
����������
�������

Citation: Rong, P.; Zhang, F.; Yang,

Q.; Chen, H.; Shi, Q.; Zhong, S.; Chen,

Z.; Wang, H. Processing Laue

Microdiffraction Raster Scanning

Patterns with Machine Learning

Algorithms: A Case Study with a

Fatigued Polycrystalline Sample.

Materials 2022, 15, 1502. https://

doi.org/10.3390/ma15041502

Academic Editors: Stefan G. Stanciu

and Alisa Stratulat

Received: 25 November 2021

Accepted: 9 February 2022

Published: 17 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Processing Laue Microdiffraction Raster Scanning Patterns with
Machine Learning Algorithms: A Case Study with a Fatigued
Polycrystalline Sample
Peng Rong 1, Fengguo Zhang 2,3,4,*, Qing Yang 2, Han Chen 2, Qiwei Shi 2,4 , Shengyi Zhong 2,4, Zhe Chen 2

and Haowei Wang 2,3

1 Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu 610073, China; rongpeng-love@163.com
2 State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China;

sjtuheyq@sjtu.edu.cn (Q.Y.); sjtuch23@sjtu.edu.cn (H.C.); sqw@sjtu.edu.cn (Q.S.);
shengyi.zhong@sjtu.edu.cn (S.Z.); zhe.chen@sjtu.edu.cn (Z.C.); hwwang@sjtu.edu.cn (H.W.)

3 Anhui Province Engineering Research Center of Aluminium Matrix Composites, Huaibei 235000, China
4 SJTU-ParisTech Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
* Correspondence: fg.zhang@sjtu.edu.cn

Abstract: The massive amount of diffraction images collected in a raster scan of Laue microdiffraction
calls for a fast treatment with little if any human intervention. The conventional method that has
to index diffraction patterns one-by-one is laborious and can hardly give real-time feedback. In this
work, a data mining protocol based on unsupervised machine learning algorithm was proposed
to have a fast segmentation of the scanning grid from the diffraction patterns without indexation.
The sole parameter that had to be set was the so-called “distance threshold” that determined the
number of segments. A statistics-oriented criterion was proposed to set the “distance threshold”.
The protocol was applied to the scanning images of a fatigued polycrystalline sample and identified
several regions that deserved further study with, for instance, differential aperture X-ray microscopy.
The proposed data mining protocol is promising to help economize the limited beamtime.

Keywords: Laue microdiffraction; unsupervised machine learning; fatigued microstructure

1. Introduction

Laue diffraction, that may occur when a polychromatic X-ray beam illuminated a
crystal, was first discovered in 1912, and has unveiled both the electromagnetic nature of
X-ray and the periodic ordering of atoms in crystal [1]. Thanks to the polychromaticity
of the employed X-ray, multiple diffraction peaks can be recorded in a single exposure
without any rotation, thereby excluding the ambiguity of the illuminated volume [2]. With
the development of polychromatic beam focusing optics, notably Kirkpatrick–Baez mirrors,
micron-sized high-brilliance polychromatic X-ray beam can be produced at synchrotron
radiation sources and directed to probe inside materials with submicrometric spatial
resolutions, i.e., Laue microdiffraction [3]. Compared to the electron backscatter diffraction
(EBSD) technique, Laue microdiffraction technique functions by raster scanning the sample
to generate the lattice orientation and distortion maps from the one-by-one analysis of
the diffraction pattern emanating from each scanned spot [4–6]. The two techniques are
comparable [7] and complementary to each other [8]. It is generally accepted that EBSD
has an edge on finer spatial resolution of nanoscale, whilst Laue microdiffraction can
have a much better accuracy on the lattice orientation and distortion with an attainable
order of 10−9 [9].

A salient feature of Laue microdiffraction is its sensitivity to the local misorientation
inside the illuminated volume [10,11], more specifically, the fragmentation of Laue spot may
indicate the presence of geometrically necessary boundaries (GNBs) and the elongation of
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Laue spot discloses the presence of geometrically necessary dislocations (GNDs). Although
a critical aspect of the spot shape analysis lies on the assumption that the dislocations
were dominantly edge-type in the illuminated volume, a recent study with focused ion
beam and transmission electron microscopy confirmed that this analysis stood still if the
dislocations had predominately screw-type [12]. With the aid of a wire profiler (typically
Pt), the shape of spot can be spatially resolved to yield a subsurface, 3D mapping of lattice
orientation and distortion non-destructively [13–15], namely the differential-aperture X-ray
microscopy (DAXM) technique [16].

The rotation-free feature of Laue microdiffraction renders it suitable for in-situ or
ex-situ mechanical experiments [17–22]. Nevertheless, considerable efforts have to be
made to ensure the consistency of the illuminated volumes at the moments of image
acquisition, e.g., either using the fiducial markers deposited to the sample surface [23], or
resorting to the digital image correlation (DIC) code [24]. Special attention needs also to
be paid to the instability of experimental setup due to mechanical loading as well as the
image noise [25–27].

Despite the wealth of information behind Laue microdiffraction pattern, the interpre-
tation is not straightforward since the wavelength or index pertaining to each diffraction
peak is not known a priori. Standard treatment involves modulating the orientation and
calibration parameters to minimize the discrepancy between the simulated and experi-
mental diffraction pattern, and has been implemented in software such as XMAS [28]
and LaueTools (https://gitlab.esrf.fr/micha/lauetools, accessed on 16 February 2022).
The standard treatment is in essence a trial-and-error process that usually suffers from
inefficiency, especially for the raster scanned diffraction patterns which has to be treated
one by one. Therefore, any additional information concerning the scanned microstructure
would facilitate the process, for example, Örs et al. [8] used the orientation obtained by
EBSD to overcome the difficulty in indexing the Laue microdiffraction patterns of low-
symmetry crystals; Kou et al. [29] suggested indexing one Laue microdiffraction pattern
per grain as the reference with which the rest patterns of the grain could be analyzed
without indexation.

In a word, the indexation of diffraction peaks is the key to the full interpretation of
diffraction pattern. Nevertheless, in certain circumstances, full interpretation of diffraction
patterns is unnecessary or fast parallel computing capabilities are unavailable, thereby
necessitating the development of indexation-free approach towards on-the-fly analysis
of raster scanned diffraction patterns. Zhou et al. [30] proposed using the distribution of
average recorded intensities and average filtered intensities of the raster scanned diffraction
patterns to visualize the characteristics of microstructural features. Recent application
of convolutional neural networks (CNN) to diffraction patterns has been involved with
the extraction of features for further clustering and labeling the raster scanned diffraction
patterns [31] or for the identification of crystal structures [32].

In the present work, we demonstrated the application of unsupervised machine
learning algorithms to the raster scanning Laue microdiffraction images of the fatigued
polycrystalline copper. Substantial dislocation structures will grow in copper after the cyclic
loading [33], deteriorating the identifiability of the diffraction pattern. Although template
matching schemes have been shown applicable to the indexation and misorientation
analysis of smeared diffraction patterns [34], huge amount of calculation was still inevitable
and the reliability of outcome would be degraded in line with the formation of dislocation
structures. On the other hand, machine learning algorithms, which were developed to
handle big data, were possible to circumvent the difficulty of indexation and cluster raster
scanning diffraction images according to their features, thereby mapping phases, grains, or
grain substructures. In this work, we designed a protocol to mine regions of interest from
the massive amount of raster scanning diffraction images by using unsupervised machine
learning algorithms. The protocol has been applied to the scanned diffraction images of a
fatigued specimen and yielded results meaningful to a material scientist. The results were
re-examined by checking the underlying diffraction images.

https://gitlab.esrf.fr/micha/lauetools
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2. Experiment

The diffraction images were collected from raster scanning of fatigued polycrystalline
copper. (Huye Co., Ltd., Suzhou, China) The sample was designed in accordance with
the ASTM/E606 standard. Figure 1 shows the grain structure of the sample colored by
inverse pole figure (IPF) with axis vertical to the grain structure map. The sample, cyclically
loaded in stress-control mode with the stress varying sinusoidally within the range 0 ~ 140
MPa, has undergone a maximum strain of ~ 10% in the initial cycle and cyclic creep in the
subsequent cycles. The sample was fatigued up to 109 cycles with a frequency of 10 Hz.

Figure 1. The grain structure of the sample colored by (IPF) with axis vertical to the grain structure map.

The Laue raster scanning over the sample was performed in beamline 4B of Pohang
Light Source (Pohang, South Korea). The raster scanning was over a V × H grid with
the vertical direction parallel to the fatigue loading wherein V = 64 and H = 146. The
step size was 2 µm in both the horizontal and vertical directions of the grid. The obtained
Laue microdiffraction pattern was extremely blurred with almost no discernable diffraction
peaks (Figure 2a).

Figure 2. (a) One example of diffraction patterns after normalization and 2 × 2 averaging binning;
(b) hierarchical clustering dendrogram of pixels for feature extraction; (c) the distribution of latent
features colored by their labels; (d) image restored from the latent features; (e) histogram of NCCs.
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3. Methodology
3.1. Feature Extraction

The original Laue microdiffraction pattern has 1024 × 1024 pixels. Although one can
directly use the full gray levels of images to segment the grid points from a theoretical
point of view, it is neither practical nor necessary to handle such huge amount of data,
thus necessitating a feature extraction process to reduce the diffraction patterns into a
manageable number of latent features. The extracted features would subsequently lay
foundation for grid segmentation.

To begin with, each image needed to be normalized to eliminate systematic errors. Nor-
malization was accomplished by subtracting the mean gray level from the gray level and di-
viding by the standard deviation of the gray levels, in accordance with McAuliffe et al. [35].

Then, since the background occupying the majority of Laue pattern contained nothing
other than noise, a moderate resolution coarsening could speed up the image processing
and smooth the noise [31]. In this regard, the normalized images were compressed to
512 × 512 pixels by 2 × 2 binning (averaging). Figure 2a showed one example of the
resultant images.

A number of algorithms serve to extract features for further grid segmentation.
Song et al. [31] applied CNN to extract latent features. However, at present, the authors
did not have sufficient patterns to train the CNN, therefore unsupervised machine learning
algorithms that did not require training dataset were employed herein to extract latent
features of each pattern. Here we used the hierarchical agglomerative clustering (HAC)
algorithm [36] backed by Scikit-Learn [37]. When treating the scanning diffraction patterns
with HAC algorithm, each pixel corresponded to a vector comprised of the values at the
pixel in whole diffraction patterns; then a metric (Euclidean distance, maximum distance,
etc.) was used to quantify the dissimilarity between a pair of pixels; then pixels with high
similarities were merged to form a feature according to a linkage criterion. The connectivity
of pixels could be exploited to facilitate the merging process such that only the pairs of
adjacent pixels were under consideration. In this work the Euclidean distance was used
as the metric of dissimilarity, and the linkage criterion employed was “ward”, aiming at
minimizing the sum of squared differences within all clusters.

Figure 2b visualized the merging process with a tree diagram called dendrogram: the
leaves of the dendrogram corresponded to the pixels of the image; two leaves with the
highest similarity were merged to form a branch in the first step; in the following steps,
two branches with the highest similarity were fused into one branch until only one branch
was left. The ordinate of Figure 2b gave the dissimilarities between two merging branches
(or leaves). The branches that were mutually exclusive and collectively incorporated all
leaves constituted the latent features of the images.

Conceivably, increasing the number of latent features Nf led to better reproducibility
of the original data, however at the expense of the data compression. We empirically set
Nf to be 4096 (the compression rate was 4096

5122 = 1.5625%), with which the original image
could be well restored as shown hereinafter. Figure 2c showed the distribution of features
colored by the indices of latent features. Figure 2d showed the restored image of Figure 2a
from its latent features, wherein high resemblance of the two images could be identified.

A quantitative metric of the resemblance between the original and restored image is
the normalized cross-correlation (NCC) coefficient:

NCC .
=

∑i ∑j Ioriginal
ij Irestored

ij√
∑i ∑j

(
Ioriginal
ij

)2
∑i ∑j

(
Irestored
ij

)2
, # (1)

where Ioriginal
ij and Irestored

ij are the gray levels in the original and restored images. NCC is
strictly within the range−1 ∼ 1. For two identical images, the NCC equals one. Larger NCC
means better resemblance of the original and restored images. Figure 2e gave the distribu-
tions of NCCs, most of which were larger than 0.99 indicating good representability of the
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latent features. In this manner, the original V× H diffraction patterns of 1024 × 1024 pixels
were reduced to a Nf × VH data matrix (V = 64, H = 146, Nf = 4096), and denoted
as M hereinafter.

Further reduction of Nf would certainly deteriorate the restored image. At this stage,
data reduction via factorization of the data matrix M would be more effective in preserving
the integrity of information. One of the most frequently used factorization schemes is
principal component analysis (PCA) which transforms the latent features of the diffraction
patterns into the so-called principal components (PCs) such that the cross-correlations
of PCs are zeros. The PCs are customarily ordered according to their variances. In this
regard, the whole data set can be compressed without too much loss of the information by
discarding the PCs that exhibit minimum variances.

Another candidate for factorization is non-negative matrix factorization (NMF) which
has been used in processing electron microscopy images [35,38]. In our practice, we found
that NMF costed much more computation time than PCA. Meanwhile, NMF had the risk
of converging at a local minimum rather than the global minimum. Therefore, NMF is not
considered in this work.

The PCA is in essence the singular value decomposition (SVD) of the data matrix M:

M = UΛVT .# (2)

Λ is a Nf × Nf diagonal matrix consisting of the square roots of the eigenvalues of the
covariance matrix MMT, with the PCs stored in the columns of the HW × Nf orthonor-
mal matrix V. The diagonal elements of Λ2 are in proportion to the variances of their
corresponding PCs.

We applied the PCA to the data matrix M with Scikit-Learn [37], and displayed the
variances of PCs in descending order in Figure 3, in which the variances of the first 64 PCs
were shown in the inset. The distribution was highly skewed but the skewness was not as
significant as in the work of Song et al. [31], therefore more PCs needed to be truncated.

Figure 3. Explained variance of principal components. The first 64 largest explained variances are
highlighted in the inset.

To sum up, the pipeline for feature extraction consisted of (i) pixel agglomeration
with HAC algorithm and subsequently (ii) factorization of data matrix via PCA. It should
be noted that neither of the step was indispensable. The design of the pipeline was a
compromise between the computational capacity and the integrity of the information.
Indeed, although PCA could reduce the size of data with less loss of information, it
was computationally more expensive than pixel agglomeration by HAC; in this regard,
HAC algorithm should be implemented in the first place to reduce the data to a size
handleable by PCA.
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3.2. Grid Segmentation

After extracting NPCA features from each diffraction pattern, the scanning grid was
ready to be segmented by merging the samples with “similar” features. In the stage of
clustering, we used the HAC algorithm again. The most significant advantage of HAC
algorithm over other clustering algorithms, e.g., K-Means, affinity propagation, etc., is that
the connectivity of the adjacent grid points can be exploited to ensure the continuities of
the segmentations. The computation time can also be significantly reduced since only the
adjacent grid points shall be considered to merge.

HAC algorithms can operate in two modes: (i) by specifying the number of clusters;
(ii) by specifying the distance threshold above which the grid points would not be merged,
and the number of clusters will be determined automatically. In the stage of feature extrac-
tion, we used the first mode, and here we used the second mode for the segmentation of grid.
The rest of the setting was the same as in feature extraction and not recapitulated herein.

Figure 4 plotted the variation of determined number of clusters Ncluster with distance
threshold for different NPCA. It was not surprising that the determined Ncluster decreased
monotonically with the distance threshold since the adjacent grid points were more likely
to be merged under larger distance threshold. The determined Ncluster increased marginally
with NPCA for NPCA ≥ 1024, suggesting a good representability of 1024 PCs. Therefore, to
save computation time, we adopted NPCA = 1024 in the following discussion.

Figure 4. The variation of number of clusters Ncluster with the distance threshold.

Indeed, the choice of distance threshold was rather subjective. In two extreme cases,
too small distance threshold might lead to the maximum of VH clusters in which individual
grid point was considered to be one cluster, whilst too large distance threshold might lead
to a single cluster incorporating all grid points. The appropriateness of the clustering
is customarily measured by the silhouette score [39], Calinski-Harabasz score [40], and
Davies-Bouldin score [41] of the clustering. Silhouette score is positively related to the
goodness of the clustering, while the Calinski-Harabasz score and Davies-Bouldin score
are the opposite. Figure 5 plotted the variation of the silhouette scores, Calinski-Harabasz
scores, and Davies-Bouldin scores with the threshold distances, along with the determined
optimum number of clusters arrowed in each subfigure. Both silhouette scores and Davies-
Bouldin scores implied that the smaller the distance threshold the better the clustering,
while a minimum of 1593 clusters could be observed in Calinski-Harabasz scores.
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Figure 5. The variation of the silhouette scores, Calinski-Harabasz scores, and Davies-Bouldin scores
with the threshold distances. The number of cluster determined from each indices was arrowed.

The three indices have not reached a consensus on the optimum number of clusters.
Figure 6a plots the optimal segmentation judging from the silhouette scores and Davies-
Bouldin scores, and Figure 6b the optimal segmentation judging from the Calinski-Harabasz
scores. The coloring of Figure 6 reflected the silhouette coefficient distribution [39]. For
individual grid point, the silhouette coefficient is a metric of the suitability of its clustering,
and defined as:

s = b−a
max(a,b) , (3)

where a and b are the mean intra-cluster distance and the mean nearest-cluster distance for
the UA. Silhouette coefficient ranges between −1 ∼ 1. A low value suggests the ambiguity
of grid point labeling. Value near zero indicates overlapping clusters. The silhouette score
in Figure 5 is the average of the silhouette coefficients of all grid points.
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Figure 6. (a) the optimal segmentation judging from the silhouette scores and Davies-Bouldin scores;
(b) the optimal segmentation judging from the Calinski-Harabasz scores. The coloring is given by
the silhouette coefficients. The fatigue loading is along the vertical direction. The grid points were
spaced by 2 µm vertically and horizontally.

Both figures were mosaic, especially Figure 6a. After all, after the fatigue loading
complex dislocation structures grew and gave rise to the intragranular misorientation.
Neighboring lattices slightly disoriented might be treated as different grains. Therefore,
the determination of optimal distance threshold from the three indices was of little use in
dealing with the fatigued samples.

Herein, we presented a statistics-oriented criterion to decide the optimal distance
threshold. In the community of material scientists, the grain size distribution (volume,
intersected area or intercept length) in a polycrystal has long been recognized as lognormal
as a rule of thumb [42]. Recently, Tang et al. [43] generalized a universal law that the local
strain at subgrain scale should obey lognormal distribution irrespective of deformation
mechanism (dislocation slip, phase transformation, or twinning) and phase content of the
polycrystal. Since the development of grain substructure is related to the lognormally
distributed local strain, the lognormality of the substructure size distribution was likely to
be inherited after fatigue loading. The reasoning above led us to examine the goodness of
clustering from the statistics of the substructure sizes.

Denoting the number of grid points in the ith cluster as Ai, the lognormality of the
cluster size distribution was examined by the Kolmogorov-Smirnov (KS) test with the
following steps:

(1) Calculate the logarithms of the number of grid points log Ai, and the mean µ and
standard deviation σ of log Ais;

(2) Normalize log Ai into Xi = (log Ai − µ)/σ. Calculate the empirical cumulative
distribution function of Xi, i.e., G(X) = n(X)/N, where n(X) is the number of Xis
smaller than X and N is the total number of clusters;
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(3) Calculate the maximum absolute difference between the empirical cumulative distri-
bution function G(X) and the theoretical cumulative distribution function of standard
normal distribution F(X), i.e., D = sup|F(x)− G(x)|. The distance will be termed as
KS distance hereinafter.

In this sense, smaller KS distance indicates better lognormality of the distribution.
Figure 7a presents the variation of KS distances with the distance threshold, in which the
minimum of KS distances occurred at distance threshold equal to 35 and the determined
number of clusters was 347. Figure 7b shows the histogram of the grid points per cluster
along with the theoretical lognormal probability distribution curve. The curve fitted nicely
with the histogram.

Figure 7. (a) the variation of KS distances with the distance threshold; (b) the histogram of the grid
points per cluster along with the theoretical lognormal probability distribution curve; (c) the optimum
segmentation result decided from the proposed criterion, the color map is given by the silhouette
coefficient distribution, the fatigue loading is along the vertical direction. The grid points were spaced
by 2 µm vertically and horizontally.

4. Discussion

Figure 7c displayed the optimum segmentation result decided from the proposed
criterion along with the mapping of the silhouette coefficients. The originally equiaxed
grain structured became elongated after the fatigue loading. To examine the validity of
the clustering, we checked the diffraction images of subgrids A and B (enclosed by green
4 × 4 squares respectively in Figure 7c).

Figure 8 showed the diffraction patterns of subgrid A, in which the grid coordinates
along with their numbers of clusters were labeled. The diffraction patterns of cluster
156 were distinctively different from those of cluster 175 and those of cluster 244. The
diffraction patterns of cluster 35 appeared homologue with those of cluster 156, there-
fore a quantitative comparison was needed to visualize their discrepancies. Figure 9a,b
plotted respectively the discrepancies between the normalized diffraction patterns of [0,0]
and [0,1], which belonged to different clusters, and the discrepancies between the nor-
malized diffraction patterns of [0,0] and [0,1], which belonged to one cluster. Obviously,
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the diffraction pattern of [0,0] was more similar to that of [1,0] than that of [0,1], validat-
ing the segmentation that grouped [0,0] and [1,0] in one cluster. The same analysis was
applied to the diffraction patterns [1,1], [2,1] and [1,2], and validated the segmentation
results (Figure 9c,d). The relative displacements of diffraction spots among the homologue
diffraction patterns could be measured precisely with DIC technique to reveal their lattice
misorientation [44,45].

Figure 8. The diffraction images of subgrid A in Figure 7c.

The diffraction patterns of subgrid B in Figure 10 shared some sort of homology
suggesting that cluster 67, 111, and 324 originated from a single grain. The diffraction spots
in the three clusters differed in the degrees of blurring:

(1) in cluster 324, the spots were slightly streaked due to the penetration of the X-ray;
the distinctively high silhouette coefficients indicated that the diffraction patterns in
cluster 324 shared high resemblance compared to patterns in other clusters.

(2) in cluster 67, the spots were elongated unidirectionally implying that one slip system
was predominantly activated; the more distant from cluster 324 the more blurred
the spots.

(3) in cluster 111, some spots were multidirectionally streaked implying the activation
of multiple slip systems; some spots were highly blurred or even indiscernable sug-
gesting innegligible amount of statistically stored dislocations (SSDs) in the illumi-
nated volume.
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Figure 9. The discrepancy map between the normalized images in Figure 8, (a) between [0,0] and
[0,1]; (b) between [0,0] and [1,0]; (c) between [1,1] and [1,2]; (d) between [1,1] and [2,1].

The progressively blurring of spots from the interior (cluster 324) to the border (clus-
ter 111) of the grain conveyed a picture of dislocation pile-up in which the mobile dis-
locations became sessile at the grain boundaries and obstructed the dislocation emitted
from the interior of grain. The pile-up of primary dislocations led to the activation of other
slip systems, resulting in multidirectionally streaked spots (e.g., diffraction pattern [1,0] in
Figure 10).

The subgrids A and B were two typical examples of the substructure development
in response to the constrain imposed by their neighboring region. Their varying streaked
diffraction spots deserved further depth-resolved characterization via DAXM, either in
polychromatic mode [16] or in scanning monochromatic mode [46], to have a comprehen-
sive understanding of the dislocation substructure in fatigued polycrystalline sample.

We also noticed some clusters that contained only one grid point, for example, the
subgrid C encircled in Figure 7c. The diffraction image of the subgrid C was shown in
Figure 11 wherein the image seemed saturated by the background noise and no spot was
seen. This was probably due to the artefacts in the scanning.
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Figure 10. The diffraction images of subgrid B in Figure 7c.

Figure 11. The diffraction images of subgrid C in Figure 7c.

5. Summary

In the present work, an indexation-free treatment of raster scanning Laue microdiffrac-
tion patterns was proposed to have a fast segmentation of the scanning grids based on
their underlying diffraction patterns, whereas the conventional treatment had to index
diffraction patterns one-by-one and thus could hardly give on-the-fly feedback. The final
segmentation was informative of the underlying microstructure from which several regions
deserving further investigation could be identified.
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In analogy to the preceding work [31,32,35,38], the treatment consisted of two steps:
(i) feature extraction and (ii) grid segmentation. For pragmatic consideration, we adopted
unsupervised machine learning algorithms since the training data might not be always avail-
able. The proposed protocol differed from the preceding work from the following aspect:

(1) Both steps used the HAC algorithm since HAC algorithm could exploit the 2D con-
nectivity in both the pixels of the diffraction patterns and the grid points of the raster
scanning to ensure the continuity of segments and save the computation time.

(2) A statistics-oriented criterion was proposed as a guideline to set the distance threshold
in HAC algorithm which determined the number of segmentations, which yielded at
least in our case more realist results than conventional criterion.

The application of machine learning to raster scanning diffraction images is a case-by-
case issue. The proposed protocol, which was useful in our case, has the potential to be
applied in other cases, and help economize the limited beamtime.
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