
RESEARCH Open Access

Reconstructing a SuperGeneTree minimizing
reconciliation
Manuel Lafond1*, Aïda Ouangraoua2, Nadia El-Mabrouk1

From 13th Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Compara-
tive Genomics
Frankfurt, Germany. 4-7 October 2015

Abstract

Combining a set of trees on partial datasets into a single tree is a classical method for inferring large phylogenetic
trees. Ideally, the combined tree should display each input partial tree, which is only possible if input trees do not
contain contradictory phylogenetic information. The simplest version of the supertree problem is thus to state
whether a set of trees is compatible, and if so, construct a tree displaying them all. Classically, supertree methods
have been applied to the reconstruction of species trees. Here we rather consider reconstructing a super gene tree
in light of a known species tree S. We define the supergenetree problem as finding, among all supertrees
displaying a set of input gene trees, one supertree minimizing a reconciliation distance with S. We first show how
classical exact methods to the supertree problem can be extended to the supergenetree problem. As all these
methods are highly exponential, we also exhibit a natural greedy heuristic for the duplication cost, based on
minimizing the set of duplications preceding the first speciation event. We then show that both the supergenetree
problem and its restriction to minimizing duplications preceding the first speciation are NP-hard to approximate
within a n1-� factor, for any 0 < � < 1. Finally, we show that a restriction of this problem to uniquely labeled
speciation gene trees, which is relevant to many biological applications, is also NP-hard. Therefore, we introduce
new avenues in the field of supertrees, and set the theoretical basis for the exploration of various algorithmic
aspects of the problems.

Introduction
A fundamental task in evolutionary biology is to com-
bine a collection of rooted trees on partial, possibly
overlapping, sets of data, into a single rooted tree on the
full set of data. This is the goal of supertree methods,
mainly designed and used for the purpose of recon-
structing a species supertree from a set of species trees
(see overviews of early methods in [4-6], and more
recent methods in [2,10,21,24,25,28,29]).
Ideally, the combined supertree should “display” each

of the input tree, in the sense that by restricting the
supertree to the leaf set of an input tree, we obtain the
same input tree. However, this is not always possible, as
the input trees may contain conflicting phylogenetic

information. Note that considering a set of input trees
that are not all compatible leads to the questions of cor-
recting input gene trees or finding a subset of compati-
ble input trees or subtrees [26]. Here, we leave open
these questions and study the more direct formulation
of the supertree problem that is to consider a set of
compatible input trees and find a supertree displaying
them all. The BUILD algorithm by Aho et al. [1] can be
used to test, in polynomial time, whether a collection of
rooted trees is compatible, and if so, construct a compa-
tible supertree, not necessarily fully resolved. This algo-
rithm has been generalized in [9,20] to output all
compatible supertrees, and adapted in [27] to output all
minimally resolved compatible supertrees.
Although supertree methods are classically applied to

the construction of species trees, they can be used as
well for the purpose of constructing gene trees. Several
gene tree databases are available (see for example

* Correspondence: lafonman@iro.umontreal.ca
1Département d’informatique et de recherche opérationnelle, Université de
Montréal, Québec, Canada
Full list of author information is available at the end of the article

Lafond et al. BMC Bioinformatics 2015, 16(Suppl 14):S4
http://www.biomedcentral.com/1471-2105/16/S14/S4

© 2015 Lafond et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:lafonman@iro.umontreal.ca
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Ensembl Compara [30], Hogenom [22], Phog [11],
MetaPHOrs [23], PhylomeDB [14], Panther [19]). For a
gene family of interest, many different gene trees can
therefore be available, and finding one single supertree
displaying them all leads to a supertree question. On the
other hand, given a gene of interest, a homology-based
search tool is usually used to output all homologs in a
set of genomes. The resulting gene family may be very
large, involving distant gene sequences that may be hard
to align, leading to weakly supported trees - or even
worse, highly supported gene trees that are in fact incor-
rect. A standard way of reducing such errors is then to
use a clustering algorithm based on sequence similarity,
such as OrthoMCL [18], InParanoid [3], Proteinortho
[17] or many others (see Quest for Orthologs links at
http://questfororthologs.org/), to group genes into smal-
ler sets of orthologs or inparalogs (paralogs that arose
after a given speciation). Trees obtained for such partial
gene families can then be combined by using a supertree
method.
Considering input trees as parts of gene trees rather

than as parts of species trees does not make any differ-
ence regarding the compatibility test procedure. How-
ever, for reconstructing a compatible “super gene tree”,
if a species tree is known for the taxa of interest, then it
can be used as an additional information to choose
among all possible supertrees displaying the input par-
tial gene trees. Indeed, a natural optimization criterion
is to minimize the reconciliation cost, i.e. either the
duplication or the duplication plus loss cost, induced by
the output tree. We call the problem of finding a com-
patible supertree minimizing a reconciliation cost the
supergenetree problem.
In this paper, we first show how the exact methods

developed for the supertree problem can be adapted to
the supergenetree problem. As for the original algo-
rithms, all the extensions have also exponential worst-
time complexity. We then exhibit a heuristic, which can
be seen as a greedy approach classically used for the
supertree problems, that consists in constructing pro-
gressively the tree from its root to its leaves. The main
module of this heuristic is to infer the minimum num-
ber of duplications preceding the first speciation, which
we call the Minimum pre-Speciation Duplication pro-
blem. We show that the supergenetree problem for the
duplication cost, and even its restricted version the
Minimum pre-Speciation Duplication problem, are NP-
hard to approximate within a n1-� factor, for any 0 < � <
1 (n being the number of genes). Moreover, these inap-
proximability results even hold for instances in which
there is only one gene per species in the input trees.
Finally we consider the supergenetree problem with
restrictions on input trees that are relevant to many

biological applications. Namely, we require each gene to
appear in at most one tree, and genes of any tree to be
related through orthology only. This is for example the
case of gene trees obtained for OrthoMCL clusters
called orthogroups [18]. We show that even for this
restriction, the supergenetree problem remains NP-hard
for the duplication cost.
The following section introduces preliminary notations

that will be required in the rest of the paper.

Preliminaries
Notations on trees
Given a set L, a tree T for L is a rooted tree whose leaf-
set L (T) is in bijection with L. We denote by V(T) the
set of nodes and by r(T) the root of T. Given an internal
node x of T, the subtree of T rooted at x is denoted Tx.
The degree of an internal node x of T is the number of
children of x. If T is binary, we arbitrarily set one of the
two children of x as the left child xl and the other as
the right child xr. We call

(
L

(
Txl

)
, L

(
Txr

))
the biparti-

tion of a node x of degree 2 (note that the term ‘biparti-
tion’ is sometimes used, in the context of unrooted
trees, to denote the nodes or leaves of the two compo-
nents obtained after removing a given edge. To avoid
confusion, note that this is not what we mean here by
‘bipartition’).
A node x is an ancestor of y if x is on the (inclusive)

path between y and the root, and we then call y a des-
cendant of x. Two nodes x and y are separated in T if
none is an ancestor of the other. The lowest common
ancestor (lca) of a subset L’ of L (T) , denoted lcaT(L’),
is the ancestor common to all nodes in L’ that is the
most distant from the root. The restriction T|L’ of T to
L’ is the tree with leafset L’ obtained from the subtree of
T rooted at lcaT(L’) by removing all leaves that are not
in L’, and contracting all internal nodes of degree 2,
except the root. We generalize this notation to a set of
trees: For a set T of trees on L, T |L′ = {T|L′ : T ∈ T } .
Let T’ be a tree such that L(T′) = L′ ⊆ L(T). We say
that T displays T’ iff T|L’ is the same tree as T’.
A triplet is a binary tree on a set L with |L| = 3. For

L = {x, y, z}, we denote by xy|z the unique triplet t on L
with root r(t) for which lcat(x, y) ≠ r(t) holds.
A polytomy (or star tree) over a set L is a tree for L

with a single internal node, which is of degree |L|.
A resolution B(T) of a non-binary tree T is a binary

tree respecting all the ancestral relations given by T.
More precisely, B(T) is a binary tree such that
L

(
B(T)

)
= L(T) , and for any u, v ∈ V(T), if u is an

ancestor of v in T, then lcaB(T) (L (Tu)) is an ancestor

of lcaB(T) (L (Tv)) .

Lafond et al. BMC Bioinformatics 2015, 16(Suppl 14):S4
http://www.biomedcentral.com/1471-2105/16/S14/S4

Page 2 of 11

http://questfororthologs.org/


Gene and species trees
Figure 1 is an illustration of the notations defined in this
section.
A species tree S for a set Σ = {s1,...,st} of species

represents an ordered set of speciation events that have
led to Σ: an internal node is an ancestral species at the
moment of a speciation event, and its children are the
new descendant species. Inside the species’ genomes,
genes undergo speciation when the species to which
they belong do, but also duplications and losses (other
events such as transfers can happen, but we ignore
them here). A gene family is a set of genes Γ accompa-
nied with a mapping function s : Γ ® Σ mapping each
gene to its corresponding species.
Consider a gene family Γ where each gene x ∈ Γ belongs

to a species s(x) of Σ. The evolutionary history of Γ can be
represented as a gene tree T for Γ, which is a rooted binary
tree with its leafset in bijection with Γ, where each internal
node refers to an ancestral gene at the moment of an
event (either speciation or duplication). The mapping
function s is generalized as follows: if x is an internal node
of T, then s(x) = lcaS

({
s
(
x′) : x′ ∈ L (Tx)

})
.

An internal node x of T is called a speciation node if s
(xl) and s(xr) are separated in S. Otherwise, x is a dupli-
cation node preceding the speciation event lcaS(s(xl), s
(xr)) if lcaS(s(xl), s(xr)) is an internal node of S, otherwise
it is a duplication inside the extant species lcaS(s(xl), s
(xr)). A duplication node x such that s(x) = r(S) is called
a pre-speciation duplication node. A gene tree T with all
internal nodes being speciation nodes is called a specia-
tion tree. Two genes x, y of L (T) are orthologs in T if
their lcaT(x, y) is a speciation node.
The duplication cost of T is the number of duplication

nodes of T. It reflects the minimum number of duplica-
tions required to explain the evolution of the gene
family inside the species tree S according to T. A well-
known reconciliation approach [7,8] allows to further
recover, in linear time, the minimum number of losses
underlined by such an evolutionary history. We refer to

the minimum number of duplications and losses
required to explain T with respect to S as the reconcilia-
tion cost of T with respect to S, or simply the reconcilia-
tion cost if there is no ambiguity on the considered
trees.

Supergenetree problem statement
A set T of gene trees is said consistent if there is a tree
T, called a supergenetree for T displaying each tree of
T , and inconsistent otherwise. A supergenetree T for T
is said compatible with T . For example, the four triplets
in Figure 2 are consistent, and the gene tree T of Figure
1 is compatible with them. However, adding the dotted
tree to the set of triplets makes the gene tree set incom-
patible. Consistency of a set of trees can be tested in
polynomial time [1]. For a consistent set of trees, the
problem considered here is to find a compatible gene
tree of minimum reconciliation cost with respect to a
given species tree. A formal statement of the general
problem follows.
MINIMUM SUPERGENETREE PROBLEM (MINSGT

PROBLEM):
Input: A species set Σ and a binary species tree S for

Σ; a gene family Γ, a set Γi, 1 ≤ i ≤ k of subsets of Γ, and
a set T = {G1, G2,..., Gk} of consistent gene trees where,
for each 1 ≤ i ≤ k, Gi is a tree for Γi.
Output: Among all gene trees for Γ compatible with

T , one tree T of minimum reconciliation cost.
When the considered cost is the duplication cost, the

problem is called the Minimum Duplication SuperGene-
Tree Problem (MinDUPSGT problem).

From the SuperTree to the SuperGeneTree
Problem
The classical supertree problem is to state whether or
not a set of partial trees are consistent, and if so con-
struct a tree containing them all. Here, we introduce the
classical methods for solving this problem, and explore
natural generalizations to the supergenetree problem.

Figure 1 A gene tree T for the gene family Γ = {a1, a2, b1, c1, c2, c3} and a species tree S for the set of species Σ = {a, b, c} and where,
for any x and any i, xi is a gene in genome x. The label of an internal node x of T corresponds to s(x). Speciation nodes are represented by
circles and duplication nodes by squares. The pre-speciation duplication nodes (here only one node) are grey-colored. The dotted lines represent
losses that are inferred by a most parsimonious reconciliation algorithm. The duplication cost of T is 3 and its reconciliation cost is 5.

Lafond et al. BMC Bioinformatics 2015, 16(Suppl 14):S4
http://www.biomedcentral.com/1471-2105/16/S14/S4

Page 3 of 11



Let Γ be a set of n taxa (usually species in case of the
supertree problem, and genes in case of the supergene-
tree problem), Γi, 1 ≤ i ≤k be a set of possibly overlap-
ping subsets of Γ, and G = {G1, G2, · · · , Gk} be a set
of trees where, for each 1 ≤ i ≤ k, Gi is a tree for Γi. Let
tr (G) be the set of triplets of T defined as

tr (G) =
{
xy|z : ∃ 1 ≤ i ≤ k such that Gi|{x, y, z} = xy|z

}
.

Let T (�, E) be the triplet graph with the set of ver-
tices Γ and the set of edges E = {xy : ∃ z ∈ Γ such that
xy|z ∈ tr (G) } (see Figure 2 for an example).
The classical BUILD algorithm [1] determines, in

polynomial time, whether a set of triplets is consistent
and if so constructs a tree T, possibly non-binary, com-
patible with them. The algorithm takes as input the
graph T = T (�, E) . Let C (T ) = {C1, · · · , Cm} be the
set of connected components of T . If T has at least
three vertices and |C (T ) | = 1 , then T is inconsistent,
and the algorithm terminates. For example, the set of
five gene trees of Figure 2 is inconsistent, as the corre-
sponding triplet graph (including dotted lines) is con-
nected. Otherwise, if |V (T ) | ≥ 3 , a polytomy is created
over C (T ) , the internal node of the polytomy being the
root r(T) of the compatible tree T under construction
and its children being m subtrees with leafsets V(C1),...,
V(Cm), with their topology yet to be determined (where
V(Ci) ⊆ Γ denotes the set of taxa appearing in Ci). The
algorithm then recurses into each connected compo-
nent, i.e. the subtree for V(Ci) is determined recursively
from the graph T

(
V (Ci) , E|Ci

)
defined by E|Ci

= {xy :

∃ z ∈ Γ such that xy|z ∈ tr
(
G|V (Ci)

)
}. If, at any step, the

considered graph has a single component containing
more than two vertices, then T is reported as an incon-
sistent set of trees and the algorithm terminates. Other-
wise, recursion terminates when the graph has at most
two vertices, eventually returning a supertree T. See
Figure 3 for an example.
The BUILD algorithm has been generalized in an algo-

rithm called AllTrees [20] to output all supertrees com-
patible with a set of triplets in case consistency holds.
Instead of taking each element of C (T ) as a separate
leaf of r(T), all possible groupings, in other words all par-
titions of C (T ) , are considered (see Figure 3, right, for a
choice of bipartitions). For each partition P (C (T )) of

P (C (T )) , a polytomy is created over P (C (T )) . The
algorithm then iterates by considering each possible par-
tition of each subgraph induced by each element of
P (C (T )) . The algorithm is polynomial in the size of the
output that may be exponential in the size of the input.
A tree T compatible with T such that no internal

edge of T can be contracted so that the resulting tree is
also compatible with T is called a minimally resolved
supertree. Minimally resolved supertrees contain all the
information about all supertrees compatible with T but
in a “compressed” format. By exhibiting some properties
on graph components, Semple shows in [27] how some
partitions of the triplet graph components can be
avoided without loss of generality. The new developed
algorithm, named AllMinTrees [27], outputs a minimally
resolved tree in polynomial time. However, it was shown
in [15] that the cardinality of the solution space can be
exponential in n = |Γ|, leading to an exponential time

algorithm with �

⎛
⎝n

2

n
2

⎞
⎠ .

Notice that, in general, the trees output by all these
methods are non-binary trees.

Extensions to the SuperGeneTree problem
Natural exact solutions for the supertree problem can be
extended to the supergenetree problem as follows:

(1) Use AllMinTrees to output all minimally
resolved supertrees, and for each one which is non-
binary in general, find in linear time a resolution
minimizing the reconciliation [16,32] or duplication
[31] cost. Among all optimally resolved trees, select
one of minimum cost. Clearly this approach has the
same complexity as the AllMinTrees algorithm, mul-
tiplied by a factor of n to resolve each tree, which is

�

⎛
⎝n · n

2

n
2

⎞
⎠ .

(2) As we are seeking a binary tree, each created
node x of the supergenetree T under construction
should determine a bipartition

(
L

(
Txl

)
, L

(
Txr

))
.

Therefore, the AllTrees algorithm can be simplified
by considering, instead of all partitions of C (T ) ,

Figure 2 Genes trees (left and middle) and their corresponding triplet graphs (right). Plain edges of the graph correspond to the four
triplet trees, while dotted edges correspond to the triplets of the four-leaves tree.

Lafond et al. BMC Bioinformatics 2015, 16(Suppl 14):S4
http://www.biomedcentral.com/1471-2105/16/S14/S4

Page 4 of 11



only all bipartitions of the triplet graph components
set. See an example in Figure 3, right. Notice that
this simplification approach is not applicable to the
AllMinTrees algorithm, as by imposing bipartitions,
the minimum resolution condition cannot be
guaranteed.

A branch-and-bound approach
The tree space which is explored by the two exact
methods described above can be reduced by using a
branch-and-bound approach. Consider for example
method (1) using the AllMinTrees algorithm. At each
iteration of computing one minimally resolved tree,
resolve the intermediate non-binary tree obtained at this
step, using for example the linear-time algorithm pre-
sented in [16]. If its reconciliation cost is greater than
the cost of a full tree already obtained at a previous
stage of the AllMinTrees algorithm, then stop expanding
this tree as this can only increase the reconciliation cost.

A dynamic programming approach
The recursive top-down method (2) can instead be
handled by a dynamic programming approach comput-
ing the minimum reconciliation cost of a tree on a sub-
set of Γ according to the reconciliation costs of trees on
smaller subsets, similarly to the wrok done in [13].
More precisely, let P be an arbitrary subset of Γ, and

denote by R(P) the minimum duplication cost of a tree
T|P having leafset P and compatible with the set
G|P = {G1|P, G2|P, · · · , Gk|P} . Let T (P, E|P) be the
BUILD graph restricted to P and G|P , and
C (T ) = {C1, · · · , Cm} the set of its connected compo-
nents. If C ⊆ C (T ) , by V(C) we mean ∪Ci∈CV(Ci) .

Denote the complement of C by C̄ = C (T ) \C . Finally
set d(V(C), V(C̄) to 0 if s(V(C)) and s(V(C̄)) are sepa-
rated in S, in which case (V(C), V(C̄) is the bipartition
of a speciation node, and 1 otherwise i.e. if (V(C), V(C̄)
is the bipartition of a duplication node. Then:

R (P) = min
C⊂C(T )

R (V (C)) + R
(
V

(
C̄

))
+ d

(
V (C) , V

(
C̄

))

the value of interest being R(Γ). First note that, assum-
ing constant-time lca queries over S, d(V(C), V(C̄) can

be computed in constant time if s(V(C)) and s(V(C̄))
can be accessed in constant time, since if suffices to
check that the lca of s(V(C)) and s(V(C̄)) differs from
both. To achieve this, we precompute s(X) for every
subset X of Γ of size 1, 2,..., n in increasing order. Not-
ing that if |X| > 1, then for any x ∈ X, s(X) = lcaS(s(X \
{x}), s(x)), s(X) can be computed in constant time
assuming that s(X \ {x}) was computed previously and
assuming constant-time lca queries. As there are 2n sub-
sets of Γ, each computed in constant time, this prepro-
cessing step takes time O(2n).
As for R(Γ), we can simply ensure that each R(P) is

computed at most once by storing its value in a table
for subsequent accesses (i.e. when R(P) is needed, we
use its value if it has been computed, or compute it and
store it otherwise). In this manner, each subset P takes
time, not counting the recursive calls, proportional to
|P||G| + |P| + 2|C(T )| to construct T (P, E|P) , find
C (T ) , and evaluate each bipartition of C (T ) . We will

simply use the fact that |P||G| + |P| + 2|C(T )| is in O(2n).
As this has to be done for, at worst, each of the 2n sub-
sets of Γ, we get a total time O(2n + 2n ·2n) = O(4n).
Note that this analysis probably overestimates the actual

Figure 3 Left: Execution of the BUILD algorithm on the set of given four triplets. This example requires two iterations of the algorithm
(delimited by a dotted line). At the first iteration, the triplet graph contains three components, leading to a polytomy with three leaves. The
algorithm then iterates on the component {a1, a2, c1}, which terminates the supertree reconstruction procedure. Notice that the gene tree of
Figure 1, which is compatible with the four triplets, is not a resolution of this non-binary tree; Right: A variant of the BUILD algorithm, with the
triplet graph components grouped into bipartitions - in this case leading to a fully resolved tree. This tree is actually the gene tree T of Figure 1.

Lafond et al. BMC Bioinformatics 2015, 16(Suppl 14):S4
http://www.biomedcentral.com/1471-2105/16/S14/S4

Page 5 of 11



complexity of the algorithm, as we are assuming that
each subset P and each component set C (T ) are both
always of size n. It is also worth mentioning that the R
(P) recurrence can easily adapted to the mutation cost
(duplications + losses).

A greedy heuristic for the duplication cost
Instead of trying all partitions of the triplet graph com-
ponents set at each step of the AllTrees or AllMinTrees
algorithms, if the goal is to minimize the duplication
cost, then a natural greedy approach would be to choose
the best partition at each iteration, namely the one
allowing to minimize the number of duplications pre-
ceding each speciation event. Such an approach would
result in pushing duplications down the tree. It leads to
the following restricted version of the supergenetree
problem.
MINIMUM PRE-SPECIATION DUPLICATION PRO-

BLEM (MINPRESPEDUP PROBLEM):
Input: A species set Σ and a binary species tree S for

Σ; a gene family Γ, a set Γi,1≤i≤k of subsets of Γ, and a
set G = {G1, G2, · · · , Gk} of consistent gene trees
where, for each 1 ≤ i ≤ k, Gi is a tree on Γi.
Output: Among all gene trees for Γ compatible with

T , one tree T with minimum pre-speciation duplication
nodes.
We will show in the following section that even this

restricted version of the supergenetree problem is hard.
Here, we give the intuition of a natural way of solving
this problem, that reduces to repeated applications of
the Max-Cut problem. Although known to be NP-hard,
efficient heuristics exist (up to a factor of 0.878 [12]),
that can be used for our purpose.
For the supertree problem, the triplet graph

T = T (�, E) represents all triplets of the input trees
that have to be combined. In the case of the supergene-
tree problem, another tree is available, the species tree
S. A triplet xy|z found in the input trees T can be
reconciled with S, and if r(xy|z) is a duplication, then
any tree compatible with G must contain this duplica-
tion. Say that r(xy|z) is a required duplication mapped
to r(S) if s(r(xy|z)) = r(S) and r(xy|z) is a duplication. Let
us include this information in T . More precisely, let
C = C (T ) denote the set of connected components of
T , and let T (C) be the graph whose vertex set is C ,
and C1, C2 ∈ C share an edge if C1 has vertices x, y
and C2 has a vertex z such that xy|z is a triplet in T
with r(xy|z) being a required duplication mapped to r
(S). If there are, say, d distinct such triplets, one can
possibly set a weight of d to the C1C2 edge. See Figure 4
for an example.
Consider the problem of clustering the components of

T (C) into two parts B1, B2 of a bipartition in a way

minimizing the number of duplications preceding the
speciation event r(S). For each C1 ∈ B1 and C2 ∈ B2

such that C1C2 is an edge of T (C) , a tree T rooted at
the bipartition (B1, B2) contains the required duplica-
tions mapped to r(S) represented by the C1C2 edge. If
there are k such edges between B1 and B2 totalizing a
weight of w, the single duplication at the root of T con-
tains those w required duplications. In other words, we
have “merged” w required duplications into one. It then
becomes natural to find the bipartition of T (C) that
merges a maximum of duplications, i.e. that contains a
set of edges crossing between the two parts of maxi-
mum weight. This is the well-known Max-Cut problem.
For instance in Figure 4, the Max-Cut has a weight of 3
and leads to the optimal tree T1. Any other bipartition
sends a required duplication to a lower level and is
hence suboptimal. The T2 tree is obtained from first
taking the suboptimal ({a1, b1, d1}, {c1, e1, f1}) biparti-
tion, which creates a duplication at the root and defers
the c1e1|f1 required duplication for later.
Note however that the components of T may contain

required duplications themselves, which are not repre-
sented by the edges of T (C) . Thus, a Max-Cut must
then be applied recursively on both parts of the chosen
bipartition. Therefore, this method does not benefit
directly from the efficient approximation factor known
for the Max-Cut problem, as the approximation error
stacks with each application. In the next section, we
show that, unlike Max-Cut, the MinPreSpeDup problem
cannot admit a constant factor approximation (unless
P = NP).

Inapproximability of the MinDupSGT and
MinPreSpeDupSGT problems
Through the rest of this section, we denote by n = |Γ|
the size of the considered gene family. We show that
both the MinDupSGT problem and its restriction the
MinPreSpeDupSGT problem are NP-hard.
Theorem 1 The MinDupSGT and MinPreSpe-

DupSGT problems are both NP-hard to approximate
within a factor of n1-� for any constant 0 < � < 1. More-
over, this result holds for both problems even when
restricted to instances having at most one gene per spe-
cies in Γ.
Proof We use a reduction from the minimum k-color-

ability problem. Recall that a graph H = (V, E) is k-col-
orable if there is a partition {V1, V2,..., Vk } of V into
independent sets (i.e. if x, y ∈ Vi for some 1 ≤ i ≤ k,
then xy ∉ E). It is now well-known [33] that the smallest
k for which H is k-colorable cannot be approximated
within a factor of |V|1-� unless P = NP.
Now, given a graph H = (V, E), we construct a gene

set Γ, a set of rooted triplet gene trees T and a species

Lafond et al. BMC Bioinformatics 2015, 16(Suppl 14):S4
http://www.biomedcentral.com/1471-2105/16/S14/S4

Page 6 of 11



tree S such that H is k-colorable if and only if T is
compatible with some gene tree T having at most k − 1
duplications when reconciled with S. Using the same
construction, we also show that H is k-colorable if and
only if T is compatible with some gene tree T having at
most k − 1 pre-speciation duplications when reconciled
with S. In both cases, the gene-species mapping s is
bijective, proving the second part of the theorem
statement.
Let Γ = {v1, v2 : v ∈ V} and for each edge vw ∈ E, add

the triplets v1v2|w1, v1v2|w2, w1w2|v1 and w1w2|v2 to T .
Observe that this forces any tree T that displays T to
display the tree ((v1, v2), (w1, w2)). Add one species to Σ
for each gene of Γ so that the gene-species mapping s is
bijective. As for S, first let S1 be any binary tree with
one leaf for each member of {s(v1) : v ∈ V}, and in the
same manner let S2 be any binary tree with one leaf for
each member of {s(v2) : v ∈ V}. Obtain S by connecting
the root of S1 and the root of S2 under a common par-
ent r(S). Thus s(v1) and s(v2) are separated by r(S) for
any v ∈ V. Clearly, T and S can be constructed in poly-
nomial time.
Claim 1 : if H is k-colorable, then we can find a tree

T compatible with T having at most k − 1 duplications.

Moreover each such duplication x is a pre-speciation
duplication (i.e. s(x) = r(S)).
Let {V1, V2,..., Vk} be a k-coloring of H. For each 1 ≤ i

≤ k, let Ti be the tree with leafset V ′
i = {v1, v2 : v ∈ Vi}

that has only speciations, i.e. Ti is S|s(V ′
i) (because all

genes in V’i belong to a different species). Notice that s
(r(Ti)) = r(S), since r(S) separates v1 from v2 for all v ∈
V. Obtain T by taking any binary tree on k leaves (and
hence k − 1 internal nodes), then replacing each leaf by
a distinct Ti. In this manner, T has k − 1 duplications
since only the internal nodes of T that do not belong to
any Ti need to be duplications. Moreover, each duplica-
tion node x has s(x) = r(S). It remains to show that T is
compatible with T . It suffices to observe that all triplets
of T are of the form v1v2|wh with h ∈ {1, 2}, and that
such a triplet being in T implies that vw ∈ E. For such
a triplet, we must then have v ∈ Vi and w ∈ Vj with i ≠

j, implying v1, v2 ∈ V ′
i and wh ∈ V ′

j . By the construction

of T, v1v2|wh must be a triplet of T, as desired.
Claim 2 : if there is a tree T compatible with T hav-

ing k − 1 duplications, then H is k-colorable. Moreover
if T has k −1 duplications such that each duplication x
has s(x) = r(S), then H is k-colorable.

Figure 4 Example of how Max-Cut can be applied to the MinPreSpeDup problem. S is a species tree, G = {G1, G2, G3} and T is the
BUILD graph (solid edges). Its connected components are enclosed in circles, and the dotted edges represent required duplications mapped to r
(S). The edge of weight 2 is explained by the a1d1|c1 and d1b1|e1 triplets, whereas the edge of weight 1 is explained by the c1e1|f1 triplet. A Max-
Cut creates the bipartition ({a1, b1, d1, f1}, {c1, e1}), leading to the T1 tree which merges all required duplications at its root. The tree T2 is obtained
from the suboptimal bipartition ({a1, b1, d1}, {c1, e1, f1}) and has 2 duplications.

Lafond et al. BMC Bioinformatics 2015, 16(Suppl 14):S4
http://www.biomedcentral.com/1471-2105/16/S14/S4

Page 7 of 11



Let T be a tree compatible with T having k − 1 dupli-
cations. Call a node x of T S-maximal if x is not a
duplication node mapped to r(S) but every proper
ancestor of x is a duplication mapped to r(S). Let X =
{x1, x2,..., xm} be the set of S-maximal nodes of T. Note
that if y ≠ r(T) is a duplication mapped to r(S), then so
is the parent of y. This implies that every leaf ℓ of T has
at least one ancestor xi in X, since xi is the highest (i.e.
closest to the root) ancestor of ℓ that is not a duplica-
tion mapped to r(S) (such an xi always exists, since ℓ is
itself one such node). Moreover, xi is unique, as no
other xj ∈ X can be the ancestor of xi. Therefore,{
L

(
Tx1

)
, · · · , L

(
Txm

)}
is a partition of L (T) . We

next show that m ≤ k. Let T’ be the tree obtained by
removing all descendants of xi in T, for all 1 ≤ i ≤ m.
Then T’ is a binary tree with m leaves, and all its m − 1
internal nodes are duplications mapped to r(S). Since
T has no more than k − 1 duplications (in either cases
of the claim), T’ has at most k − 1 internal nodes and
therefore at most k leaves. We deduce that m ≤ k.
Observe that if vw ∈ E, then a = lca(v1, v2, w1, w2)

must be a duplication such that s(a) = r(S). Indeed, a
separates lca(v1, v2) from lca(w1, w2) since T displays
((v1, v2), (w1, w2)). But since s(lca(v1, v2)) = s(lca(w1,
w2)) = r(S) by the construction of S, s(a) can only be r
(S) as well, and so a must be a duplication.
Now, let Vi = {v : v1 is a descendant of xi} for each 1 ≤

i ≤ m. Take v, w ∈ Vi for some i. We show that vw ∉ E,
and thus that {V1,..., Vm} forms a coloring of H with at
most k colors. The argument applies whether each
duplication maps to r(S) or not, proving both parts of
the claim. Suppose for the sake of contradiction that vw
∈ E, but v, w ∈ Vi. In T, lca(v1, w1) must be a descen-
dant of xi, since xi is a common ancestor of v1 and w1

by the definition of Vi. Moreover, lca(v1, w1) ≠ xi since
lca(v1, w1) = lca(v1, v2, w1, w2) is a duplication mapped
to r(S), as shown above, while xi is not such a duplica-
tion, by its definition. Therefore, lca(v1, w1) is a proper
descendant of xi. But s(lca(v1, w1)) = r(S) = s(xi) implies
that xi is a duplication mapped to r(S), a contradiction.
We conclude that {V1,..., Vm} with m ≤ k is a proper col-
oring of H.
This reduction, together with the fact that the k-color-

ing problem is NP-hard to approximate within a n1-�

factor, proves the Theorem. □

Independent Speciation trees
We now consider the MinDupSGT problem in the spe-
cial case where the input gene trees are independent
speciation trees, meaning: (1) each gene of Γ appears in
at most one gene tree leafset, and (2) gene trees of
G = {G1, G2, · · · , Gk} are all speciation trees with
respect to the species tree S. Our objective is to find a
gene tree T compatible with T minimizing duplications

that also maintains the orthology relationships specified
by T . In other words, we require that for every
Gi ∈ G, T|L(Gi) has only speciations. We say that a gene
tree T that satisfies this property preserves the specia-
tions of T . Note that if T preserves the speciations of
T , then it is necessarily compatible with T . We call
T|L(Gi) the copy of Gi in T.
MINIMUM SPECIATION SUPERGENETREE (MIN-

SPECSGT PROBLEM):
Input: A species set Σ and a binary species tree S for

Σ; a gene family Γ, a set Γi,1≤i≤k of disjoint subsets of Γ,
and a set G = {G1, G2, · · · , Gk} of consistent indepen-
dent speciation trees such that, for each 1 ≤ i ≤ k, Gi is a
tree for Γi.
Output: Among all gene trees for Γ that preserve the

speciations of T , one tree T of minimum duplication
cost.
Notice that, since no gene of Γ appears more than

once in the set of input trees, T always admits a solu-
tion. Indeed, taking any binary tree on k leaves and
replacing each leaf by a distinct Gi achieves the desired
result. However, while apparently easier, we show that
finding such a gene tree T minimizing the number of
duplications is still hard.
Theorem 2 The decision version of the MinSpecSGT

problem is NP-Complete, i.e. it is NP-Complete to decide
if a species tree S and a set of independent speciation
trees G admit a supertree T that preserves its speciations
with at most k duplications.
Proof The problem is easily seen to be in NP, as it is

easy to verify in polynomial time that a given gene tree
T is compatible with T , preserves its speciations and
has k duplications. For NP-hardness, we turn to the
decision version of the k-colorability problem. That is,
for a given k, deciding if a graph H = (V, E) is k-color-
able is NP-hard. We create from H a species tree S and
a set of independent speciation trees T such that H is
k-colorable if and only if S and G admit a supertree T
with at most k − 1 duplications.
Let n = |V|, and denote V = {v1,..., vn}. To create S,

start with any binary tree S’ on
(

n
2

)
leaves. denote this

leafset W = {wi,j: 1 ≤ i <j ≤ n} so that there is a one-to-
one correspondence between W and the unordered
pairs of V. Then, add a special leaf a by joining it with
the root of S’ under a common parent p, and finally
obtain S by adding another special leaf b by joining it
with p under a common parent. Therefore, the species
set is

∑
= L (S) = W ∪ {a, b} .

For the construction of each gene tree G ∈ G , we ease
up notation by labeling each leaf g of G by s(g) directly
(e.g. if we say that G is of the form (a, b), we mean that
T has two leaves ga, gb such that s(ga) = a and s(gb) =

Lafond et al. BMC Bioinformatics 2015, 16(Suppl 14):S4
http://www.biomedcentral.com/1471-2105/16/S14/S4

Page 8 of 11



b). In this manner, since all trees of T contain only spe-
ciations, each tree G ∈ G must be a subtree of S (or it is
obtained from such a subtree by contracting edges).
Also recall that we are assuming that each gene appears
in at most one gene tree of T , and so the genes from
two distinct trees must also be distinct (even if they
share the same label).
In T , we first add k trees of the form (a, b), plus one

tree Gi for each vertex vi in H. The tree Gi correspond-
ing to vi ∈ V is a copy of S from which we remove
every leaf except those wj,k for which one of j = i or k =
i holds, and (vj vk) ∈ E (i.e. we keep the leaves of W that
correspond to an edge incident to vi). Also contract the
degree 2 nodes of Gi. Notice that if vivj ∈ E and i <j,
then both Gi and Gj contain a gene in the wi,j species.
Also, if vivj ∉E then Gi and Gj have no genes from a
common species.
Claim 1 : if H is k-colorable, then S and T admit a

supertree T having at most k − 1 duplications.
Let {V1,..., Vk } be a k-partition of V into independent

sets. Take any h such that 1 ≤ h ≤ k. Recall that if vi, vj
∈ Vh, then Gi and Gj share no gene from a common
species (since vivj ∉ E). Thus the trees in
Gh = {Gi : vi ∈ Vh} are all disjoint in terms of species.
Let Σh be the set of species that appear in some tree of
Gh . Then, the tree S|�h contains a copy of each tree in
Gh , and none of these copies overlap. Obtain Th by join-
ing a gene labeled a to r(S|�h ) under a common parent
p, then joining a gene labeled b to p under a new com-
mon parent. Now, Th contains a copy of each tree in Gh

and a copy of one of the (a, b) trees. By taking a tree
with k leaves (where at worst, each k − 1 internal node
is a duplication), and replacing each leaf by the specia-
tion trees T1,..., Tk, we obtain a gene supertree T, which
preserves the speciations of T and has at most k − 1
duplications.
Claim 2 : if S and T admit a supertree T having k − 1

duplications, then H is k-colorable.
We first show that if T has k − 1 duplications, then it

must have exactly k speciations mapped to r(S). It can-
not have more, as there would then be more than k − 1
duplications. Suppose instead that there are k’ <k such
speciations, and denote them x1,...,xk’. Note that there
must be at least k’ − 1 duplications in the ancestors of
the xis. Now, for 1 ≤ i ≤ k’, Txi must contain a certain
number of copies of a and b. Let mi(a) and mi(b)
denote, respectively, the number of copies of a and b
contained in Txi , noting that in total, there are k copies
of each since there are k subtrees of the form (a, b) in
T . Since xi is a speciation mapped to r(S), it separates
the a copies from the b copies, thus the Txi subtree
must contain at least mi(a) − 1 + mi(b) − 1 duplications.
Denote by d(T) the number of duplications in T. It

follows that d (T) ≥ k′ − 1 +
∑k′

i=1
(mi(a) + mi(b) − 2) = k′ − 1 − 2k′+

∑k′

i=1
mi(a) +

∑k′

i=1
(mi(b)

= −k′ − 1 + k + k = 2k − k′ − 1 > k − 1
when

k’ <k, a contradiction.
Now, we can let x1,..., xk be the k speciation nodes of

T mapped to r(S). The k − 1 duplications of T must
then all be ancestors of the xi, and they are all mapped
to r(S). Therefore the Tx1 , ..., Txh subtrees each contain
only speciations. For any Gi ∈ G corresponding to vi,
one of the Txh must contain the copy of Gi (for other-
wise, the root of the copy of Gi in T would be a duplica-
tion, while it should be a speciation). Take any h such
that 1 ≤ h ≤ k. We claim that Vh = {vi : Txh contains the
copy of Gi} forms an inpedendent set. Since Txh contains
only speciations, it cannot contain genes from the same
species. Thus for any Gi, Gj contained in Txh we must
have vivj ∉ E, as otherwise Gi and Gj would share a gene
from the same species. Therefore Vh is an independent
set. Thus {V1,..., Vk } form a k-coloring of H, and the
proof is completed. □
It is interesting to note that this does not show the

NP-hardness of the special case in which the input trees
are only triplets. Indeed, a tree Gi created in this reduc-
tion has as many leaves as the number of neighbors of
its corresponding vertex vi. Therefore, if H is a cubic
graph (ie. 3-regular), one can generate an input with
only triplets. However, deciding if a cubic graph is k-col-
orable can be done in linear time, and thus the triplets
case cannot be shown NP-hard through this reduction.
The 3-colorability problem is NP-hard on 4-regular
graph though, showing the NP-hardness of the problem
on input trees having at most 4 leaves.

Conclusion
We introduce the supergenetree problem which aims at
constructing a supertree that displays a set of input
gene trees while minimizing the reconciliation cost with
respect to an input species tree. This problem is a nat-
ural formulation of the question of combining a set of
gene trees obtained for subsets of a gene family into a
full gene tree for the whole gene family.
The supergenetree problem is an extension of the

classical supertree problem on a set of input leaf-labeled
trees, where the input trees are gene trees and a species
tree is used in order to evaluate the reconciliation/dupli-
cation cost of a supergenetree. We show how existing
exact and greedy heuristic algorithms for the supertree
problem can be used to devise approaches for solving
the supergenetree problem. The resulting approaches
have exponential worst-time complexity as the original
supertree algorithms.
We show that the supergenetree problem for the

duplication cost is NP-hard to approximate within a fac-
tor essentially better than n, and this complexity remains

Lafond et al. BMC Bioinformatics 2015, 16(Suppl 14):S4
http://www.biomedcentral.com/1471-2105/16/S14/S4

Page 9 of 11



the same even when the problem is restricted, in a greedy
approach, to finding a supertree with a minimum number
of duplications before each speciation of the species tree.
We also consider a restriction of the supergenetree pro-
blem relevant to many biological applications where sub-
sets of orthologs are studied separately and then
amalgamated into a single tree. Even this restriction is
shown to be NP- Complete. The reconciliation cost
remains to be studied, although we conjecture all of the
above mentioned problems are hard in this case also.
These negative complexity results are not surprising

though as they extend an already large set of problems
related to supertrees that are known to be NP-hard. We
think that appropriate heuristics for various classes of
input trees are worth to be considered in future pro-
jects. Removing the assumption that the input gene
trees are compatible would also lead to new interesting
problems. A promising avenue would be to consider
constructive FPT algorithms that can be integrated in
greedy heuristics or dynamic programming algorithms.
Also other restrictions on the input gene trees can be
explored, hopefully leading to polynomial problems.
Constructing gene trees by amalgamating smaller trees
for subsets of orthologous genes is a natural way of con-
structing large trees that would benefit from a thorough
theoretical and algorithmic analysis.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ML, AO, NE devised the proofs and algorithms and wrote the paper.

Declarations
Publication of this work is funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC), Fonds de Recherche Nature et
Technologies of Quebec (FRQNT) and the Canada Research Chair (CRC) in
Biological and Computational Biology.
This article has been published as part of BMC Bioinformatics Volume 16
Supplement 14, 2015: Proceedings of the 13th Annual Research in
Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics: Bioinformatics. The full contents of the supplement
are available online at http://www.biomedcentral.com/bmcbioinformatics/
supplements/16/S14.

Authors’ details
1Département d’informatique et de recherche opérationnelle, Université de
Montréal, Québec, Canada. 2Département d’informatique, Université de
Sherbrooke, Québec, Canada.

Published: 2 October 2015

References
1. Aho AV, Yehoshua S, Szymanski TG, Ullman JD: Inferring a tree from

lowest common ancestors with an application to the optimization of
relational expressions. SIAM J Comput 1981, 10(3):405-421.

2. Bansal M, Burleigh J, Eulenstein O, Fernández-Baca D: Robinson-foulds
supertrees. Alg Mol Biol 2010, 5(18).

3. Berglund AC, Sjolund E, Ostlund G, Sonnhammer EL: InParanoid 6:
eukaryotic ortholog clusters with inparalogs. Nucleic Acids Research 2008,
36:D263-D266.

4. Bininda-Emonds O, editor: Phylogenetic Supertrees combining
information to reveal The Tree Of Life. Computational Biology Kluwer
Academic, Dordrecht, the Netherlands; 2004.

5. Bininda-Emonds ORP, Gittleman J, Steel MA: The super tree of life:
Procedures, problems and prospects. Annu Rev Ecol Syst 2002, 33:265-289.

6. Bryant D: A classification of consensus methods for phylogenetics.
DIMACS series in Discrete Math and Theo Comput Sci 2003.

7. Chauve C, El-Mabrouk N: New perspectives on gene family evolution:
losses in reconciliation and a link with supertrees. RECOMB of LNCS,
Springer 2009, 5541:46-58.

8. Chen K, Durand D, Farach-Colton M: Notung: Dating gene duplications
using gene family trees. Journal of Computational Biology 2000, 7:429-447.

9. Constantinescu M, Sankoff D: An efficient algorithm for supertrees.
J Classif 1995, 12:101-112.

10. Cotton JA, Wilkinson M: Majority-rule supertrees. Syst Biol 2007,
56(3):445-452.

11. Datta RS, Meacham C, Samad B, Neyer C, Sjölander K: Berkeley phog:
Phylofacts orthology group prediction web server. Nucleic Acids Res 2009,
37:W84-W89.

12. Goemans XMichel, Williamson PDavid: Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming. Journal of the ACM (JACM) 1995,
42(6):1115-1145.

13. Hallett Mike, Lagergren Jens, Tofigh Ali: Simultaneous identification of
duplications and lateral transfers. Proceedings of the eighth annual
international conference on Resaerch in computational molecular biology ACM
2004, 347-356.

14. Huerta-Cepas J, Capella-Gutierrez S, Pryszcz LP, Denisov I, Kormes D, Marcet-
Houben M, Gabald’on T: Phylomedb v3.0: an expanding repository of
genome-wide collections of trees, alignments and phylogeny-based
orthology and paralogy predictions. Nucleic Acids Res 2011, 39:D556-D560.

15. Jansson J, Lemence RS, Lingas A: The complexity of inferring a minimally
resolved phylogenetic supertree. SIAM J on computing 2012,
41(1):272-291.

16. Lafond M, Swenson KM, El-Mabrouk N: An optimal reconciliation
algorithm for gene trees with polytomies. LNCS, of WABI 2012,
7534:106-122.

17. Lechner M, Findeib SSven, Steiner L, Marz1 M, Stadler PF, Prohaska SJ:
Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC
Bioinformatics 2011, 12:124.

18. Li L, Stoeckert CJ Jr, Roos DS: OrthoMCL: identification of ortholog groups
for eukaryotic genomes. Genome Research 2003, 13:2178-2189.

19. Mi H, Muruganujan A, Thomas PD: Panther in 2013: modeling the
evolution of gene function, and other gene attributes, in the context of
phylogenetic trees. Nucleic Acids Res 2012, 41:D377-D386.

20. Ng MP, Wormald NC: Reconstruction of rooted trees from subtrees.
Discrete Appl Math 1996, 69:19-31.

21. Nguyen N, Mirarab S, Warnow T: MRL and SuperFine+MRL: new supertree
methods. J Algo for Mol Biol 2012, 7(3).

22. Penel Simon, Arigon Anne-Muriel, Dufayard Jean-François, Sertier Anne-
Sophie, Daubin Vincent, Duret Laurent, Gouy Manolo, Perrière Guy:
Databases of homologous gene families for comparative genomics. BMC
Bioinformatics 2009, 10(Suppl 6):S3.

23. Pryszcz LP, Huerta-Cepas J, Gabaldón T: MetaPhOrs: orthology nd paralogy
predictions from multiple phylogenetic evidence using a consistency-
based confidence score. Nucleic Acids Research 2011, 39:e32.

24. Ranwez V, Berry V, Criscuolo A, Fabre P, Guillemot S, Scornavacca C,
Douzery E: PhySIC: a veto supertree method with desirable properties.
Syst Biol 2007, 56(5):798-817.

25. Ranwez V, Criscuolo A, Douzery EJ: SuperTriplets: a triplet-based supertree
approach to phylogenomics. Bioinformatics 2010, 26(12):i115-i123.

26. Scornavacca Celine, Jacox Edwin, Szöllősi JGergely: Joint amalgamation of
most parsimonious reconciled gene trees. Bioinformatics 2014, btu728.

27. Semple C: Reconstructing minimal rooted trees. Discrete Appl Math 2003, 127(3).
28. Steel M, Rodrigo A: Maximum likelihood supertrees. Syst Biol 2008,

57(2):243-250.
29. Swenson MS, Suri R, Linder CR, Warnow T: SuperFine: fast and accurate

supertree estimation. Sys Biol 2012, 61(2):214-227.
30. Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E:

EnsemblCompara gene trees: Complete, duplication-aware phylogenetic
trees in vertebrates. Genome Research 2009, 19:327-335.

Lafond et al. BMC Bioinformatics 2015, 16(Suppl 14):S4
http://www.biomedcentral.com/1471-2105/16/S14/S4

Page 10 of 11

http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S14
http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S14
http://www.ncbi.nlm.nih.gov/pubmed/18055500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18055500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17558966?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19435885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19435885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21075798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21075798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21075798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21526987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23193289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23193289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23193289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21149260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21149260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21149260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17918032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18398769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19029536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19029536?dopt=Abstract


31. Zheng Y, Wu T, Zhang L: A linear-time algorithm for reconciliation of
non-binary gene tree and binary species tree. Combinatorial Optimization
and Applications of LNCS 2013, 8287:190-201.

32. Zheng Yu, Zhang Louxin: Reconciliation with non-binary gene trees
revisited. Research in Computational Molecular Biology, Springer 2014,
418-432.

33. Zuckerman David: Linear degree extractors and the inapproximability of
max clique and chromatic number. Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing ACM 2006, 681-690.

doi:10.1186/1471-2105-16-S14-S4
Cite this article as: Lafond et al.: Reconstructing a SuperGeneTree
minimizing reconciliation. BMC Bioinformatics 2015 16(Suppl 14):S4.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Lafond et al. BMC Bioinformatics 2015, 16(Suppl 14):S4
http://www.biomedcentral.com/1471-2105/16/S14/S4

Page 11 of 11


	Abstract
	Introduction
	Preliminaries
	Notations on trees
	Gene and species trees
	Supergenetree problem statement

	From the SuperTree to the SuperGeneTree Problem
	Extensions to the SuperGeneTree problem
	A branch-and-bound approach
	A dynamic programming approach
	A greedy heuristic for the duplication cost

	Inapproximability of the MinDupSGT and MinPreSpeDupSGT problems
	Independent Speciation trees
	Conclusion
	Competing interests
	Authors’ contributions
	Declarations
	Authors’ details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


