homogenization). These results indicate that NIR use can also be
extended to other species and muscles as a high-throughput tool to identify the origin of
the meat.

4. Conclusions

This study reported the use of a portable NIR spectrometer combined with chemo-
metrics to characterise and identify different goat muscle samples. Differences in the NIR
spectra of the muscles were observed around 970 nm, 1242 nm, 1397 nm, and 1428 nm
associated with water and fat content (e.g., IMF). The classification of individual muscle
samples showed that samples could be classified with accuracies ranging from 68% to 94%
using the second-derivative NIR spectra. Muscles that are in the same anatomical location,
such as the IS and SS, were correctly classified by NIR spectroscopy. Overall, the results
of this study indicated that NIR spectroscopy could be used to characterise and identify
different intact goat muscle samples. In future, we can expect an improvement in the
NIR models by incorporating samples from other commercial and production conditions,
as well as different genetics. The findings of this research might be extended to other
species and types of muscles produced and sold within a commercial facility with the
several advantages NIR provides, such as the low cost and the fact that this technique it is
non-destructive.
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