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Abstract

Background: Mendelian randomization (MR) is a powerful tool in epidemiology that can

be used to estimate the causal effect of an exposure on an outcome in the presence of

unobserved confounding, by utilizing genetic variants that are instrumental variables

(IVs) for the exposure. This has been extended to multivariable MR (MVMR) to estimate

the effect of two or more exposures on an outcome.

Methods and results: We use simulations and theory to clarify the interpretation of

estimated effects in a MVMR analysis under a range of underlying scenarios, where a

secondary exposure acts variously as a confounder, a mediator, a pleiotropic pathway and a

collider. We then describe how instrument strength and validity can be assessed for an

MVMR analysis in the single-sample setting, and develop tests to assess these assumptions

in the popular two-sample summary data setting. We illustrate our methods using data from

UK Biobank to estimate the effect of education and cognitive ability on body mass index.

Conclusion: MVMR analysis consistently estimates the direct causal effect of an expo-

sure, or exposures, of interest and provides a powerful tool for determining causal

effects in a wide range of scenarios with either individual- or summary-level data.

Key words: Mendelian randomization, two-sample Mendelian randomization, multivariable Mendelian randomiza-

tion, Cochran’s Q statistic, instrument strength, instrument validity

Key Messages

• Multivariable Mendelian randomization (MVMR) has been introduced as a technique for estimating the causal effect

of multiple exposure variables on a health outcome with two-sample summary data. We build on this work by clarify-

ing how MVMR should be applied with individual-level data and two-sample summary data, in order to conform with

established econometric theory for multivariable two-stage least-squares analysis.
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Introduction

In many scenarios in which we wish to estimate the causal

effect of an exposure X on an outcome Y, a conventional

regression analysis can be misleading, as the observational

association between the two variables could easily be af-

fected by unobserved confounding. If genetic variants—

usually single-nucleotide polymorphisms (SNPs)—are

available that reliably predict the exposure variable but do

not have an effect on the outcome through any other path-

way, then they are valid instrumental variables (IVs) and

can be used in a Mendelian randomization (MR) analysis

to obtain unconfounded estimates of the effect of the expo-

sure on the outcome, as illustrated in Figure 1.

In many scenarios, we may wish to estimate the effect

of multiple exposures on the outcome using MR analysis,

e.g. because we believe these exposures to be closely re-

lated or because we believe one exposure may mediate the

relationship between the exposure of primary interest and

the outcome. This can be done with multivariable MR

(MVMR) in which a set of genetic variants is used to pre-

dict a set of exposure variables. However, careful consider-

ation needs to be given in such an analysis to exactly what

relationship is being estimated and how the IV assump-

tions required for MR analysis apply to a MVMR analysis.

In this paper, we build on previous work developing

MVMR methods with two-sample summary-level data1,2

and fully explain how MVMR can be implemented with ei-

ther individual-level or two-sample summary-level data,

exactly what is being estimated in a MVMR analysis and

how the IV assumptions required for MR analysis translate

to MVMR analysis. We describe existing tests that can be

used to test the IV assumptions with individual-level data

and add to the previous literature on MVMR by develop-

ing new methods to identify potential violations of the IV

assumptions with two-sample summary-level data.

MR

To state the IV assumptions more formally with reference

to Figure 1, for a single SNP Gj to be a valid IV, it must be:

IV1: associated with the exposure X (the ‘relevance’

assumption);

IV2: independent of the outcome Y given the exposure

X (the ‘exclusion restriction’); and

IV3: independent of all (observed or unobserved) con-

founders of X and Y, as represented by U (the

‘exchangeability’ assumption);

If IV1–IV3 are satisfied for a set of SNPs

G ¼ G1; . . . ;GLð Þ, then traditional IV methods can be

employed to reliably test for a causal effect of X on Y using

G, X and Y alone, without any attempt to adjust for U at

all. For example, suppose the variables G, X, U and Y are

linked via the following models:

Y ¼ b0 þ bXþU þ vy (1)

• Instrument strength and validity should be assessed in the single-sample MVMR setting using the Sanderson–

Windmeijer F-statistic and the Sargan test.

• We develop a generalized version of Cochran’s Q statistic to test for instrument strength and validity in the two-

sample summary data setting. However, these tests require knowledge of the covariance between the effects of the

genetic variants on each exposure.

• If the covariance between the effect of the genetic variants on each exposure can be either: (i) estimated from individ-

ual data, (ii) assumed to be zero or (ii) fixed at zero by using non-overlapping samples for each exposure genome-

wide association study (GWAS), then our proposed summary data Q statistics will give a good approximation of the

true (individual-level data) result.

• The causal effect estimated by Mendelian randomization (MR) and MVMR can differ. MR estimates the total causal

effect of the exposure on the outcome, whereas MVMR estimates the direct causal effect of each exposure on the

outcome.

Figure 1. Hypothesized relationship between genetic variant(s) G, modi-

fiable exposures, X1, X2 and outcome Y in the presence of unobserved

confounder U. Bi-directional arrows represent possible violations of the

IV assumptions induced by X2 that are explored in this paper.

714 International Journal of Epidemiology, 2019, Vol. 48, No. 3



X ¼ p0 þ pGþU þ vx: (2)

Here, vx and vy represent independent error terms, p rep-

resents the parameter vector p1; . . . ; pL and b is the true

causal effect of X on Y we wish to estimate. We will

assume throughout this paper that G1; . . . ;GLð Þ are mutu-

ally uncorrelated (by design). A naı̈ve regression of Y on X

will not yield a consistent estimate for b because the

explanatory variable in the regression, X, is correlated

with U. However, two-stage least-squares (TSLS) estima-

tion, performed by regressing Y instead on X̂—the predicted

value of X from a regression of X on G – will yield a consis-

tent estimate for b, because X̂ is independent of U.3,4

TSLS relies on individual-level data, but the sharing

of such data is often impractical. In recent years, it has be-

come much more common to attempt MR analyses using

summary data estimates of SNP–exposure and SNP–out-

come associations gleaned from two independent but ho-

mogeneous study populations. The SNPs in question are

usually identified as genome-wide significant ‘hits’ in dis-

tinct genomic regions via a genome-wide association study

(GWAS) for the exposure. This is referred to as ‘two-sam-

ple summary data MR’.

Let pj and Cj represent the true association for SNP Gj

in G with the exposure and the outcome, respectively.

From Equations (1) and (2), we can link the j’th SNP-

outcome association to the j’th SNP–exposure association

via the model

Ĉj ¼ bp̂j: (3)

It follows that the Wald estimator b̂j ¼
Ĉ j

p̂ j
is a consistent

estimate for b5,6 where Ĉj and p̂j are estimates from OLS

estimation of

Y ¼ C0 þ CjGj þ �y;j

and

X ¼ p0 þ pjGj þ �X;j

When the SNPs are uncorrelated, taking an inverse vari-

ance weighted (IVW) average of the ratio estimates will

yield an overall estimate for b, b̂IVW , that closely approxi-

mates the TSLS estimate that would have been obtained if

individual-level data were available.7

Detecting ‘weak’ instruments and ‘invalid’

instruments in MR

If assumptions IV1–IV3 are fulfilled for all SNPs in G, and

linear Equations (1) and (2) hold, then either a TSLS or

IVW analysis (with uncorrelated SNPs) will consistently es-

timate the causal effect.8–10 In order to satisfy IV1, the

SNPs in G should strongly predict the exposure X. This

can be quantified using the F-statistic from the first stage

regression of X on G. Using instruments that are jointly

only weakly associated with the exposure (i.e. which have

a small F-statistic) will result in weak-instrument bias.11

Second, SNPs should not exert a direct effect on Y, i.e.

they should not affect Y other than through X. Any such

effect would represent a violation of IV2. Horizontal plei-

otropy, where the genetic variants used as instruments

have an effect on the outcome that is not through the expo-

sure of interest, is a violation of the exclusion restriction

and could easily be responsible for such a violation in the

MR setting.10,12–14 The SNPs should also not be con-

founded by any variables that also influence the outcome.

Any confounding of this nature would be a violation of

assumption IV3. A violation of either assumptions IV2 or

IV3 is likely to lead to bias and potentially erroneous con-

clusions in both the TSLS and IVW estimates.4 The pres-

ence of potential pleiotropic effects can be evaluated using

the Sargan test15,16 using individual-level data and

Cochran’s Q statistic17–19 using summary data. The causes

and consequences of pleiotropy in MR are described in de-

tail elsewhere.1,9,10,13,14,20

In addition to assumptions IV1–IV3, there are additional

assumptions and considerations that apply to all instrumen-

tal variable estimation, including MR and MVMR. These

included the assumptions of linearity and homogeneity that

are in many settings required for obtaining a point estimate

of the causal effect. However, if this assumption is violated,

the causal null will still be respected and it will still be possi-

ble to identify whether the exposures are causally associated

with the outcome.21–23 Throughout this analysis, we assume

linearity of the relationship between the exposures and the

outcome although, if this assumption did not hold, the same

issues would apply to MVMR as apply in MR analysis,

which are discussed in detail elsewhere.24,25

MVMR

MR can be extended to estimate the effect of multiple ex-

posure variables on an outcome1 and is particularly useful

in cases where a standard MR analysis would fail due to vi-

olation of assumptions IV2 and IV3. It is also useful in

cases where two or more correlated exposures are of inter-

est and may help to understand whether both exposures

exert a causal effect on the outcome, or whether one in fact

mediates the effect of the other on the outcome.26,27

MVMR requires a set of SNPs, G, that are associated with

the exposure variables but do not affect the outcome other

than through these variables. In the same way as standard
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(single-variable) MR, these SNPs can be used to predict

each of the exposure variables in the model and these pre-

dicted values can be used to estimate the effect of the expo-

sures on the outcome in a multivariable regression

analysis. The setup for MVMR is illustrated for an analysis

involving two exposure variables (X1 and X2) in Figure 2.

The arrows linking X1 with X2 and X2 with Y have been

left bi-directional to acknowledge the fact that many un-

derlying causal relationships are possible, i.e. they could

point in either direction or be completely absent. Indeed,

many of these options will be subsequently explored.

Although it is the simplest possible MVMR setting, two

exposures suffice to illustrate all the scenarios and ideas de-

scribed in this paper. From Figure 2, we can write the fol-

lowing general model linking Y, X1, X2 and U:

Y ¼ b0 þ b1X1 þ b2X2 þU þ vy: (4)

For example, suppose that X1 and X2 are in fact inde-

pendent given G (so there is no arrow in Figure 2 between

X1 and X2) and X2 affects Y independently of X1 (so that

there is a direct arrow from X2 to Y). If true, then

Equations (5) and (6) for X1 and X2 would, jointly with

Equation (4), describe the data:

X1 ¼ p01 þ p1GþU þ vx1
(5)

X2 ¼ p02 þ p2GþU þ vx2
: (6)

The purpose of an MVMR analysis is to determine the

direct causal effect of both X1 and X2 on the outcome Y,

when conditioned on one another. Without loss of general-

ity, we will focus primarily on the effect of X1 (and the pa-

rameter b1Þ with the direct effect of X2 on Y denoted by

b2 being of secondary importance.

With individual-level data, TSLS can be implemented

with multiple exposure variables, regressing each exposure

on the full set of SNPs to yield genetically predicted

estimates for X1 and X2. The outcome Y can then be

regressed on these predicted estimates for X1 and X2

jointly to obtain consistent estimates of b1 and b2. This can

be conducted by simply using the ivreg2 command in Stata

or ivpack in R.

In the two-sample summary data setting, Burgess

et al.1,2 show how MVMR can be implemented using sum-

mary data estimates of the association between SNP j (out

of L) and the outcome, Ĉj; exposure X1, p̂1j; and exposure

X2, p̂2j, by fitting the following model:

Ĉj ¼ b1p̂1;j þ b2p̂2;j þ �j: (7)

This is a straightforward generalization of the IVW esti-

mation framework.

Important considerations

To conduct an MVMR analysis, it is necessary to have at

least as many genetic instruments as there are exposures to

be instrumented in the model; this is true regardless of

whether single-sample or two-sample summary data are

used. It is possible to include genetic instruments that are

associated with more than one exposure variable, provid-

ing all of those exposure variables are included in the esti-

mation. Instruments must not, however, exert a direct

effect on the outcome, except through the included expo-

sures. There is no benefit to excluding instruments that are

only strongly associated with one exposure, as this will

lead to a loss of precision in the estimates obtained. This

also avoids any potential bias that could arise due to select-

ing instruments based on their strength.11

What quantities do MR and MVMR
estimate?

MR and MVMR target different causal effects of the expo-

sure on the outcome. In general, MR estimates the total ef-

fect of the exposure on the outcome, whereas MVMR

estimates the direct effect of each exposure on the outcome.

For example, if Figure 3 describes the truth, the total ef-

fect of exposure X1 on the outcome is the effect of X1 on

the outcome Y directly plus the effect of X1 on Y via X2,

and is equal to b1 þ ab2. The direct effect of the exposure

X1on the outcome Y is the effect X1 has on Y not via any

other exposure variables included, and so is equal to b1:

Whether or not these effects differ in general depends on

the underlying relationship between the exposures and be-

tween each exposure and the outcome. If there is no effect

of X1 on X2 or of X2 on Y, i.e. either a or b2 is equal to

zero, these effects will be the same.

Figure 2. Hypothesized relationship between genetic variant(s) G, modi-

fiable exposures, X1, X2 and outcome Y in the presence of unobserved

confounder U. Bi-directional arrows represent possible violations of the

IV assumptions induced by X2 that are explored in this paper.
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To highlight the potential differences between MR and

MVMR, and the potential benefits of MVMR, we now

consider the application of MVMR to four different sce-

narios that are commonly encountered, or at least sus-

pected, in epidemiological studies.

Each of these scenarios represents a situation in which

conventional univariable MR would produce consistent

results, given the correct set of SNPs, but in which MVMR

may estimate a different causal effect and provide benefits

when in fact some of the SNPs may have effects on more

than one exposure (thus making them invalid instruments

for a univariable MR analysis). In the first scenario, X2 is a

confounder of the relationship between X1 and Y, i.e. there

is a direct causal path from X2 to X1 and from X2 to Y.

Along with Equation (4), Equation (6) above and Equation

(8) below underlie the individual-level data:

X1 ¼ p1Gþ a2X2 þU þ vx1
: (8)

In the second scenario, X2 is a collider of the relationship

between X1 and Y, i.e. there is a direct causal path from X1

to X2 and from Y to X2. When an exposure and outcome

both influence another variable, controlling for that variable

in conventional analysis will introduce bias into the ob-

served association between the exposure and the outcome.28

This form of bias can also be understood as a form of selec-

tion bias that would occur if inclusion in the sample was de-

pendent on the value of X2.29 Along with Equation (4)

(with b2 set to 0), Equation (5) above and Equation (9) be-

low are used to generate the individual-level data:

X2 ¼ p2Gþ a1X1 þ cyY þU þ vx2
: (9)

In the third scenario, X2 is an independent pleiotropic

pathway from G to Y. This corresponds to the scenario

first described in the previous section. Along with

Equation (4), Equations (5) and (6) above are used to gen-

erate the individual-level data.

In the fourth scenario, X2 is a mediator of the relation-

ship between X1 and Y. Along with Equation (4),

Equation (5) above and Equation (10) below are used to

generate the individual-level data:

X2 ¼ p2Gþ a1X1 þU þ vx2
: (10)

Each of these scenarios is shown in Figure 4.

Simulations

Datasets of 10 000 individuals are simulated under all four

scenarios discussed using L ¼ 30 genetic variants. The var-

iants are assumed to be uncorrelated but, for added realism

and complexity, are further subdivided into three categories:

• 10 SNPs that only predict X1: G1 (with a non-zero p1

element but zero p2 element);

• 10 SNPs that only predict X2: G2 (with a non-zero p2

element but zero p1 element);

• 10 SNPs that predict X1 and X2: G12 (with non-zero p1

and p2 elements).

G therefore represents the complete vector

G1;G2;G12ð Þ. For each scenario, the causal parameter of

interest, b1, is set to 1.

Figure 3. Illustration of the direct effect and total effect of X1 on the out-

come Y.

Figure 4. Causal diagrams for scenarios 1–4. Models referred to are the

equations above that would give the same relationship between

the instruments, exposures and outcome. G1, G2 and G12 are subsets of

the full set of SNPs G that affect X1, X2 and both exposures, respectively.
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For each scenario, we estimate the causal effects b1 and

b2 of X1 and X2 on Y, using a range of estimation meth-

ods. With single-sample individual-level data, we

implemented:

• OLS, both for X1 and X2 individually (i.e. univariable

regressions) and together (i.e. a multivariable

regression);

• MR for X1 and X2 individually, each time using all the

available SNPs as instruments;

• MVMR including both X1 and X2 in the same analysis;

• MR for X1 and X2 individually using only the SNPs that

are valid instruments for that exposure (G1 and G2;

respectively).

With two-sample summary-level data, we implemented:

• MR for X1 and X2 individually using all of the instru-

ments available;

• MVMR including both X1 and X2;

• MR for X1 and X2 individually using only the SNPs that

are valid instruments for the exposure.

All estimation methods are described in Supplementary

Table 1, available as Supplementary data at IJE online. In

all of the scenarios considered, the exposure variables are

strongly predicted by the instruments and the instruments

have no additional pleiotropic effects on the outcome,

other than through the exposures included in the model.

Results

Focusing our attention on exposure X1, the results from

these simulations show that MVMR always gives an unbi-

ased estimate of the direct effect of X1 on the outcome. In

the hypothetical case in which only the valid SNPs for X1

(G1) are used as instruments in a single-variable MR, the

estimated effect of X1 on Y is the total effect of a change in

X1 on the outcome. Whether the direct or total effect is of

more interest to practitioners will depend on the particular

situation being considered. In many of the scenarios ex-

plored, the direct effect equals the total causal effect; how-

ever, when X2 is a mediator of the relationship between X1

and the outcome, the direct and total effects of X1 may be

substantially different. In this scenario, MVMR is not a

form of mediation analysis, but instead estimates the direct

effect of the exposure on the outcome that does not act via

the mediator. The results from the simulations are given in

Supplementary Table 2, available as Supplementary data

at IJE online, and a summary table of what is estimated by

each method in each scenario is given in Table 1.

When conducting the univariable MR estimation with a

subset of the SNPs in G, we have, for illustration, assumed

‘oracle’ knowledge on which SNPs are valid instruments

for each exposure. This will, of course, not be possible in

practice For example, in Scenario 1, if we select SNPs be-

cause they are associated with a X1, we will select the en-

tire set G, but this will include the subset ðG2;G12), which

exerts pleiotropic effects on the outcome Y and thus biases

the analysis. Table 1 indeed shows that, when all SNPs in

G are used for a univariable MR analysis, it will deliver a

biased and inconsistent estimate of the total causal effect

of X1 on Y in Scenarios 1, 3 and 4. MVMR, by contrast,

will then provide a consistent estimator of the direct effect

of the exposure on the outcome; the consistency of IV

analysis under a range of scenarios that include those dis-

cussed here has been proved elsewhere.3,4,30 These simula-

tion results also highlight that MVMR does not introduce

bias into the results when X2 is a collider of the relation-

ship between X1 and Y. This is because the predicted value

of X2, X̂2, which is not dependent on the outcome, is used

in the analysis. Of course, adjusting directly for X2, rather

than X̂2, would bias the analysis. This is an important ben-

efit of MVMR.

Table 1. Summary of estimated effects for b1

Scenario/which estimand is targeted?

Method I 2 3 4

Individual-level data

OLS x x x x

Univariate MR x Direct/total x x

MVMR Direct/total Direct/total Direct/total Direct

Univariate MR—subset of SNPS Direct/total Direct/total Direct/total Total

Two-sample summary data analysis

Univariate MR x Direct/total x x

MVMR Direct/total Direct/total Direct/total Direct

Univariate MR—subset of SNPS Direct/total Direct/total Direct/total Total

When each method of estimation estimates the direct and total effects for b1 in each of the scenarios considered.

An ‘x’ represents a biased method of estimation.
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Testing the assumptions of MVMR

In the simulations above, we assumed, for clarity, that the

instruments were both strong and valid for the purposes of

an MVMR analysis. However, violation of these assump-

tions can give misleading results in practice, so it is neces-

sary to test these assumptions. We now describe how

instrument strength and validity can be scrutinized for an

MVMR analysis in the individual and two-sample sum-

mary data settings.

In addition to assumptions IV1–IV3, there are addi-

tional assumptions and considerations that apply to all in-

strumental variable estimation, including MR and

MVMR. These included the assumptions of linearity and

homogeneity, which is in many settings required for

obtaining a point estimate of the causal effect. Increasing

the number of exposures in two-sample MVMR will make

this a stronger assumption due to the increased number of

SNPs and exposures. When implementing MVMR analy-

sis, this limitation should be considered and weighed

against the benefits when deciding how many exposures to

include in the analysis. Another additional assumption,

particularly relevant to two-sample MVMR analysis, is

that all data are drawn from the same underlying popula-

tion. Throughout our analysis, we assume this to hold. The

requirement for and issues surrounding this assumption

are detailed elsewhere.31,32

The individual-level data MVMR setting

Instrument strength

In any MR analysis, the set of genetic instruments G must

be strong in order to avoid weak-instrument bias (assump-

tion IV1). In single-variable MR analysis, weak instru-

ments will bias the estimated results in the direction of the

observational estimate; however, in MVMR analysis, it is

not clear what direction the bias of the estimation result

for each exposure will take as a result of weak instru-

ments.33 It is therefore important to test the strength of the

instruments in any MVMR analysis; however, the assess-

ment of instrument strength is more complicated. It is nec-

essary for G to strongly predict both X1 and X2 (as

quantified by strong F-statistics), but not sufficient. In ad-

dition, G must also jointly predict both X1 and X2, i.e.

once the secondary exposure X2 has been predicted using

G, G must still be able to predict the primary exposure X1.

Figure 5 illustrates three scenarios (A–C) in which this may

not be the case, even when both exposures appear to be

strongly predicted individually by G and a fourth scenario

(D) in which both exposures are strongly predicted.

Joint strength can be assessed using the Sanderson–

Windmeijer conditional F-statistic,33 Fc, that is available

as part of ivreg2 in Stata. Fc is calculated in the following

manner:

• X2 is regressed on the full set of genetic instruments (and

any control variables included in the estimation) and the

predicted value of X2, X̂2, is calculated;

• X1 is then regressed on X̂2 (and any control variables) to

yield the TSLS estimate d̂ and the residual error terms

X1 � d̂X2 are saved;

• the errors are then regressed on the full set of instruments

(and any control variables); the conditional F-statistic is

obtained as the F-statistic for the effect of the instru-

ments in this regression;

• the conditional F-statistic must be adjusted for a degrees-

of-freedom correction, and can be compared with the

conventional weak-instrument critical values.34

For multiple exposure variables, the first step is re-

peated for each of the exposures and all of these predicted

values are included in the regression in the second step.

This F-statistic can be compared with the standard critical

values for weak instruments; therefore, if the conditional

F-statistic for all of the exposure variables is larger than

the rule-of-thumb value of 10, then the instruments can be

considered adequately strong for the purposes of MVMR.

Instrument validity

If no pleiotropy exists amongst the genetic variants, then

each one should identify the same causal parameter. This

can be evaluated using the Sargan test.15 Specifically, it

tests whether the instruments can explain any of the varia-

tion in the outcomes that has not been explained by the

Figure 5. Potential setups of instruments and exposures. In (A) and (B),

the exposures are individually strongly predicted but are not jointly pre-

dicted. In (C), the exposures are individually strongly predicted but

weakly predicted in a joint sense. In (D), the exposures are individually

and jointly strongly predicted. Specifically: (A) G predicts X1, which is a

predictor of X2. (B) G predicts X2, which is a predictor of X1. (C) G pre-

dicts X1 and X2, which are highly correlated. (D) G predicts X1 and X2,

which are uncorrelated (given G).
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value of the exposure variables. It is calculated by the fol-

lowing steps:

• regress the outcome Y on the exposures using TSLS to

yield causal estimates b̂1 and b̂2;

• calculate the residual error term Y� ðb̂1X1 þ b̂2X2Þ and

then regress the residuals on the full set of instruments;

the Sargan test is then the sample size times the R2 of this

regression;

• evaluating with the Sargan statistic with respect to a v2

distribution with degrees of freedom equal to the number

of instruments minus the number of predicted exposure

variables (i.e. the null hypothesis that all of the instru-

ments are valid).4

This test is available as part of the ivreg2 command in

Stata and the ivpack package in R. In order to conduct this

test, the model must be over-identified, i.e. there must be

more instruments than exposure variables (so that the

degrees of freedom of the v2 test is positive).35 This

‘global’ test does not give any indication as to which of the

genetic instruments are invalid if the test rejects the null.

However, alternative methods of estimation can be used to

estimate the causal effects as long as at least 50% of the

SNPs do not have a pleiotropic effect on the outcome.36,37

The two-sample summary data setting

Assessment of instrument validity and strength is appar-

ently yet to be described in the two-sample summary data

setting that is relevant to the majority of contemporary

MR studies, and consequently it is not implemented in any

standard software. We therefore describe the necessary

procedures in fine detail so that they can be confidently

implemented by others.

Assessing instrument strength: heterogeneity is ‘good’

Suppose that all of the genetic instruments predict both ex-

posure variables, so that Equations (4), (5) and (6) hold,

but there are at least two elements of p1and p2 in

Equations (5) and (6) that differ. If true, then the model

will be at least exactly identified, i.e. there will be at least

as many independent genetic instruments (i.e. two) as there

are exposure variables to be instrumented. This implies

that

X1 ¼ d0 þ dX2 þ u1:
X2 ¼ p0 þ p2Gþ u2

(11)

must be over-identified (or equivalently miss-specified), be-

cause X2 cannot then be simply a scalar multiple, d, of X1.

Therefore, we can test for under-identification in our

estimation model by testing for over-identification in

Equation (11) using the Sargan test as described above.

The equivalence of this test with the Sanderson–

Windmeijer approach has been shown formally else-

where.38 The null of this Sargan test is that of under-

identification.

Extending this to two-sample analysis, p̂1;j ¼
dp̂2;j þ e1;j is analogous to Equation (11) estimated by IV

using individual-level data with X̂2 predicted using G;

therefore, it should be possible to test for under-

identification in two-sample MVMR estimation by testing

for over-identification in the model p̂1;j ¼ dp̂2;j þ v. We

recommend that this test is conducted using a modified

version of Cochran’s Q statistic, as shown in Equation (12)

below:

Qx1
¼
XL

j¼1

1

r2
x1j

 !
p̂1j � d̂p̂2j

� �2

: (12)

The variance term for Qx1
, r2

x1j ¼ r2
1j þ d̂

2
r2

2j � 2d̂r12j,

where r2
1j is the variance of p̂1;j, r2

2j is the variance of p̂2;j,

r12j is the covariance of p̂1;j and p̂2;j, and d̂ is an efficient

estimator for d. Estimation of the r2
x1j terms in practice

depends on the type of model used to obtain p̂1;j and p̂2;j.

When each exposure is regressed on the entire set of SNPs si-

multaneously (i.e. via multivariable regressions with an

intercept):

r2
1j ¼

GTGð Þ�1

jj

n

Xn

i¼1

v̂2
1i; r2

2j ¼
GTGð Þ�1

jj

n

Xn

i¼1

v̂2
2i and

r12j ¼
GTGð Þ�1

jj

n

Xn

i¼1

v̂1i v̂2i;

where n is the number of subjects and v̂1i; v̂2ið Þ are the esti-

mated residuals from these regressions. If p̂1j and p̂2j are

obtained separately (i.e. via univariable regressions with an

intercept), then the error terms are obtained from the

equivalent expressions are

r2
1j ¼

GT
j Gj

� ��1

n

Xn

i¼1

v̂2
1ij; r2

2j ¼
GT

j Gj

� ��1

n

Xn

i¼1

v̂2
2ij and

r12j ¼
GT

j Gj

� ��1

n

Xn

i¼1

v̂1ij v̂2ij:

Respectively, v̂1ij and v̂2ij are the estimated residuals

from the j’th regression.

Under the null hypothesis that the instruments do not con-

tain enough information to predict both exposure variables,
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Qx1
will be asymptotically v2

L�1 distributed when d is esti-

mated using an asymptotically efficient estimator, where L is

the number of instruments. Rejection of the null hypothesis

(i.e. detection of ‘heterogeneity’) indicates that the model we

wish to estimate is identified for X1.

All the above can be repeated for X2 by swapping the roles

of p̂1and p̂2 and calculating an equivalent Q statistic for

X2, Qx2
say. If both Qx1

and Qx2
are larger than the chosen

critical value, then the null hypothesis of under-identification

can be rejected and the test suggests that the instruments can

predict variation in both exposures. Table 2 shows the distri-

bution of Qx1
and Qx2

for four different scenarios with two

exposure variables and L ¼ 100SNPs. X1 and X2 are both

functions of a set of SNPs and independent confounding vari-

ables. In the first simulation, the model has been set up as

given in Scenario 3 in Figure 4 and in Figure 5D with each of

the exposure variables predicted by a set of SNPs and a com-

mon confounding variable. This model is identified as both

exposure variables can be predicted by the set of instruments.

In the second and third simulations, the model has been set

up in the same way but with no effect of the SNPs on either

X1 or X2, respectively, i.e. the model is under-identified with

one of the exposure variables not being predicted by the

instruments in each case. In the final simulation, the model

has been set up with the effect of the SNPs on the exposures

as given in Figure 5A and a common confounder. This setup

leads to neither exposure being predicted by the SNPs when

they are both included in an MVMR estimation, as the SNPs

in the model cannot predict both of the exposure variables

jointly. The results from these simulations show that this test

has the required distribution under the null hypothesis.

Testing instrument validity: heterogeneity is ‘bad’

Cochran’s Q statistic for the regression of interest has been

proposed as a method for identifying the presence of

invalid instruments (e.g. due to horizontal pleiotropy) in

two-sample summary data MR analysis, with a single ex-

posure.19 Specifically, if all instruments are valid IVs, and

the modelling assumptions necessary for two-sample MR

are satisfied, then each genetic instrument should give the

same estimate of the effect of the exposure on the outcome.

Excessive heterogeneity in the causal-effect estimates

obtained by each SNP individually now becomes an indica-

tor of invalid instruments. We propose testing for invalid-

ity in two-sample summary data MVMR using an adjusted

version of the Cochran Q statistic given by:

QA ¼
XL

j¼1

1

r2
Aj

 !
Ĉj � b̂1p̂1j þ b̂2p̂2j

� �� �2

: (13)

Where r2
Aj ¼ r2

yj þ b̂
2

1r
2
1j þ b̂

2

2r
2
2j þ 2b̂1b̂2r12j. To clarify,

r2
yj is the variance of Ĉj, and b̂1 and b̂2 are efficient esti-

mates of b1 and b2 [e.g. as obtained from fitting Equation

(7)]. Under the null hypothesis that the genetic instruments

do not have pleiotropic effects on the outcome, QA is as-

ymptotically v2 distributed with ðL� 2Þ degrees of freedom.

The standard implementation of Cochran’s Q would merely

have a weighting of r2
yj, and is not therefore asymptotically

v2 distributed. It is a straightforward generalization of the

adjusted Q statistic recently proposed by Bowden et al. in

the univariable MR setting.18 Excessive heterogeneity in QA

therefore brings assumptions IV2 and IV3 into doubt.

Figure 6 shows the distribution of QA compared with

the standard Q statistic and a v2 distribution with 98

degrees of freedom for a model with two exposure varia-

bles and 100 genetic instruments. For simplicity, the esti-

mated effects of the SNPs on the exposures each have a

common variance of 0.02 and have a common covariance

of 0. QA is seen to have the correct distribution under the

null hypothesis of no pleiotropy in the model.

Table 2. The distribution of the modified Q statistic as a test for under-identification

Qx1
Qx2

Mean Std. dev Rej. rate (%) Mean Std. dev Rej. rate (%)

x1 strongly identified 1 953 018 26 441 100 1 952 738 247 541 100

x2 strongly identified

x1 unidentified 99.3 14.6 6.2 379 282 135 506 100

x2 strongly identified

x1 strongly identified 453 058 1 607 136 100 100.2 14.6 6.6

x2 unidentified

x1 strongly identified 100.2 14.6 6.6 100.2 14.6 6.6

x2 strongly identified

Jointly unidentified x1 ¼ dx2, d ¼ 1

N¼50 000. Repetitions¼ 1000, 100 SNPs as instruments. Rejection rates give the proportion of times each Q statistic is larger than the 95th percentile of a

Chi-squared distribution on 99 degrees of freedom (123.2).
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We suggest updating the two-sample causal estimates in

an iterative process using weights derived from the initial

estimates of the causal effects, which is referred to as ‘mod-

ified iterative’ weighting in Bowden et al.18 within the con-

text of a univariate MR analysis. Further work is required

to fully investigate the effect of this and to understand how

the fully analytical solution discussed in,18 which finds

that the causal estimate that directly minimizes an equiva-

lent Q statistic could be extended to the multivariable case

but, if done so, this could help to mitigate the effect of

weak-instrument bias.

Approximating Qx1; Qx2 and QA with incomplete

information

The covariance vector r12j that is necessary for correct

specification of Qx1; Qx2 and QA can only be calculated

from the individual participant data. If this information is

not available, one solution would be to ensure that r12j is

zero, by estimating the genetic associations with each ex-

posure and the outcome in separate samples. This would

correspond to a ‘three-sample’ summary data MR

analysis when two exposures constitute the MVMR

analysis.

Another pragmatic solution would be to assume that

each r12j term is zero. This will give a good approximation

for Qx1 and Qx2 whenever dr12j is small and for

QA whenever b̂1b̂2r12j is small.

Application to education, cognitive ability
and body mass index (BMI)

In this section, we apply the methods discussed above to in-

vestigate whether there is evidence for a causal effect of ed-

ucation and cognitive ability on BMI using data from UK

Biobank. Education and cognitive ability have both been

Figure 6. The distribution of the adjusted and standard Q statistics under the null hypothesis of no heterogeneity. 5000 repetitions, 100 SNPs. Here,

b1¼ b2¼ 1. r1j 2¼r2j2¼ 0.02, r12j¼ 0 for a.
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found to be associated with BMI, with higher levels of edu-

cation and cognitive ability being associated with lower

levels of BMI.39–42 However, there is also a high level of

correlation observed between completed education and

measured cognitive ability; therefore, it is not clear

whether, once this correlation has been controlled for,

both education and cognitive ability have a causal effect on

BMI.39

Data

UK Biobank recruited 502641 individuals aged 37–

73 years between 2006 and 2010 from across the UK.

Individuals were invited to a clinic where they answered a

questionnaire and interview about a range of health topics

and provided anthropomorphic measurements and gave

samples of blood, urine and saliva. This study has been de-

scribed in full previously.43

Individuals in UK Biobank were asked to report the

highest educational qualification they had obtained. For

each individual, we assigned an age at which they left edu-

cation based their reported qualification. A breakdown of

educational qualifications and associated ages across the

cohort is given in Supplementary Table 3, available as

Supplementary data at IJE online.

Cognitive ability was measured among a subset of the

UK Biobank participants as the number of correct answers

recorded in a series of 13 questions designed to measure

cognitive ability that where completed as part of the initial

clinic. The cognitive ability variable was then

standardized to have mean zero and variance 1. BMI was

calculated based on the height and weight of the

individuals in the sample. Throughout the analysis, we

analysed this variable on the natural log scale because of

its skewed distribution.

Analysis

We first conducted MR analyses for the effect of

education and cognitive ability on BMI separately

using single-variable MR. A single composite instrument

for education was created using the polygenic score of

74 SNPs from a recent GWAS of educational attainment.44

A single composite instrument for cognitive ability was cre-

ated using the polygenic score of 18 SNPs from a

recent GWAS of cognition.45 As this GWAS was

conducted using the interim release of UK Biobank, we re-

stricted our analysis to individuals not included in the in-

terim release.

We then conducted a multivariable MR analysis of the

effect of education and cognitive ability on BMI. This

analysis included both the composite instruments for edu-

cation and cognitive ability used in the single-variable MR

analyses.

The results from this analyses, along with a multivari-

able OLS regression of BMI on education and cognitive

ability, are given in Table 3. The OLS results show that

each extra year of education is associated with a decrease

in BMI. MR and MVMR results suggest a causal effect in

the same direction, but with a larger magnitude. The

results for cognitive ability are more mixed, with no associ-

ation seen in the OLS results, a negative total effect of cog-

nitive ability on BMI in the MR analysis and potentially a

positive direct effect of cognitive ability on BMI observed

Table 3. The effect of education and cognitive ability on BMI

OLS MR

Single variable Multivariable Single variable Multivariable

Age completed education Effect –0.008 –0.008 –0.028 –0.044

Std. error (0.0003) (0.0003) 0.005 0.013

95% CI [–0.0095, –0.0074] [–0.0085, –0.0074] [–0.0391, –0.0179] [–0.0704, –0.0187]

F-statistic 188.2 195.0

S-W F-statistic 35.7

Standardized cognitive ability score Effect –0.006 0.0001 0.048

Std. error (0.0007) (0.0007) 0.008 0.025

95% CI [–0.0078, –0.0051] [–0.0013, 0.0014] [–0.0380, –0.0082] [–0.001, –0.098]

F-statistic 542.2 309.7

S-W F-statistic 37.0

Dependent variable is log(BMI).

Estimates of the effect of education and cognitive ability on BMI from OLS, single-variable MR and multivariable MR analysis of individual-level data.

All regressions also include a full set of control variables: age, gender, income and 10 genetic principal components.

Instruments are constructed from GWAS scores for education and cognitive ability. The regressions are weighted so that individuals who left school at 15 are

given an 80% up-weighting. All non-European and related individuals have been excluded from the analysis. Total sample size included in all regressions: 74 309.
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in the MVMR analysis. Our empirical and theoretical in-

vestigation helps to clarify why the the high level of corre-

lation between education and cognitive ability would lead

to the conclusion that there is a negative effect of cognitive

ability on BMI in MR analysis. The MVMR results show

that, if anything, the direct effect of increasing cogntive

ability is to increase BMI. These results highlight the po-

tential benefits of MVMR. However, before giving much

credence to this result, it is necessary to assess the strength

of our SNPs to jointly predict education and cognitive

ability.

Testing the instrument strength in the single-

sample setting

As a measure of the strength of the instruments, we calculate

the standard F-statistic for both education and cognitive abil-

ity and the Sanderson–Windmeijer partial F-statstic33 for the

multivariable MR analysis. As all F-statistics are much

larger than the rule-of-thumb cut-off of 10, we are reassured

that the instruments are not individually weak. However, the

partial F-statistic for both education and cognitive ability is

significantly lower, showing that the power of the instru-

ments to predict both variables simultanously is greatly

reduced.

The Sargan test for invalid instruments can only be cal-

culated for estimation models with more instruments than

exposure variables. In this estimation, we have two expo-

sures and two instruments and so it is not possible to calcu-

late the Sargan statistic.

Two-sample MVMR

To illustrate two-sample MVMR, we randomly divided the

sample used for the individual analysis into three equally

sized groups. For each SNP used in the polygenic score, we

then calculated its effect on log(BMI), education and cogni-

tive ability using different parts of the sample. The results

were then used to conduct a two-sample MVMR analysis.

The results are given in Supplementary Table 4, available

as Supplementary data at IJE online. They show that in-

creased education has a direct effect that decreases BMI and

cognitive ability has no direct effect on BMI. The results are

in line with those obtained from the individual-level

analysis.

Testing instrument strength in the two-sample

setting

To test for weak instruments in this analysis, we have calcu-

lated the weak-instrument Q statistics for education and

cognitive ability. The Qedu statistic for education is 1724.4.

The Qcog statistic for cognitive ability is 1488.8. The critical

value for a v2 distribution with 88 degrees of freedom at the

5% level is 110.9. Therefore, we reject the null hypothesis

that the SNPs do not explain any of the variation in the

exposures education and cognitive ability in this two-sample

analysis and can conclude that these SNPs can predict both

education and cognitive ability in the data.

Testing for pleiotropy in the two-sample setting

To illustrate the two tests for pleiotropy discussed earlier, we

report the QA statistic for MVMR. The value of QA for this

regression is 129.5. The critical value for a v2 distribution with

87 degrees of freedom is 109.77. Therefore, the null hypothesis

that there is no heterogeneity is rejected for this value of QA.

Multivariable MR Egger regression

An alternative procedure that has been recently proposed

to adjust for pleiotropy beyond that explainable by geneti-

cally predictable exposures (e.g. X1 and X2) is a

multivariable MR Egger regression.46 This is a natural ex-

tension of the original MR Egger approach1 and is calcu-

lated by fitting the two-sample MVMR model with a

constant included:

Ĉj ¼ b0 þ b1p̂1j þ b2p̂2j þUYj þ vYj

If the constant is different from zero, this suggests that

additional pleiotropy is meaningfully biasing the analysis.

However, a generalization of the InSIDE assumption is re-

quired in order for it to deliver unbiased causal estimates.

These are described in detail elsewhere.1

The two-sample results were used to fit multivariable MR

Egger regression, the results of which are given in

Supplementary Table 5, available as Supplementary data at

IJE online. Its intercept parameter is estimated to be small,

and consequently the estimated effects of the exposures do

not differ from those in the two-sample MVMR estimation.

This supports the suggestion that the SNPs do not exert a di-

rect effect on BMI apart from through education or cognitive

ability. As MR Egger is dependent on the orientation of the

SNP–exposure associations, we repeated this analysis with

the associations orientated so that the SNP education associa-

tions where all positive and then with the SNP cognitive abil-

ity associations all positive. These changes had no substantive

effect on the results obtained.

The difference between the Q statistic and multivariable

MR Egger estimation suggests an inconsistency between

these two tests, although this may have arisen due to a

high level of variation in the effect of the SNPs on each ex-

posure leading to a higher Q statistic. This is supported by
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Figure 7A and B, which give individual MR plots for each

exposure and show that there is a large amount of varia-

tion of the SNPs on each of the exposures. Repeating this

analysis with the outlying SNP excluded makes no substan-

tive difference to the results obtained.

The MVMR Egger analysis was repeated using the ef-

fect of each SNP on education, cognitive ability and BMI

taken from GWAS estimates.44,45,47 The magnitude of the

estimated effects differ in this analysis, as the outcome var-

iable is BMI rather than the natural log of BMI, although

these results also show no pleiotropic effect of the SNPs on

the outcome and a negative effect of higher education on

BMI. Results from this analysis are given in Supplementary

Table 5, available as Supplementary data at IJE online.

Discussion

In this paper, we have attempted to explain the principled

application and interpretation of instrumental variable

analysis to the epidemiological setting with multiple expo-

sures. We first focused on the individual data setting, for

which it is possible to borrow well-established methods

(and related software) from the econometrics literature.

We then considered the two-sample setting and built upon

previous research in this area by developing new tests for

assessing the validity and relevance of the genetic instru-

ments. In particular, we propose two new tests:

• modified Q statistics (in our case Qx1 and Qx2) for in-

strument relevance that detect ‘good’ heterogeneity if a

set of SNPs can jointly and reliably predict all intermedi-

ate exposures of interest;

• a modified Q statistic, QA for instrument validity that

detects ‘bad’ heterogeneity if a set of SNPs contains inva-

lid instruments.

We finally illustrated the application of MVMR using in-

dividual- and summary-level data to estimate the effect of

education and cognitive ability on BMI. The results from

this analysis show that increasing education leads to lower

BMI and the size of this effect increases when cognitive abil-

ity is controlled for. Comparing the single-exposure MR

analysis results (with all SNPs that affect educational attain-

ment excluded) with the MVMR results for cognitive ability

shows a large change in the size and direction of the effect.

This result suggests that education is a mediator of the rela-

tionship between cognitive ability and BMI and any direct

effect of cognitive ability on BMI is minimal.

The methods we describe can be used to estimate the

effect of multiple related exposures on an outcome using

either individual-level or summary-level data. Although we

have focused on the case of two exposures for ease of

explanation, all of these methods can be easily applied to

scenarios with three or more exposures. An advantage of

MVMR analysis is that SNPs that are thought to poten-

tially affect multiple exposure variables, or where it is not

clear exactly which exposure they affect, can be included

when estimating the effects of the exposures on the out-

come. This makes MVMR particularly useful when the

exposures are closely related or one (or more) is thought to

be a potential pleiotropic pathway from the SNPs to the

outcome. MVMR will also produce consistent estimates

when there is measurement error in any of the exposure

variables and therefore is a useful method of analysis when

multiple exposure variables are thought to be subject to

measurement error.

As with all MR analysis, it is important to ensure that the

IV assumptions are satisfied. Here, we explain how the IV

assumptions apply to a MVMR analysis. We describe exist-

ing tests that can be used to test the assumptions in

individual-level data and propose tests that can be used with

Figure 7. Left: MR Egger plot for the association between educational attainment and BMI. Right: MR Egger plot for the association between cognitive

ability and BMI. All SNPs that affect either education or cognitive ability are included.
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two-sample summary-level data. These new tests are a key

strength of this work, as MVMR cannot be effectively used

as part of the tools a researcher has available for analysis un-

less the potential pitfalls of the analysis are well understood.

Our applied results highlight the importance of considering

the IV assumptions in the context of the particular analysis

being conducted as, even when the instruments appear to be

very strong for each of the exposures individually, this does

not guarantee that they will be equally as strong for the expo-

sures when estimated jointly in a MVMR model. For exam-

ple, the F-statistics decrease from 195 and 310 to 36 and 37

for educational attainment and cognitive ability, respectively.

A practical limitation of the new tests we develop for

two-sample summary data MVMR is the reliance on knowl-

edge of the covariance between the effect of the SNP on each

exposure. These results are not available in conventional

GWAS results, and it would be infeasible to calculate them

in advance for every possible combination of exposure vari-

able that could be included in a MVMR model.

Unfortunately, our work shows that this information is

strictly needed for valid inference. In order to conduct these

tests in summary-level data, we therefore have to make a

choice about how to treat these missing pieces of informa-

tion. If the data were available, it can be directly calculated

from the individual -level data for the particular MVMR

study being conducted. Alternatively, it could be assumed to

be zero, or set to zero by using non-overlapping GWAS stud-

ies for each exposure, as the standard error of the estimated

SNP effects will not correlate across different samples. This

is an important limitation of the results given here for testing

the assumptions of two-sample summary data MVMR.

Another weakness of the instrument relevance test we de-

velop is that this is a test for whether the SNPs can condition-

ally explain any of the variation in the exposure variables,

rather than being a more usual weak-instrument test, such as

the rule of thumb of F being greater than 10 for a univariable

MR analysis or the Sanderson–Windmeijer conditional F-

statistic for IV analysis with individual-level data. Extending

this test to weak instrument is an area for future work.

Supplementary data

Supplementary data are available at IJE online.
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