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Purpose: It has been suggested that the detection of visual field progression can
be improved by modeling statistical properties of the data such as the increasing
retest variability and the spatial correlation among visual field locations. We compared
a method that models those properties, Analysis with Non-Stationary Weibull Error
Regression and Spatial Enhancement (ANSWERS), against a simpler one that does not,
Permutation of Pointwise Linear Regression (PoPLR).

Methods: Visual field series from three independent longitudinal studies in patients
with glaucoma were used to compare the positive rate of PoPLR and ANSWERS. To
estimate the false-positive rate, the same visual field series were randomly re-ordered
in time. The first dataset consisted of series of 7 visual fields from 101 eyes, the second
consisted of series of 9 visual fields from 150 eyes, and the third consisted of series of
more than 9 visual fields (17.5 on average) from 139 eyes.

Results: For a statistical significance of 0.05, the false-positive rates for ANSWERS were
about 3 times greater than expected at 15%, 17%, and 16%, respectively, whereas for
PoPLR theywere 7%, 3%, and6%.After equating the specificities at 0.05 for bothmodels,
positive rates for ANSWERSwere 16%, 25%, and 38%, whereas for PoPLR theywere 12%,
33%, and49%, or about 5%greater on average (95%confidence interval=−1% to 11%).

Conclusions: Despite being simpler and less computationally demanding, PoPLR was
at least as sensitive to deterioration as ANSWERS once the specificities were equated.

Translational Relevance: Close control of false-positive rates is key when visual fields
of patients are analyzed for change in both clinical practice and clinical trials.

Introduction

In patients with glaucoma and other optic
neuropathies, changes in the visual field over time
are an important marker for deterioration or improve-
ment. Because the goal of any treatment is to preserve
visual function, visual field progression is also a key
outcome measure in clinical trials of new therapies.
As a consequence, techniques for detecting visual field
progression have been a focus of research activity for
several decades.1

It is now well established that global indices, such as
mean deviation2,3 are useful for estimating the overall

speed of deterioration over time,4 but point-by-point
analyses — for example, pointwise linear regression,5
or glaucoma change probability6 — are more sensitive
to localized deterioration in the visual field. However, a
principal problem with point-by-point analyses is how
to estimate the statistical significance of deterioration
over the entire visual field. Because the statistical signif-
icance may have a direct bearing on the likelihood of
making false-positive decisions in clinical care, this is
not just a theoretical problem but has real practical
importance.

Two recently proposed analyses for localized
visual field change are Permutation of Pointwise
Linear Regression7 (PoPLR) and Analysis with
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Non-Stationary Weibull Error Regression and Spatial
Enhancement8,9 (ANSWERS). Both techniques share
many similarities, but ANSWERS attempts to model
the distinctive distribution of errors that arise in the
estimation of visual field thresholds, whereas PoPLR
uses the approximations of least-squares regression.10
Moreover, ANSWERS uses population-based cutoff
values to derive the statistical significance, whereas
PoPLR’s P value is individualized to each patients’
visual field series. The initial papers on ANSWERS
have described considerable performance gains over
PoPLR. However, it is not clear which of ANSWERS’
features contributed most to these gains.

In this study, we investigate the performance of
PoPLR and ANSWERS in three independent datasets
drawn from longitudinal studies of patients with
glaucoma. We demonstrate that the sensitivity differ-
ences between PoPLR and ANSWERS are likely
driven by differences in specificity. Finally, we discuss
some important aspects of progression tests and how
these aspects need to be considered in studies compar-
ing between progression tests.

Methods

Datasets

Data for analysis were obtained from three longitu-
dinal studies. When both eyes from the same patient
were included, one eye was selected at random. Visual
fields in each dataset were obtainedwith the 24-2 SITA-
Standard program of the Humphrey Field Analyzer
(Carl Zeiss Meditec Inc., Dublin, CA, USA).

The first dataset was selected from the Portland
Progression Project (P3), a prospective longitudinal
study of patients with early glaucoma (mean deviation
[MD] better than −6 dB), suspected glaucoma, or risk
factors for the development of glaucoma.11 All partic-
ipants were experienced visual field takers who had
performed several tests prior to entry into the study.
Additionally, visual fields were removed as unreliable if
the percentage of either false positives or false negatives
was greater than 20% or if fixations losses were greater
than 33%. The percentage of visual fields that did
not meet the reliability criteria was less than 3%. Our
dataset consisted of 101 eyes of 101 participants with
exactly 7 visual fields. Themedian follow-up periodwas
3.1 years, with the shorter follow-up period being 2.0
years and the longest 3.8 years. On average, each patient
was tested every 5.5 months.

The second dataset was obtained by pooling
data from the prospectively designed Diagnostic
Innovations in Glaucoma Study (DIGS) and the

African Descent and Glaucoma Evaluation Study
(ADAGES).12 The studies enrolled participants with
healthy eyes, as well as glaucoma suspects, and patients
with ocular hypertension and primary open angle
glaucoma. All visual fields were reviewed for reliabil-
ity and artifacts by trained graders at the Visual Field
Assessment Center at the University of California
San Diego.13 Briefly, visual fields with more than 33%
fixation losses and false-positive errors were excluded.
Visual fields with more than 33% of false negative
errors were also excluded, except in patients with
advanced disease. When a visual field was unreliable,
the reading center requested repeat testing when possi-
ble. This dataset consisted of 150 eyes of 150 patients
with glaucoma with exactly 9 visual fields. The median
follow-up period was 4.6 years, with the shorter follow-
up period being 2.9 years and the longest 7.5 years. On
average, each patient was tested every 6.4 months.

The third dataset was from the Rotterdam
Ophthalmic Data Repository (http://www.rodrep.
com).14,15 The dataset consisted of visual fields from
139 eyes of 139 patients with manifest glaucoma. In
contrast to the previous datasets, the series had a
different number of visual fields, with a minimum of
9 and a median of 18. The median follow-up period
was 9.3 years, with the shortest follow-up period being
5.2 years and the longest 10.5 years. On average, each
patient was tested every 6.3 months. With more than
twice as many visits overall and patients who had more
advanced glaucoma at baseline (MD = −7.73 dB)
than for the P3 (−0.50 dB) and the DIGS/ADAGES
(−0.85 dB) datasets, the properties of the Rotterdam
dataset were statistically and clinically different. For
this dataset, we did not adopt additional selection
criteria to remove visual fields depending on patient
reliability as false-positive responses, false-negative
responses, and fixation losses are not made available.

The Table shows the summary statistics of each of
the three datasets used in this study.More details about
the datasets and the inclusion and exclusion criteria can
be found elsewhere.11,12,14,15

Permutation of Pointwise Linear Regression

PoPLR7 tests the null hypothesis that there is no
deterioration anywhere in the visual field. The first step
is to compute pointwise linear regression. Thus, for
each of the 52 locations of a series of visual fields,
a simple linear regression is performed to obtain the
corresponding pointwise rate of change and the corre-
spondingP value for the one-tailed t-test with the alter-
native that the rate of change is negative. Then, the
sum of the natural logarithm of the P values in all 52
locations is calculated and its negative value recorded

http://www.rodrep.com
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Table. Summary Statistics of the Three Datasets

P3 (101 Eyes) DIGS/ADAGES (150 Eyes) Rotterdam (139 Eyes)

Median 5th 95th Median 5th 95th Median 5th 95th

Number of visits 7 7 7 9 9 9 18 15 20
Age at baseline 68 52 79 63 48 76 61 42 72
MD, baseline −0.50 −8.00 1.23 −0.85 −13.59 0.89 −7.73 −25.65 −1.90
MD, final −0.68 −9.03 1.31 −1.28 −13.95 0.85 −8.76 −26.72 −2.27
Total MD change −0.22 −2.65 1.38 −0.30 −3.28 1.92 −0.49 −10.09 3.39
Follow-up time 3.14 2.70 3.61 4.57 3.83 5.97 9.32 7.96 10.10
Rate of MD change −0.05 −0.96 0.34 −0.05 −0.69 0.33 −0.07 −1.05 0.21

Notes: Age and follow-up time are given in years. MD at baseline and end line are given in decibels (dB). Rate of change is
given in dB/year.

Each column shows the median and 5th and 95th percentiles.
MD, Mean Deviation.

as the S-statistic. The PoPLR S-statistic equals the one
introduced by Fisher16 divided by two.

To derive the significance of overall progression in
the visual field series, as a whole, PoPLR computes a
global P value for a significance test based on permu-
tation analysis.17 For each visual field series, the value
of the observed S-statistic is compared with its permu-
tation distribution obtained from 5000 versions of the
visual field series that were randomly re-ordered. The P
value for overall progression of the visual field given the
series is obtained as the proportion of random permu-
tations for which the value of the S-statistic is greater
than for the original series.

The PoPLR analysis is implemented in the open-
source package visualFields18 (https://cran.r-project.
org/web/packages/visualFields/index.html) developed
for the R environment for statistical computing.19

Analysis With Non-Stationary Weibull Error
Regression and Spatial Enhancement

ANSWERS8,9 is more complex than PoPLR but
its fundamental steps are the same: first obtain 52
P values for local progression, then combine them
computing the S-statistic (which was denoted as I− in
the manuscript introducing the model8). The imple-
mentation of the ANSWERS model used in this work
are detailed exhaustively in the Appendix A.

The two major innovations of ANSWERS are
that it takes into account the distinctive distri-
bution of threshold errors as well as the spatial
correlations between visual fields locations governed
by the anatomic arrangement of the retinal nerve
fiber bundles.20,21 The modeling of threshold errors
included inANSWERS aims to tackle the problem that

visual field threshold variability increases with depth of
defect.22,23

A fundamental difference between PoPLR and
ANSWERS is how the P value for overall progres-
sion for a visual field series is computed: whereas the
PoPLR P values are based solely on the individual
patient’s visual field series, the P values of ANSWERS
are based on significance criteria derived from a refer-
ence dataset24 (see Fig. S1 in the supplemental material
of Zhu et al. 20148). This means that ANSWERS’ P
values are population-based rather than individualized
to the specific visual field series.

Statistical Analyses

First, for the three datasets, we calculated the
positive rates of PoPLR and ANSWERS at signifi-
cance levels (α) ranging from P < 0.001 to P < 0.15;
that is, we obtained the proportion of series for which
the P value derived by PoPLR and ANSWERS was
lower than α.

Second, we assessed whether the P values derived
by PoPLR and ANSWERS were accurate. For this, we
computed the positive rates for each dataset as in the
first analysis, but after randomly re-arranging the time
order of the visual fields in each series once. Because
the re-ordering is at random, this process is expected to
reduce any systematic change in the original series to
chance levels. Therefore, the progression rate measured
in a sample of re-ordered series equals the false-
positive rate, within chance variation. If the P values
returned by PoPLR and ANSWERS are accurate, the
false-positive rate should equal the nominal signifi-
cance level α within sampling error. That is, for α =
0.05, the empirically calculated false-positive rate with
the re-ordered series should be approximately 5%; for

https://cran.r-project.org/web/packages/visualFields/index.html
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α = 0.15, it should be approximately 15%. Because the
computation of P values with ANSWERS is computa-
tionally demanding, we derived the false-positive rates
from only one random permutation of each series.

Finally, because the false-positive rate estimates
were based on relatively small sample sizes, we carried
out an alternative assessment of the accuracy of the P
values derived by ANSWERS. We derived individual-
ized P values with ANSWERS in an approach similar
to PoPLR. More precisely, the P values were derived
by establishing the null distribution of ANSWERS’
S-statistic from 1000 random permutations of each
original visual field series. By design, this approach
ensures close control over the false-positive rate and
the accuracy of the P values. Positive rates were then
obtained for this modified ANSWERS model as in
the first analysis. Because ANSWERS is computation-
ally highly demanding this became practicable only
through use of the high-performance computing facil-
ities at the University of Melbourne.

Results

Our implementation of ANSWERS failed to
converge in 2 out of the 101 eyes of the P3 dataset and
6 out of the 139 eyes from the Rotterdam dataset. The
eight eyes that could not be analyzed with ANSWERS
were removed from the study. Thus, the sample sizes for
the subsequent analyses were 99 eyes for the P3 dataset,
150 eyes for the DIGS-ADAGES dataset, and 133 eyes
for the Rotterdam dataset.

The upper panel of Figure 1 shows the positive rates
for PoPLR and ANSWERS for the three datasets. The
lower panel of Figure 1 shows the false-positive rates
calculated after randomly re-ordering the visual fields
in each series.

The positive rates for ANSWERS were clearly
greater than for PoPLR, as shown in the upper panels
of Figure 1. But, as shown in the lower panel, so were
the false-positive rates. To correct for this disparity in
false-positive rates and thus allow for a fair comparison
of the positive rates obtained with the models, Figure 2
shows the positive rate (y-axes in the uppers panel
of Fig. 1) as a function of the false-positive rates (y-
axes in the lower panels of Fig. 1).

For all three datasets, positive rates for PoPLR were
similar or greater than those for ANSWERS.

To confirm these findings, we recomputed P values
using 1000 random visual field permutations with
ANSWERS. Figure 3 shows the positive rates obtained
for random permutation with this modified version of
ANSWERS for the Rotterdam dataset. For compari-

Figure 1. Positive rates and false-positive rates as a function of
the nominal statistical significance set for deterioration analy-
seswith PoPLR andANSWERS. Each panel shows the positive rates
obtained at different statistical significance values α expressed as a
percentage. The lowerpanels show the sameas theupperpanels but
after randomly re-ordering the dates in each series.

Figure 2. Positive rates as a function of the false-positive rates
for PoPLR and ANSWERS. Details as for Figure 1. The data in the
y-axes in these graphs are the same as for the y-axes in the upper
panel’s graphs of Figure 1; the data in the x-axes are the same as for
the y-axes in the lower panel’s graphs of Figure 1.

Figure 3. Positive rates for PoPLR, ANSWERS, and modified
ANSWERS as a function of the statistical significance. The curves
for PoPLR and ANSWERS here are the same as for the upper-right
panel of Figure 2. Other details as for Figure 1.
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son, Figure 3 also shows the positive rate obtained for
PoPLR and for ANSWERS as a function of the false-
positive rate (the black and red curves in the right panel
of Fig. 2).

The positive rates obtained for randompermutation
with the modified ANSWERS (blue curve) matched
those for ANSWERS expressed as a function of its
false-positive rates (red curve). Positive rates were
similar to each other and always clearly lower than for
PoPLR.

Discussion

The conception of ANSWERS8,9 is grounded in
sound ideas based on the well-documented non-
Gaussian and heteroscedastic properties of visual
field threshold estimates,22,23,25 as is the inclusion of
spatial correlations among visual field locations.20,21
Nevertheless, comparisons against PoPLR,7 which uses
simple linear regression and ignores non-Gaussian
heteroscedastic errors and spatial correlations, do not
support the notion that these features have a large
impact on the sensitivity to visual field deterioration.

For ANSWERS, the false-positive rates obtained
from the randomly re-ordered series (see Fig. 1, lower
panel) were much larger than the nominal significance
values. This suggests that the specificity of ANSWERS
is lower than intended, and consequently that the
positive rates of ANSWERS (see Fig. 1, upper panel)
are inflated. In other words, ANSWERS’ substantial
improvement of sensitivity to progression in compari-
son to PoPLR comes at the cost of a reduced specificity.
For a statistical significance level of 5% (corresponding
to a specificity of 95%), the false-positive rate was 15%
for the P3 dataset, 19% for DIGS-ADAGES dataset,
and 16% for the Rotterdam dataset —3 times greater
than expected.

A possible reason for ANSWERS’ lower-than-
expected specificity, and the resulting overestimation
of sensitivity, lies in ANSWERS’ way of obtaining
the P values from the S-statistics. To derive its P
value, ANSWERS compares an individual patient’s S-
statistic to criteria obtained from a reference group of
patients with glaucoma. This is problematic for two
reasons. First, the salient properties of visual field series
(e.g. variability and distribution of visual field damage)
differ vastly between patients, and therefore a popula-
tion statistic is an imperfect yardstick for judging the
significance of change in an individual. For a given
amount of change, it will underestimate the signifi-
cance in patients who are more fastidious visual field
takers compared to the average patient, and it will

overestimate significance in poor observers.26 So, even
if the significance criteria were derived from a perfectly
representative sample such that the calibration of P
values were accurate on average, these P values could
still be misleading in individuals who differ from the
group average.

Second, it is not easy to select a reference population
that is representative of the target population. Clearly,
criteria for change derived frompatients who are highly
experienced and enthusiastic participants in visual field
studies (e.g. the reference group24 used by the authors
of ANSWERS) are unlikely to be sufficiently conser-
vative to ensure the desired level of specificity in clini-
cal groups of patients (e.g. the three datasets used in
this study). This may be the most compelling expla-
nation for the lower specificity of ANSWERS in this
study compared to the original publications.8,9 There-
fore, individualized significance-of-change approaches
(as used in PoPLR) are preferable to population-based
criteria. By controlling the specificity at the level of the
individual patient, we can be confident that the speci-
ficity at the population level is closely controlled also.

The Glaucoma Progression Analysis (GPA) of the
Humphrey Field Analyzer is a widely used approach
for investigating visual field changes in clinical practice.
It is based on no-change intervals derived from a group
of stable patients. Through its use in the EarlyManifest
Glaucoma trial,6 as well as in the United Kingdom
Glaucoma Treatment Study,27 the GPA is supported
by solid clinical evidence. However, the limitations of
population-based change criteria apply equally to the
GPA: some individuals are much more likely to show
significant change than are others.24 Although ways
have been suggested to amend the issue,28 we believe
that permutation analysis of individual visual field
series (as in PoPLR) may provide a more comprehen-
sive solution.

We found that not all visual field series could be
analyzed by ANSWERS. The S-statistic could not be
computed in 3224 series (2.3%) out of 139,000 permu-
tations (139 series × 1000 permutation per series)
performed to generate Figure 3. The inability to return
a valid result in a small proportion of visual field series
was due to failures in convergence of the optimization
algorithm. The algorithm searches for the optimal value
of 104 parameters (intercept and slope for each of 52
locations) and sometimes only a suboptimal result (a
local maximum) is achieved and the estimated standard
errors are unreliable. Because the standard errors are
required to compute P values, the model can break
down. Zhu et al. did not report on failures to fit the
model, and there are minor differences between our
implementation and the original one (see Appendix
A). This motivated us to share our implementation
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in the supplementary computer code, so that it can
be critically evaluated by the community. In addition,
differences with respect to the original implementation
described by Zhu and colleagues,8,9 and an example
replicated from the authors’ manuscript, are described
and discussed in detail in the Appendix A.

Zhu and colleagues8,9 developed a similar version of
the analysis without spatial enhancement (ANSWER)
and found that positive rates were smaller than with
spatial enhancement (ANSWERS). We found a similar
result (see Supplementary Fig. S5 in Appendix B).
However, these differences in performance vanished
(see Supplementary Fig. S7 in Appendix B) if separate
cutoff values to compute P values from S-statistics
are generated specifically for ANSWER, as shown in
Supplementary Figure S6 in Appendix B.

In summary, our findings demonstrate that the
initially reported differences in sensitivity between
ANSWERS and PoPLR are largely explained by differ-
ences in specificity, and that the performance differ-
ences between the two approaches are minor once
specificity is equalized. Our study also illustrates the
need to replicate performance evaluations with other,
independent datasets, and we are indebted to our
colleagues who made longitudinal visual field data
available for such work. Replication of visual field
progression analyses becomes easier when the source
code is made freely available and open to be used,
scrutinized, and improved by the community. Publish-
ing code and sample scripts along with the initial
papers should become standard practice in visual field
research as it already is in other mature disciplines.
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