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ABSTRACT Aeromonas hydrophila and Aeromonas dhakensis are ubiquitous in ma-
rine and aquatic environments. Both species, which cause significant skin and soft
tissue infection, are often associated with water activities and floods. Here, we de-
scribe the draft genome sequence of A. dhakensis, isolated from a fatal case of ne-
crotizing fasciitis.

Aeromonas dhakensis, previously classified as Aeromonas hydrophila subsp. dhakensis
and Aeromonas aquariorum (1, 2), is recognized as a virulent species causing severe

skin and soft tissue infection in humans (2). Whole-genome sequencing (WGS) was
performed on a blood culture isolate, AE13, from a patient with severe lower-limb
necrotizing fasciitis and a history of recent pond water exposure (3). AE13 was cultured
from both tissue and blood using the BacT/Alert system (bioMérieux) and then plated
onto a Columbia blood agar plate for isolation of single hemolytic and oxidase-positive
colonies. Comorbidities included obesity, diabetes mellitus, and lower-limb ulcers.
Despite antimicrobial therapy and extensive surgical debridement, the patient died on
the third day of hospitalization.

The identification of AE13 as A. hydrophila/Aeromonas caviae was made by matrix-
assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) and by
16S rRNA sequencing using 27f and 1492r primers (4). Further sequencing of rpoB and gyrB
determined AE13 to be A. dhakensis. This work was approved by the Royal Brisbane and
Women’s Hospital Human Research Ethics Committee (HREC/13/QRBW/354).

A previously described WGS method (5) was used with a Nextera XT DNA library
preparation kit and the HiSeq 2000 (Illumina) platform to sequence paired-end reads.
The data were generated using the Illumina Consensus Assessment of Sequence and
Variation (CASAVA) pipeline version 1.8.2. Integrity of the sequence transfer was
performed through TestFiles.exe. The short reads were then de novo assembled using
CLC Genomics Workbench version 11 (Qiagen) with a 500-bp minimum contig length.
The assembly of 2,745,730 short reads (length, 125 bp) produced 36 contigs with a
4,712,689-bp genome size, an N50 value of 200,780 (excluding scaffolded regions), and
a GC content of 61.8%.

In silico analysis through digital DNA-DNA hybridization (dDDH) (http://ggdc.dsmz
.de/ggdc.php) and average nucleotide identity (ANI) (https://www.ezbiocloud.net/
tools/ani) showed that the AE13 genome was closest to that of A. dhakensis strain
KN-Mc-6U21 (GenBank accession number NZ_CP023141) (6–8). A. dhakensis AE13 pos-
sessed �-lactam genes (cphA [cphA2] and ampH) (9) and was sequence type 559 (ST559)
with gyrB (allele 403), groL (allele 387), gltA (allele 160), metG (allele 401), ppsA (allele
440), and recA (allele 438).

Through Rapid Annotations using Subsystems Technology (RAST) using RASTtk, 378
subsystems, 4,406 coding sequences, and 90 RNAs with 37% subsystem coverage were

Citation Melo-Bolivar JF, Sinclair HA, Sidjabat
HE. 2019. Draft genome sequence of
Aeromonas dhakensis, isolated from a patient
with fatal necrotizing fasciitis. Microbiol Resour
Announc 8:e00009-19. https://doi.org/10.1128/
MRA.00009-19.

Editor Steven R. Gill, University of Rochester
School of Medicine and Dentistry

Copyright © 2019 Melo-Bolivar et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Hanna E. Sidjabat,
h.sidjabat@uq.edu.au.

Received 15 January 2019
Accepted 28 April 2019
Published 30 May 2019

GENOME SEQUENCES

crossm

Volume 8 Issue 22 e00009-19 mra.asm.org 1

https://orcid.org/0000-0002-3260-0831
https://orcid.org/0000-0001-5625-1317
http://ggdc.dsmz.de/ggdc.php
http://ggdc.dsmz.de/ggdc.php
https://www.ezbiocloud.net/tools/ani
https://www.ezbiocloud.net/tools/ani
https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP023141
https://doi.org/10.1128/MRA.00009-19
https://doi.org/10.1128/MRA.00009-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:h.sidjabat@uq.edu.au
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.00009-19&domain=pdf&date_stamp=2019-5-30
https://mra.asm.org


determined for AE13 (10). Furthermore, 61 genes within the virulence, disease, and
defense subsystem were those responsible for copper homeostasis, cobalt zinc cad-
mium resistance, mercuric reductase, mercury resistance operon, fluoroquinolone re-
sistance, copper tolerance, fosfomycin resistance, multidrug resistance efflux pumps,
and chromium compound resistance. Genes within the iron acquisition category (24
genes) were those encoding the siderophore aerobactin, which included ferric hydrox-
amate outer membrane receptor FhuA, ferric hydroxamate ABC transporter permease
component FhuB, ATP-binding protein FhuC, ferric hydroxamate ABC transporter, and
periplasmic substrate binding protein FhuD.

Flagella, fimbriae, other membrane proteins, lipopolysaccharide and capsule extracel-
lular products (hemolysins, proteases, and lipases), secretion systems, the iron acquisition
mechanism, and quorum sensing are considered virulence factors (VFs) of Aeromonas spp.
(11). Through VFanalyzer version R4, adherence, secretion system, and toxin VFs were
identified (12). Relevant to adherence, genes for lateral flagella, mannose-sensitive hem-
agglutinin pilus, polar flagella, tap type IV pili, and type I fimbriae were identified. Genes for
the type II secretion system (T2SS), type III secretion system (T3SS), and type VI secretion
system (T6SS) were detected. Identified toxins included aerolysin AerA/cytotoxic entero-
toxin act extracellular hemolysin, thermostable hemolysin, and exotoxin A. The lack of
understanding of the contribution of the genes for adherence, secretion system, and toxins
to the pathogenicity of AE13 warrant further studies.

Data availability. This project is registered under BioProject number PRJNA504324
and BioSample number SAMN10390361, with the Sequence Read Archive (SRA) iden-
tifier SRP174979. The draft genome of A. dhakensis has been deposited in GenBank
under the accession number RJCW00000000.
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