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Interaction of light regimes and circadian clocks
modulate timing of pre-adult developmental
events in Drosophila
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Abstract

Background: Circadian clocks have been postulated to regulate development time in several species of insects
including fruit flies Drosophila melanogaster. Previously we have reported that selection for faster pre-adult
development reduces development time (by ~19 h or ~11%) and clock period (by ~0.5 h), suggesting a role of
circadian clocks in the regulation of development time in D. melanogaster. We reasoned that these faster
developing flies could serve as a model to study stage-specific interaction of circadian clocks and
developmental events with the environmental light/dark (LD) conditions. We assayed the duration of three
pre-adult stages in the faster developing (FD) and control (BD) populations under a variety of light regimes that
are known to modulate circadian clocks and pre-adult development time of Drosophila to examine the role of
circadian clocks in the timing of pre-adult developmental stages.

Results: We find that the duration of pre-adult stages was shorter under constant light (LL) and short period light
(L)/dark (D) cycles (L:D = 10:10 h; T20) compared to the standard 24 h day (L:D = 12:12 h; T24), long LD cycles
(L:D = 14:14 h; T28) and constant darkness (DD). The difference in the duration of pre-adult stages between the
FD and BD populations was significantly smaller under the three LD cycles and LL compared to DD, possibly due
to the fact that clocks of both FD and BD flies are driven at the same pace in the three LD regimes owing to
circadian entrainment, or are rendered dysfunctional under LL.

Conclusions: These results suggest that interaction between light regimes and circadian clocks regulate the
duration of pre-adult developmental stages in fruit flies D. melanogaster.
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Background
Most holometabolous insects including fruit flies D. mela-
nogaster go through three discrete developmental stages
namely egg, larvae and pupae. At an ambient temperature
of 25°C, eggs typically take 18–24 h to hatch followed by
the larval stage which spans for ~4 days, during which
developing larvae pass through three instars [1]. The pupal
stage starts after the third instar larval stage, lasts for
another 4 days, subsequently leading to wing-pigmentation
followed by adult emergence, hence the entire pre-adult
developmental duration of Drosophila spans ~9 days.
Wing-pigmentation is considered to be the last stage of the
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fly development and therefore, no further major change in
pupa is expected to take place thereafter [2-4].
Circadian clocks have been implicated in the temporal

regulation of pre-adult development in D. melanogaster
[5,6] as several studies have reported that the pre-adult
development time and clock period show positive correl-
ation [7-11]. Furthermore, studies on insects including
Drosophila have reported rhythmicity in several develop-
mental events such as egg-hatching [12,13], pupation
[14,15] and wing-pigmentation [2,16], implying a role of
circadian clocks in timing pre-adult stages.
While adult emergence in insects including Drosophila is

under the control of circadian clocks [17-19], evidence
suggests that clocks begin ticking in the fly as early as the
third instar larval stage and is functional for the most part
of pre-adult development [20-23]. Additionally, Drosophila
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larvae are known to show rhythmicity in light avoidance
behaviour [24], which is probably the earliest and the
only clock-driven pre-adult behaviour reported thus far
in Drosophila. Light/dark (LD) cycles are known to be one
of the strongest zeitgebers for the adult emergence rhythm
of fruit flies and is known to play a key role in entraining
(synchronising) the circadian clocks present during early
developmental stages [25,26]. Adult emergence rhythm in
Drosophila is known to be entrained by a wide range of
LD cycles [8,19], causing a significant impact on its pre-
adult developmental duration; speeding it up under con-
stant light (LL), relative to 12:12 h LD cycles and slowing
it down under DD [8,27,28]. In addition, pre-adult devel-
opment time in Drosophila is reported to be positively
correlated with the period of LD cycles (Tcycles), suggest-
ing a role of period of circadian rhythms and/or LD cycles
in the regulation of pre-adult developmental duration
[8,29]. While it is known that the duration of pre-adult de-
velopment would be greatly affected by environmental LD
cycles [8,27,28], which of the developmental stages would
be affected the most is still unknown.
Previously we had reported a corollary to the above -

that populations of D. melanogaster subjected to selection
for faster pre-adult development under DD, evolve shorter
development time (~29 h shorter than the controls, after
50 generations of selection) and circadian clocks with
free-running period ~0.5 h shorter than the controls [11].
Additionally, we had reported that speeding up of devel-
opment in these populations is achieved by concurrent
reduction in the duration of almost all pre-adult stages
[11]. Evolution of faster running circadian clocks in the
faster developing (FD) flies suggests a link between circa-
dian clocks and development time, similar to what has
been implied in several previous studies [7-10,30-32].
Considering the ability of circadian clocks to entrain to a
wide range of LD cycles, and a sizable difference in devel-
opment time between the faster developing and control
populations [8], in the present study, we decided to exam-
ine the effects of interaction between circadian clocks and
light regimes in the timing of pre-adult developmental
stages by assaying the duration of several pre-adult stages
in the selected Faster Developing (FD) and control Base-
line Developing (BD) populations under three light/
dark (LD) cycles [LD 10:10 h (T20), LD 12:12 h (T24)
and LD 14:14 h (T28)] and two constant conditions (con-
stant light - LL and constant dark - DD).

Results
Egg-hatching time assay
Since egg-hatching in Drosophila typically lasts for 18 to
24 h and it would require a very high resolution in data
to pick-up any difference between the selected and
control flies, we estimated this duration only in LL, T24
and DD conditions. Under all the three light regimes,
the egg-hatching waveform of the FD flies was shifted
earlier compared to the BD controls (Figure 1a), and the
average duration of the egg-stage was shorter in the FD
flies compared to the BD controls by ~1.6 h under
LL, ~1.6 h in T24 and ~0.9 h in DD (Figure 1b). ANOVA
revealed a statistically significant effect of light regime (L),
stock (S); however, the effect of L × S interaction was
statistically not significant (Figure 1b, c; Table 1). Under
all the three light regimes, egg-hatching time of the
FD flies was significantly shorter than the BD controls
(Figure 1b; Table 1). However, the difference in the egg-
hatching time between the FD and BD flies did not differ
statistically between the three environmental conditions
(LL - 1.61 h; T24 - 1.62 h; and DD - 0.86 h; Figure 1c;
Table 2). Shortening of egg-hatching duration in the FD
flies, under all the three light regimes, indicates that
response to selection for faster development overrides the
effects of light regimes (Figure 1c).

Pupation and wing-pigmentation time assays
These assays were performed under five different regimes
(LL, T20, T24, T28 and DD). Under all the five assay light
regimes, pupation (Figure 2) and wing-pigmentation time
(Figure 3) of the FD flies was significantly shorter than the
BD controls. The pupation-time difference between the
FD and BD flies under LL, T20, T24, T28 and DD con-
ditions was about 9, 8.6, 7, 9 and 12.5 h respectively
(Figure 2b, c). Under T20, the FD flies pupated mostly in
the dark and the BD flies in the light, while in T28, flies
from both the stocks pupated during the light phase.
However, under T24, pupation of the FD flies spanned
over both dark and light phases, while that of the BD flies
was mostly restricted to the dark phase and partly to the
light phase. The FD flies pupated earlier than the BD con-
trols under both LL and DD (Figure 2a). ANOVA on the
pupation-time data revealed a statistically significant effect
of L, S and L × S interaction (Figure 2b, c; Table 1). Post-
hoc multiple comparisons using Tukey’s test revealed that
under all the five light regimes, pupation-time of the FD
flies was significantly shorter compared to the BD con-
trols. Pupation-time of both the stocks was shorter under
LL followed by T20 and T28, while it was longer in T24
and DD (Figure 2b). ANOVA on the pupation-time differ-
ence (BD-FD) data revealed a statistically significant effect
of L (Figure 2c; Table 2) with the difference being smaller
under LL, T20, T24 and T28, compared to DD. Thus,
under entraining as well as rhythm-abolishing conditions,
clock-mediated difference in pupation-time between the
FD and BD flies is significantly reduced, while under
free-running condition, the difference persisted. These
results suggest that circadian clocks regulate pupation-
time in Drosophila.
The difference in wing-pigmentation time between the

FD and BD stocks was about 14 h in LL, 11 h in T20, 12 h
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Figure 1 Pupation-time under LL, T20, T24, T28 and DD. (a) Waveforms showing patterns of pupation-time of the selected (FD) and control
(BD) flies under constant light (LL), 10:10 h light/dark (LD) cycles (T20), 12:12 h LD cycles (T24), 14:14 h LD cycles (T28) and constant dark (DD)
conditions. (b) The pupation-time (time interval from egg-to-pupae formation) of the FD and BD flies under LL, T20, T24, T28 and DD, showing
effects of light regimes. (c) Difference between the pupation-time of the FD and BD flies under LL, T20, T24, T28 and DD conditions, showing light
regime effect on the egg-to-pupation duration. All other details are same as in Figure 1.
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in T24, 12.5 h in T28 and 18 h in DD (Figure 3). Under
T20, wing-pigmentation of the FD flies started in the light
phase and was completed in the dark phase, while in the
BD flies it started in the dark and ended during the light
phase. In T28, wing-pigmentation of the FD flies was
Table 1 Results of ANOVA on data from different assays

Effect df MS effect df error MS error F p-level

Egg-hatching time assay under LL, T24 and DD

Light regime (L) 2 23.67 6 0.23 104.21 0.0001

Stock (S) 1 8.8 3 0.71 12.38 0.04

L × S 2 0.19 6 0.15 1.29 0.34

Pupation-time assay under LL, T20, T24, T28 and DD

Light regime (L) 4 275.06 12 5.88 46.81 0.0001

Stock (S) 1 858.22 3 4.03 212.73 0.0007

L × S 4 8.02 12 1.89 4.25 0.02

Wing-pigmentation time assay under LL, T20, T24, T28 and DD

Light regime (L) 4 419.06 12 2.41 173.58 0.0001

Stock (S) 1 1831.77 3 2.41 760.71 0.0001

L × S 4 16.27 12 1.48 10.99 0.0006

Egg-to-adult development time assay under LL, T20, T24, T28 and DD

Light regime (L) 4 475.81 12 7.15 66.59 0.0001

Stock (S) 1 2279.14 3 0. 71 3219.08 0.0001

L × S 4 8.36 12 2.41 3.48 0.04
confined to the light phase, while that of BD flies was
confined to the dark phase (Figure 3a). Under T24, pig-
mentation occurred during both light and dark phases in
the FD flies, while in the BD flies it occurred only during
the dark phase, and under both LL or DD, the FD flies
pigmented earlier than the BD controls (Figure 3a).
ANOVA on the wing-pigmentation time data revealed a
statistically significant effect of L, S and L × S interaction
(Figure 3b, c; Table 1). Post-hoc multiple comparisons
using Tukey’s test revealed that under all five light
regimes, wing-pigmentation time of the FD flies was
significantly shorter than the BD controls, and the mean
wing-pigmentation time of both the populations was
shortest under LL, followed by T20 and T28, while it
Table 2 Results of ANOVA on difference between stocks at
various developmental stages

Effect df MS effect df error MS error F p-level

Egg-hatching time difference

Light regime (L) 2 0.38 6 0.29 1.29 0.34

Pupation-time difference

Light regime (L) 4 16.03 12 3.78 4.25 0.02

Wing-pigmentation time difference

Light regime (L) 4 32.54 12 2.96 10.99 0.0006

Egg-to-adult development time difference

Light regime (L) 4 16.71 12 4.48 3.48 0.04
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Figure 2 Pupation-time under LL, T20, T24, T28 and DD. (a) Waveforms showing patterns of pupation-time of selected (FD) and control (BD)
flies under constant light (LL), 10:10 h light/dark (LD) cycles (T20), 12:12 h LD cycles (T24), 14:14 h LD cycles (T28) and constant dark (DD) conditions.
(b) The pupation-time (time interval from egg-to-pupae formation) of the FD and BD flies under LL, T20, T24, T28 and DD, showing the effect of light
regimes. (c) Difference between the pupation-time of the FD and BD flies under LL, T20, T24, T28 and DD conditions, showing light regime effect on
the egg-to-pupation duration. All other details are same as in Figure 1.
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was longest in T24 and DD (Figure 3b). The wing-
pigmentation time difference between the two stocks was
significantly shorter under LL, T20, T24 and T28 com-
pared to DD (Figure 3c). ANOVA on the difference data
revealed a statistically significant effect of L (Figure 3c;
Table 2), indicating that under LL and entrained con-
ditions (T20, T24 and T28), clock-mediated difference
in pigmentation-time between the FD and BD flies is
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significantly reduced while it persists in free-running
condition (DD). This suggests that circadian clocks
regulate timing of wing-pigmentation in Drosophila.

Egg-to-adult development time
After 40 generations of selection, the difference in pre-
adult development time between the FD and BD stocks
was about 15 h in LL, 15 h in T20, 13 h in T24, 15 h in
T28 and 18 h in DD (Figure 4). Pre-adult emergence
profiles of the FD and BD flies showed similar pattern
across all the light regimes, with the FD flies emerging
consistently earlier than the BD controls (Figure 4a).
However, difference in development time between the
two populations under LL and three LD cycles was
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Figure 4 Egg-to-adult development time under LL, T20, T24, T28 and DD. (a) Waveforms showing difference in pre-adult development time
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significantly smaller than that in DD (Figure 4b, c).
Under T20, both FD and BD flies emerged in the dark
and emergence ended in the light phase of the next
cycle, and in T24, emergence of the FD flies was con-
fined to the light phase, while that of the BD flies to the
dark phase (Figure 4a). Under T28, the FD flies started
emerging in the middle of the light phase, continued
emerging in the dark phase and their emergence was
completed only in the light phase of the next cycle, while
that of the BD flies was confined only to the light phase
(Figure 4a). ANOVA revealed a statistically significant
effect of L, S and L × S interaction (Figure 4b; Table 1).
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Post-hoc multiple comparisons using Tukey’s test revealed
that under all the five light regimes, egg-to-adult develop-
ment time of the FD flies was significantly shorter than
the BD controls, and the mean development time of both
the populations was shortest under LL followed by T20
and T28, and was longest under T24 and DD (Figure 4b).
ANOVA on the difference data revealed that the effect
of L was statistically significant (Figure 4c; Table 2). The
difference in development time (BD-FD) between the
selected and control flies under the entraining conditions
(T20, T24 and T28) and rhythm abolishing condition
(LL) was significantly reduced compared to that under
free-running condition (DD). These results suggest that
circadian clocks regulate the duration of pre-adult devel-
opment in D. melanogaster.
Free-running period of adult emergence and activity/rest
rhythms
We estimated the period of adult emergence and activity/
rest rhythms from the emergence and activity data col-
lected after 40 generations of selection (Additional file 1:
Figure S1). The FD populations had a significantly shorter
(F1,3 = 12.78; p < 0.037; Additional file 1: Figure S1) period
of adult emergence rhythm (23.6 ± 0.19 h mean ± SEM)
compared to the BD controls (24.4 ± 0.06 h). Similarly, the
FD populations had a significantly shorter (F1,3 = 66.82;
p < 0.004; Additional file 1: Figure S1) period of activity/
rest rhythm (23.9 ± 0.02 h) compared to the BD controls
(24.3 ± 0.06 h). These results suggest that selection for
faster pre-adult development results in a correlated short-
ening of clock period in the FD populations compared to
the controls.
Discussion
Our previous study had shown that, under DD, develop-
mental events such as egg-hatching, pupation and wing-
pigmentation occur earlier in the FD flies than in the BD
controls [11]. We hypothesized that if the duration of
pre-adult stages is entirely clock-mediated, the difference
in the duration between the FD and BD flies would dis-
appear (a) under the three LD cycles, due to the fact that
circadian clocks of flies from both the stocks would run at
the same pace owing to circadian entrainment, and (b)
under LL, wherein their clocks would be rendered dys-
functional. Indeed, the results of our study revealed that
the difference in the duration of pre-adult stages between
the FD and BD stocks was significantly reduced under the
three LD cycles and LL compared to DD. However, expos-
ure to LD or LL regimes did not eliminate the difference
in the duration of pre-adult developmental stages between
the FD and BD flies completely, which suggests that circa-
dian clocks only partly regulate the timing of pre-adult de-
velopmental stages in D. melanogaster.
Exposure to light (LL and LD) significantly reduces
the egg-hatching time but has no effect on the difference
between the FD and BD stocks, suggesting that egg-hatching
is light-mediated but a clock-independent process. In the
current study we have estimated the time of egg-hatching
with reference to the egg-stage (emergence of the first instar
larvae), which is likely to represent the total duration of egg-
stage. Our results are also consistent with the findings of pre-
vious studies which reported that a single light pulse admin-
istered immediately after the egg-hatching stage is sufficient
to entrain the circadian clocks of Drosophila while the
clocks start ticking only at the third instar stage [20-23].
Earlier studies have shown that pupation is gated in mos-

quitoes such as Anopheles gambiae [33] and Aedes taenior-
hynchus [34,35], and the period (per) mRNA expression
during pupation in fruit flies D. melanogaster is under cir-
cadian clock control [3]. Moreover, several developmental
events such as egg-hatching [12,13], pupation [14,15] and
wing-pigmentation [2,16], have been reported to show
rhythmicity, which implies that circadian clocks are likely
to interact with several gated events during the egg-
hatching, pupation and wing-pigmentation stages. Such
gated events and the transition time from one stage to
another is likely to create constraints on the developmental
rates, which in turn would cause reduction in the propor-
tionate differences in the duration of pupal (Figure 2b),
wing-pigmentation (Figure 3b) and pre-adult developmen-
tal stages of the FD and BD flies (Figure 4b). Concurrently,
difference in the duration of the two pre-adult stages be-
tween the FD and BD stocks was found to be greater under
DD compared to the three LD or LL conditions (Figures 2c
and 3c). This could partly be due to the fact that the differ-
ence in clock period between the FD and BD stocks persists
under DD, while it disappears under LD and LL conditions.
Under all the five light regimes, pupation, wing-

pigmentation and adult emergence in the control popula-
tions began only after these processes were nearly
completed in the selected populations (Figures 2a, 3a and
4a). This indicates that the impact of selection for faster pre-
adult development is much stronger than that of light-
regimes; however, difference in the duration of pre-adult
stages between the FD and BD flies varied between
the entraining, rhythm abolishing and free-running light
regimes (Figures 2 and 3). This suggests that time-to-
pupation, wing-pigmentation and adult emergence is a
function of the period of circadian clocks, implying that
interaction of light regimes and circadian clocks is a key de-
terminant for the timing of pre-adult developmental events
in Drosophila.
In insects, timing of ecdysone (a steroid hormone)

release is known to trigger pupal development [36,37]; its
premature release speeds-up development while delayed
release slows it down [38,39]. In hornworms Manduca
sexta, opening of gate during the larval stage is believed to
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be the signal that regulates the timing of release of
prothoracicotropic hormone [39]. Thus, it is suggested
that modulation of pre-adult development time may be
due to the altered timing of prothoracicotropic hormone
release which is primarily caused by the altered timing
and the duration of gate opening at different developmen-
tal stages. Although in our present study we did not esti-
mate ecdysone levels, the observation that clocks of both
selected and control flies appear to have entrained to all
the imposed LD cycles at egg (Figure 1a), larval (Figure 2a)
and pupal (Figure 3a) stages provides an indirect evidence
for the difference in the timing of ecdysone release being
regulated by the gating of various developmental stages.
The timing of adult emergence in Drosophila depends

upon a number of factors including developmental states,
phase and period of circadian rhythms and on the external
environmental conditions [4,7,8,28]. LD cycles restrict
emergence of adults to a narrow window of time called as
“allowed zone” or “gate” of emergence [4,17,19,25,40].
Since circadian rhythms in Drosophila are abolished under
LL, gating of emergence is likely to be absent in this
condition, and therefore, developing individuals would
enter the subsequent developmental stages without any
delay, thereby speeding up the pre-adult developmental
stages [28]. On the other hand under LD cycles, duration
of developmental events is likely to be determined by an
interaction between the developmental states and circa-
dian gating created by the LD cycles, which is likely to be
altered depending on the length of the LD cycles and the
timing of light/dark phases [4,8]. Under DD, where circa-
dian clocks free-run, development time would be deter-
mined by some interactions between the developmental
states and circadian clocks, and thus development time of
flies in this regimes would be comparable to that in T24
(Figure 4b). Therefore, timing of pre-adult developmental
events in Drosophila is expected to follow the trend of be-
ing fastest under LL <T20 < T24 or DD <T28. The results
of our present study are consistent with these trends and
with earlier findings as it shows that the mean develop-
ment time of the two major developmental stages is
shorter under LL and T20 and longer in T24,T28 and DD
[8,27]. As expected, flies take similar amount of time to
develop under T24 and DD (Figure 4b). Interestingly,
lack of emergence gating under LL does not super-
sede the extent of shortening of development under
T20. Among the LD cycles, development time was
shortest under T20, followed by T24 and T28, with
flies taking shorter time to develop under T28 com-
pared to T24. This hints at the possibility of a thresh-
old, beyond which the pre-adult development of
Drosophila cannot be slowed down any further, at
least not by light, thus constraining the nature of correl-
ation between development time and the period of light
regime beyond a particular limit.
Interestingly, the timing of developmental events in
the selected as well as control populations which accom-
panied small but statistically significant difference in
clock period (~0.5 h) was considerably affected by light
regimes; the difference in the duration of developmental
stages is shortened under LL and the three LD cycles
compared to DD. However, irrespective of the state of
temporal organization, flies selected to develop faster as
pre-adults had shorter egg-to-adult developmental dur-
ation compared to the controls, under the three LD cycles
and LL conditions. This suggests that to a large extent, the
difference in development time between the selected and
control flies is independent of the difference in their clock
period. Therefore, development time differences between
the two stocks under different light regimes alone cannot
be taken as evidence to suggest the role of circadian clocks
in the regulation of the timing of pre-adult developmental
stages in Drosophila.
Since clock independent and light mediated pathways

are also likely to play some role in the regulation of de-
velopment time, genetic experiments involving flies with
modified circadian clocks would be helpful. However,
mutant lines are often inbred, which may yield spurious
genetic correlations between fitness components [41].
Therefore, in such studies, use of mutant flies may not
be an ideal choice [42], and the best strategy would be
to examine such correlations in natural populations,
where sufficient variation in clock period and develop-
ment time is likely to exists. The other alternative would
be to examine such correlations in large replicate popu-
lations, selected for different clock period values. Several
studies have shown that most insect species are sensitive
to light especially in the blue-green region of spectra
(400 to 500 nm), while a few species show sensitivity up
to the red end of the spectrum [19]. Moreover, a study
in which eggs of pink bollworm Pectinophora gossypielia
were exposed to monochromatic light after the midpoint
of embryogenesis, showed initiation of the egg-hatching
rhythm optimally between 390 and 480 nm and a sharp
cut-off above 520 nm [43]. Similarly, larvae of the cabbage
white butterfly Pieris brassicae were found to be more
sensitive to wavelengths between 400 to 520 nm while
insensitive to red light (above 580 nm)[44]. In a previous
study, it was reported that Drosophila larvae are highly
sensitive to 500 nm (green), 420 nm (violet) and 380 nm
(ultraviolet) [45]. Since the spectral peaks of the light
source used in our study correspond to 570 nm (green)
and 420 nm (violet), it is likely that the light input path-
ways affecting the duration of pre-adult stages comprise
of photopigments sensitive to 570 and 420 nm (Additional
file 1: Figure S2). Moreover, two additional peaks in the
spectrum corresponding to 570–590 nm (yellow-orange),
620 nm (red) suggests the likelihood of these wavelengths
also influencing the developmental rates of fruit flies.



Yadav et al. BMC Developmental Biology 2014, 14:19 Page 9 of 12
http://www.biomedcentral.com/1471-213X/14/19
The faster developing (FD) populations have evolved
small but consistent (across 75 generations) and repro-
ducibly (across four replicate populations) shorter free-
running period of circadian adult emergence and activity/
rest rhythm (by ~0.5 h) compared to the controls ([11];
Additional file 1: Figure S1). However, it is arguable
whether such changes are really significant because it is
easy to obtain a small period change without substantial
impact on the core clock mechanism. There are numerous
examples in circadian biology literature where differences
in behavioural rhythms are not found to be correlated
with the molecular or neural mechanisms. For instance,
differences in the activity/rest rhythm seen in fruit fly pop-
ulations maintained under semi-natural conditions did
not correlate with changes at the molecular or neural
levels [46]. Similarly difference in activity/rest rhythm of
different Drosophila species was found to occur in spite of
very little difference at the molecular and neural levels
[47,48]. The fact that all the four populations of the faster
developing flies underwent changes in the same direction
(BD1-FD1 = 0.44 h; BD2-FD2 = 0.71 h; BD3-FD3 = 0.41 h;
BD4-FD4 = 0.52 h; [11]), suggests that the period differ-
ences are not because of random genetic drift but due to
the imposed selection for faster pre-adult development.
Multigenic traits such as clock period showing a consist-
ent and reproducible change is a testament to adaptive
evolution of circadian clocks as a correlated response to
selection for faster development. Furthermore, it is
unlikely that the genetic architecture underlying the
circadian phenotype would permit large changes in
circadian period because of multigenic control. Our
results are also consistent with the notion that while
direct response to selection on a trait is limited to few
times (four to six) the standard deviation of the mean trait
value, correlated responses are much smaller ([49,50]; ref-
erences therein).
In summary, across successive stages of develop-

ment, circadian clocks of Drosophila under various
light regimes interact with several “gated” developmental
events. Provided development is a light regime-mediated
clock-controlled event, stage-specific clock or light re-
gime-dependent effects can only be observed by a ma-
nipulation in the clock speed which can then be detected
in terms of relative difference in development time across
the light regimes. Our study reveals that unlike the egg
stage, most pre-adult developmental stages in fruit flies
D. melanogaster are light sensitive and clock-controlled.

Conclusions
We found that several pre-adult developmental stages of
D. melanogaster are susceptible to light and its duration
is determined by the interaction between developmen-
tal clocks and circadian gating created by LD cycles,
suggesting that interaction of light regimes and circadian
clocks modulate the timing of pre-adult events in
Drosophila.

Methods
Experimental populations
We used four replicates each of large, outbred laboratory
populations of D. melanogaster (N ~ 1200, with roughly
equal number of males and females), namely the FD1–4

(Faster Developing - selected) and BD1–4 (Baseline Devel-
oping - controls). The baseline populations were derived
from four outbred LL1–4 populations [51], and maintained
for ~100 generations, at moderate larval and adult dens-
ities (~60 per vial), under DD with constant temperature
(25 ± 0.5°C) and relative humidity (~75%), on a 21 day
discrete generation cycle. Thus, the BD populations were
maintained under DD for ~100 generations prior to initi-
ating four additional faster developing FD populations.
The FD1 population was derived from BD1, FD2 from
BD2, FD3 from BD3 and FD4 from BD4 populations. Thus,
each of the FD populations was derived from its corre-
sponding BD population and therefore, the selected and
control populations bearing identical numerical subscripts
are genetically more closely related to each other than the
populations with which they share the selection regime.
Temperature (~25.0°C) and relative humidity (~75%) were
monitored continuously using Quartz Precision Thermo-
Hygrograph, Isuzu Seisakusho Co, LTD and were found to
be stable throughout the study.
Each replicate population was separately maintained in

a plexi-glass cage (25 × 20 × 15 cm3) supplemented with
banana-jaggery food medium (henceforth, banana medium).
To start a new generation, adult flies were provided with
banana medium supplemented with live yeast paste in a
petri dish for 2 days and from these petri dishes 60–80
eggs were dispensed into glass vials (9 cm height × 2.4 cm
diameter). For the BD stocks, adult flies emerging from 24
such vials containing 6 ml of banana medium were
transferred into plexi-glass cages on the 12th day after egg-
collection. For the FD stocks, 80 such vials containing
6 ml of banana medium were used for each population
and from each vial the first 15–20 emerging flies (approxi-
mately 25% faster) were collected and transferred into
plexi-glass cages on the day of emergence. For starting a
new generation, the next sets of eggs were collected
21 days after the previous egg-collection date.
To eliminate any possible non-genetic effect of parental

rearing condition between the FD and BD stocks, before
the initiation of every assay, all the eight populations were
subjected to a common rearing condition (BD-type) for
one generation. For this, 50–60 eggs laid over 12 h on
banana food in the running cultures of each of the FD1–4

and BD1–4 populations were dispensed into 24 glass vials
containing 6 ml of banana medium. These vials were kept
under DD until all the adult flies emerged and 3 days later
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these flies were transferred into plexi-glass cages. These
caged populations will be referred to as “standardized
populations”. From these standardized populations, eggs
laid for 2 h on banana medium were collected for the
assays. All assays were performed at the 40th generation of
selection and development time of different pre-adult
stages were measured with reference to the egg stage,
hence are referred in the text as egg-to-hatching, egg-
to-pupation, egg-to-wing-pigmentation and egg-to-adult
emergence duration.

Egg-hatching time assay
Eggs of approximately identical age were collected from
the standardized populations by placing a fresh food plate
in the population cage for 1 h. The plate was then re-
placed by another fresh food plate for the next 1 h. Thus,
antecedent eggs retained in the female body were avoided
in all the assays. Eggs were collected from the food plate
and dispensed on 0.5 cm2 agar pieces with exactly 30 eggs
arranged in 5 rows and 6 columns and placed in petri
dishes for the ease of observation of the egg-hatching
process. During the egg-collection, eggs were moistened
every 4–5 min with few drops of water to prevent them
from drying. Since D. melanogaster eggs start hatching
18–24 h after being laid and all eggs hatch in a span of
few hours, we counted the number of eggs that hatched
every 1 h, starting 12 h after egg-collection. The egg-
hatching time assay was done under LL, T24 and DD con-
ditions. From this data, egg-hatching time was estimated
as the time interval between the mid-point of 1 h egg-
collection window and of the 1 h assay duration during
which the egg hatched. Since each FD population was de-
rived from its respective BD population, egg-hatching
time difference was calculated by subtracting hatching
time of FD1 from BD1, similarly egg-hatching time of
FD2, FD3 and FD4 population was subtracted from that
of BD2, BD3 and BD4 populations respectively. This was
also applied for the pupation, wing-pigmentation and pre-
adult development time difference estimations.

Pupation and wing-pigmentation time assays
In order to assess the role of circadian clocks in the tem-
poral regulation of two major pre-adult stages (larval
and pupal), we performed three separate experiments
namely the pupation-time (duration from egg-to-ter-
mination of third instar larva), wing-pigmentation time
(duration from egg-to-wing pigmentation) and pre-adult
development time assays (duration from egg-to-adult
emergence). Starting the third day after egg-collection,
vials were continuously monitored for pupae (when third
instar larva encapsulates inside a hard and dark colored
puparium) every 2 h. In each regime, 30 eggs were placed
in each glass vial containing 6 ml of banana medium and
10 such vials were used for each population. The number
of larvae that pupated in each vial were scored and
marked with a circle on the glass vial. These 2 hourly
checks were continued until no new pupae were formed
for 2 consecutive days. The pupae undergo pigmentation
due to wing development, so we continued with the
same experimental set-up for the wing-pigmentation
assay (blackening of a mature pupa, which is consid-
ered as the complete maturation of pre-adult develop-
ment). The wing-pigmentation time was recorded every
2 h by marking a cross sign on the encircled mature pupae
already marked during the pupation-time assay.

Egg-to-adult development time assay
For the pre-adult development time assay, flies from the
standardized FD1–4 and BD1–4 stocks were allowed to
lay eggs on banana medium. In order to increase the
egg-laying capacity of flies, 2 days prior to egg-collection
live yeast paste was supplemented on the banana
medium. Flies were allowed to lay eggs for 2 h and
exactly 30 eggs were collected and dispensed into glass
vial containing 10 ml of banana medium. Ten vials for
each replicate population were introduced into five light
regimes (LL, T20, T24, T28 and DD). Thus, a total of
400 vials were used for this assay (10 vials × 8 popula-
tions × 5 light regimes). Eggs were collected under
microscope with the help of a moistened ‘000’ size brush
and introduced into different light regimes. For assays
under T20, T24 and T28, eggs were introduced at the
start of the light phase of LD cycles. A red lamp (λ >
650 nm) was used for egg-collection, observation and fly
handling under DD and during the dark phase of the LD
cycles. The light phase of LD and LL was created with
the help of a fluorescent white light of intensity ~100
lux (~0.15 W/m2). To estimate the egg-to-adult develop-
ment time, vials with eggs were monitored daily for
darkened pupae. Once the pupae became dark, vials
were regularly monitored for freshly emerged adults.
The number of males and females emerging every 2 h
from each vial was counted. These 2 hourly checks were
continued until no flies emerged from vials for the next
3 consecutive days. Pre-adult development time of a fly
was calculated as the duration between the mid-point of
2 h egg-collection window and the mid-point of 2 h
period during which the fly emerged as adult.

Statistical analyses
Egg-to-adult developmental duration and durations of
various pre-adult stages relative to the beginning of egg
stage such as egg-to-hatching, egg-to-pupation and egg-
to-wing pigmentation under various light regimes were
analyzed separately using mixed-model analysis of vari-
ance (ANOVA) in which replicate populations (Block-B)
were treated as random factor, light regimes (L) and stocks
(S) as fixed factors crossed with populations. Post-hoc
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multiple comparisons were done using Tukey’s honestly
significant difference (HSD) test. In all cases block aver-
age, i.e., average of the replicate vials in a population was
used as the unit of analysis and hence, only the fixed
factor could be tested for significance. All analyses were
implemented on STATISTICA for Windows Release 5.0 B
(StatSoft, 1995).

Additional file

Additional file 1: Figure S1. Shorter clock period in FD populations:
Average free-running period (activity/rest rhythm and adult emergence
rhythm) of selected (FD) and control (BD) stocks assayed under constant
darkness (DD) at the 40th generation. For activity/rest rhythm a total of
32 adult flies per population (FD1-4 and BD1-4) were recorded under DD
at 25°C for a minimum of 10 cycles using Drosophila Activity Monitoring
(DAM) system from Trikinetics, USA. The free-running period of the
activity/rest rhythm was estimated using Lomb Scargle (LS) Periodogram
in CLOCKLAB from Actimetrics, USA. The period of the replicate populations
was estimated by averaging the period of individual flies. For adult
emergence rhythm assay, approximately 300 eggs were dispenced into
vials with 10 ml of banana medium kept under DD. Ten such vials per
population were used in this assay. After the start of emergence vials were
checked regularly every 2 h and the number of flies was recorded. Period
calculation was performed by estimating the total duration for peak of
emergence in every cycle. The error bars represents standard error around
the mean (SEM). Figure S2. Spectral composition of white light source used
during development time assay: Peaks of major components (different
wavelength) of white light correspond to indigo (~420 nm), green (~570 nm),
yellow (~590 nm), orange (620 nm) indicates their importance in the
regulation of Drosophila development. Wavelength (in nanometer) is plotted
along x-axis and y-axis represents light intensity (in arbitrary unit). The
spectrum of white light was measured by a Hamamatsu mini spectrometer
TM-series (C10083CAH). The final spectrum was obtained by averaging
100 spectra with accumulation time of 1 s each.
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