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Abstract: Low Field Time-Domain Nuclear Magnetic Resonance (TD-NMR) relaxometry was used to
determine moisture, fat, and defatted dry matter contents in “requeijão cremoso” (RC) processed
cheese directly in commercial packaged (plastic cups or tubes with approximately 200 g). Forty-five
samples of commercial RC types (traditional, light, lactose-free, vegan, and fiber) were analyzed
using longitudinal (T1) and transverse (T2) relaxation measurements in a wide bore Halbach magnet
(0.23 T) with a 100 mm probe. The T1 and T2 analyses were performed using CWFP-T1 (Continuous
Wave Free Precession) and CPMG (Carr-Purcell-Meiboom-Gill) single shot pulses. The scores of
the principal component analysis (PCA) of CWFP-T1 and CPMG signals did not show clustering
related to the RC types. Optimization by variable selection was carried out with ordered predictors
selection (OPS), providing simpler and predictive partial least squares (PLS) calibration models. The
best results were obtained with CWFP-T1 data, with root-mean-square errors of prediction (RMSEP)
of 1.38, 4.71, 3.28, and 3.00% for defatted dry mass, fat in the dry and wet matter, and moisture,
respectively. Therefore, CWFP-T1 data modeled with chemometrics can be a fast method to monitor
the quality of RC directly in commercial packages.

Keywords: TD-NMR; requeijão cremoso; CPMG; CWFP-T1; PLS; OPS

1. Introduction

Low field time domain NMR (TD-NMR) relaxometry has great importance in food
analyses due to its advantages, such as practicality, analytical productivity, rapid analysis,
cost-effectiveness, and low-cost instrumentation [1–4]. Furthermore, since the applied
radiofrequency (rf) is not attenuated by non-metallic materials (glass and plastic), TD-NMR
analyses can be performed directly in the original packaging without requiring sample
preparation nor generating waste [5,6].

The application of TD-NMR for food quality control in dairy products is one of its most
widespread uses [7–9]. Some applications include detection and quantification of milk adul-
teration [10,11], determination of fat content in commercial products of milk powder [12],
simultaneous quantification of fat and water content in cheese [13], characterization of
yogurts [14], ice cream [15] and “requeijão cremoso” [16,17]. Requeijão cremoso (RC) is a
type of processed cheese widely produced and consumed in Brazil [16,17]. It is prepared
from the coagulation of pasteurized milk, with or without the addition of lactic cultures,
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followed by the addition of cream, water, and melting salt (a mixture containing trisodium
citrate) [17]. Studies investigated water mobility in the homemade RC with the addition
of galactooligosaccharide (GOS) using TD-NMR relaxometry and showed an increase in
the transversal relaxation time (T2) with an increase of GOS [16]. Homemade RC with the
addition of xylooligosaccharide (XOS), sodium reduction, and flavor enhancers (arginine
and yeast extract) was also studied by TD-NMR relaxometry presented no differences in T2
in the samples with 50% reduced salt content and with the addition of 1% of arginine or
yeast extract [17]. However, a reduction in the T2 values was observed in RC samples with
lower fat content, which was associated with the decrease in mobility of water that strongly
binds to the proteins. The addition of 3.3% of XOS also led to a substantial reduction in
both transverse (T2) and longitudinal (T1) relaxation times.

The analysis of TD-NMR relaxometry of large samples, such as fresh fruits and
oilseeds [18–20] and industrialized packaged food, can be performed using wide bore
Halback, wide gap C and H types [21,22], or unilateral magnets [23,24]. The main advan-
tage of Halback, C, or H types over the unilateral ones is the higher homogeneity of the
magnetic field, allowing the analysis of the entire or large part of the sample. Conversely,
unilateral magnets are cheaper and portable, and the magnet dimension does not limit
the sample size. However, unilateral relaxometry has a strong magnetic field gradient,
and only a small part of the sample is analyzed. Thus, the signal-to-noise ratio (SNR) in
this equipment is very low and, consequently, the measuring time is much longer when
compared to the developed in homogeneous magnets [21].

Most TD-NMR applications use the T2 measurements [1,25]. These analyses are per-
formed using Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence, a single shot sequence
that is very insensitive to the flip angle error and rf magnetic field inhomogeneity [21].
Applications based on the longitudinal (T1) relaxation time are rarely used because the
standard pulse sequences (inversion-recovery, saturation-recovery, progressive saturation,
etc.) are not single shot sequences. Therefore, the measuring time is more than one order of
magnitude longer than the CPMG measurement [21,26].

Another pulse sequence explored in the TD-NMR analysis is the continuous wave free
precession (CWFP) [25,27,28], which is a special case of the steady-state free precession
(SSFP) regime. In this sequence, rf pulses are separated by an interval shorter than the
effective transverse relaxation time (T2*). When 90◦ pulses are used, CWFP signals depend
on both T1 and T2 relaxation time. The first application of CWFP pulse sequence in low-field
TD-NMR was proposed to enhance SNR to determine the hydrogen content in solvents
and oil in seeds [21,25,27]. More recently, modifications in the CWFP pulse sequence
were made, allowing to determine T1 time in a fast and accurate way. The sequence was
named CWFP-T1 [27] and has been used in the analysis of packaged beef [29,30] and
chicken breasts [31].

In this study, we demonstrated the viability of using CPMG and CWFP-T1 to predict
moisture, fat, and defatted dry mass content in RC commercial samples. To the best of
our knowledge, it is the first time that a method based on TD-NMR has been proposed for
RC quality control. Moreover, no paper was found in the literature reporting the use of
TD-NMR to predict moisture, fat, and defatted dry mass content in dairy food samples
directly in packaged commercial products. The analysis was performed using a TD-NMR
spectrometer based on a wide bore Halback magnet and the data were analyzed using the
partial least squares (PLS) regression method. This strategy represents a fast and promising
analytical method for the dairy food chain.

2. Materials and Methods
2.1. Samples

This study comprised 45 commercial RC samples (27 traditional, 9 light, 4 vegan,
3 lactose-free, and 2 fibers) in plastic cups or tube packages, containing approximately
200 g of RC. The samples were obtained from a local market (São Carlos, SP, Brazil) and
stored at 5 ◦C.
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2.2. TD-NMR Measurements

The RC TD-NMR analyses were evaluated in a non-invasive and non-destructive way
directly in the original packaging. 1H TD-NMR experiments were evaluated using an SLK-
IF-1399 NMR spectrometer (Spinlock Magnetic Resonance Solution, Cordoba, Argentine)
equipped with a Halbach permanent magnet of 0.23 T (9 MHz for 1H) and a 100 mm probe.
Transverse relaxation time (T2) measurements were performed using CPMG (Carr-Purcell-
Meiboom-Gill) pulse sequence with a π/2 pulse width of 33 µs and π pulse width of 60 µs,
echo time (τ) of 500 µs, 1000 echoes, and a recycle delay of 5 s. Values of longitudinal
relaxation time (T1) were determined using CWFP-T1 (Continuous Wave Free Precession)
pulse sequence [27] with a π/2 pulse width of 33 µs and π/10 pulse width of 4 µs, τ of
300 µs, 3000 echoes, and a recycle delay of 1 s. In both sequences, signals were averaged
using 16 scans.

2.3. Chemical Analysis

The moisture content (grams of water per 100 g of RC product) was determined by dry-
ing the sample to a constant weight in an oven at 105 ◦C. Fat was determined gravimetrically
after Soxhlet extraction of the dry matter (DM) using petroleum ether as extracting sol-
vent. The extraction residue was considered the defatted dry mass (DDM). The fat content
percentage was calculated in relation to dry (FDM) and wet matter (FWM), respectively.

2.4. Multivariate Analysis

The multivariate data analysis was performed using MATLAB R2021a (The Mathworks
Inc., Natick, MA, USA) and PLS_Toolbox v.8.8 (Eigenvector Research Inc., Wenatchee,
WA, USA).

The Principal Component Analysis (PCA) was used in a preliminary assessment to
observe similarities and/or differences between the different types of RC samples. Before
the analysis, the chemical data were auto-scaled and the TD-NMR decays (CPMG and
CWFP-T1) were mean-centered.

The multivariate calibration models were developed based on partial least squares
(PLS) regression to quantify moisture, FDM, FWM, and DDM in RC samples. The Kennard–
Stone algorithm divided the data into calibration (75% of the samples) and validation (25%
of the samples) data sets. Before the analysis, the TD-NMR decays (CPMG and CWFP-T1)
were mean-centered. To improve the model reliability and develop simpler and predictive
models, the algorithm ordered predictor selection (OPS) was used for variable selection.
OPS Matlab routine can be freely obtained at http://www.deq.ufv.br/chemometrics [32].

The predictive ability of the final models was evaluated in terms of coefficient of
determination (R2), root mean square error of prediction (RMSEP), the relative error of
prediction (REP), and ratio performance to deviation (RPD).

3. Results and Discussion
3.1. TD-NMR Decays

Figure 1 shows the TD-NMR signals of three RC samples with different chemical com-
positions acquired using CPMG (Figure 1a) and CWFP-T1 (Figure 1b) pulse sequences. The
TD-NMR relaxation curves are colored according to moisture content (black line = lowest,
blue = medium, and red = highest moisture content). It is observed that the RC sample with
the highest moisture (red line) had a significantly higher T2 value than the sample with the
lowest moisture content (black line). This is in agreement with results reported in the litera-
ture [33,34], which showed that an increase in moisture resulted in a higher T2 relaxation
time. Similar behavior was observed for T1 values; The sample with the highest moisture
(red line) had a significantly higher T1 value than the sample with the lowest moisture
(black line). T2 and T1 relaxation spectra of the three RC samples estimated by the Inverse
Laplace transform (ILT) are shown respectively in Figure 1c,d [35]. The mean T2 and T1
relaxation curves show the presence of two populations, agreeing with previous studies in
the literature, which reported that the T2 relaxation in RC is mainly bi-exponential [16,17].

http://www.deq.ufv.br/chemometrics
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Figure 1. (a) CPMG and (b) CWFP-T1 relaxation curves of three RC samples with different chemical
compositions and the respective relaxation spectra (c,d) obtained with the ILT algorithm [35]. RC
samples with the lowest, medium, and the highest moisture contents are the black, blue, and red
lines, respectively.

The transverse relaxation times of the CPMG curves (Figure 1a) showed that the
samples with low, medium, and high moisture could be resolved into a fast-relaxing time
constant (T21) equals to 2, 3, and 12 ms, respectively, and a slow-relaxing time constant
(T22) equals to 30, 41, and 78 ms, respectively. For CWFP-T1 signals, the RC samples with
low, medium, and high moisture showed T11 values of 23, 43, and 58 ms, respectively, and
a T12 of 329, 374, and 284 ms, respectively.

As RC contains between 55 and 80% of water and less than 22% of fat, the relaxation
signals are dominated by the water relaxation time. As T1 > T2 is an indication that water
mobility is restricted by the interaction of dry matter products, mainly lipids, proteins, and
saccharides that correspond to 20–45% of the RC.

3.2. Exploratory Analysis

Preliminary data exploration with the PCA was performed in the chemical results
(moisture, FDM, FWM, and DDM) to investigate natural differences and patterns among
samples and highlight relationships between variables and classes. For this proposed, 45
commercially available RC samples composed of 27 traditional, 9 light, 4 vegan, 3 lactose-
free, and 2 fibers, were disposed of in a matrix X (45 × 4). The results are presented on
the PCA biplot (Figure 2). The first two principal components (PC1 and PC2) explained
99.8% of the total variance (81.2% and 18.6%, respectively) and provided a slight separation
of traditional and vegan samples from the other RC types (light, lactose-free, and fiber).
The examination of loadings revealed that the variables that most contributed to this
separation were FWM and FDM, which are positioned positively on PC1. These results
are in agreement with the chemical values, which revealed that the traditional and vegan
samples had the highest fat content in dry (61.4 ± 9.3% and 67.4 ± 3.1%, respectively) and
wet (23.2 ± 4.6% and 28.1 ± 1.7%, respectively) matter. Conversely, moisture and defatted
dry mass are directly correlated with light, fiber, and lactose-free samples, since they are
positioned negatively on PC1. The chemical results revealed that these samples showed
the highest moisture values, ranging from 60.6 to 77.4%, and defatted dry mass, ranging
from 11.1 to 20.1%.
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Figure 2. Scores (circles) and loadings (squares) biplot of the first two components of a PCA model of
the RC samples.

CPMG and CWFP-T1 decays of the 45 samples were also analyzed by the PCA. Inspec-
tion of the PCA subspaces (bi- or three-dimensional score plot) did not reveal groups of
samples with respect to the RC type (data not shown). These results suggest no significant
differences in T2 and T1 time decay profiles were observed among the samples. However,
due to the limited number of commercial samples, it was not possible to confirm that the
method cannot be applied to distinguish the RC samples.

3.3. Regression Models

Initial PLS models were built by correlating the full TD-NMR decay and reference val-
ues of moisture, FDM, FWM, and DDM. As already mentioned (Section 2.4), the whole data
set (27 traditional, 9 light, 4 vegan, 3 lactose-free, and 2 fibers) was divided into 33 samples
for the training set and 12 samples for the test set. The models were optimized through the
detection of outliers based on samples with extreme leverages, large residuals in the X block
(spectral outliers) or in the Y block (prediction outliers) were detected at the 95% confidence
level. The number of latent variables (LV) was chosen based on the smallest RMSECV
values estimated using random subsets (10 data splits and 20 iterations). The figures of
merit of the models showed that the predictions were not very accurate and thus could not
be considered satisfactory. To confirm the model significance, a permutation test was per-
formed, in which 100 interactions were performed comparing permuted with unpermuted
models considering self-prediction and cross-validation. The Wilcoxon signed-rank test
(Wilcoxon) indicates that the models are significant at a 95% confidence level. Moreover,
in the self-prediction approach, the signed-rank test (sign test) and randomization t-test
(Rand t test) were above 0.05, indicating that these models (permuted and nonpermutes)
are not significantly different at the 95% limit. Since this outcome could be attributed to the
possible presence of a high amount of irrelevant and/or noisy variables in the data set, the
OPS variable selection was conducted.

The comparison of the PLS models with and without variable reduction for DDM
quantification is shown in Table 1. The best models were obtained autoOPS algorithm,
with a window of 10 and increments of 5, which is coherent with the literature [32]. The
number of variables used to build the models was significantly reduced from 993 to 205
for CPMG data and from 5965 to 75 for CWFP-T1 data [36]. The models were obtained
with 3 LV, providing parsimonious models. It can be seen that the variable selection steps
increase the accuracy of the CWFP-T1 model. Comparing the results obtained with “full
data”, the OPS-PLS model attained the best results with an RMSEP value of 1.38% and
R2

pred of 0.90. Conversely, results suggested that the variable selection did not significantly
improve the CPMG model in terms of RMSEP, RPD, and REP. A permutation test indicated



Molecules 2022, 27, 4434 6 of 10

that both OPS-PLS models were substantially different from the unpermuted ones and did
not display overfitting at a 95% level.

Table 1. Performance parameters of the PLS models obtained using all variables and those selected
by the OPS algorithm for DDM quantification.

CPMG CWFP

Full OPS Full OPS

Nvars * 993 205 5965 75
LV 3 3 3 3

RMSEP ** 1.51 1.53 1.84 1.38
R2

pred 0.49 0.67 0.82 0.90
RPDpred 1.37 1.36 1.46 1.95

REPpred ** 9.55 9.67 11.60 8.70

* number of variables. ** % w w−1.

The RPD value can also confirm the good prediction capacity of the CWFP-T1 model.
RPD is a dimensionless figure of merit specifically used to evaluate the trueness of multi-
variate calibration models in absolute terms. According to the literature [37–39], desirable
calibration models must have an RPD higher than 2.4, while RPD values between 2.4 and
1.5 are considered acceptable. Models with RPD less than 1.5 are considered unusable.
Thus, the RPD value for the CWFP-T1 model was considered satisfactory, whereas the RPD
value for the CPMG model was considered unusable. The REP was another figure of merit
calculated to evaluate the trueness of the models, whose values were 9.55 and 8.70% w w−1,
for the CPMG and CWFP-T1 models, respectively. This scenario is completely acceptable
once the analysis was performed directly on the packaged commercial products. These
results can also be graphically visualized in Figure 3, where the measured vs. predicted
plots for both the calibration and validation sets are displayed.

Figure 3. Plots of reference versus predicted values for the calibration (black circles) and validation
(white circles) samples for (a) CMPG and (b) CWFP-T1.

Similar approaches were explored to quantify FWM, FDM, and moisture in the RC
samples. The commercial samples presented FWM contents from 33 to 73% w w−1, FDM
contents from 9 to 30% w w−1, and moisture contents from 56 to 77% w w−1. The PLS
models were developed using the autoOPS algorithm, with a window of 10 and increments
of 5. The number of variables used to build the models was 205 and 75 for CPMG and
CWFP-T1, respectively. The best models were obtained with 4 LV. Results showed that the
CPMG models are inadequate to predict fat in wet and dry matter and moisture in the
RC samples, with lower values of R2

pred (<0.28) and RPDpred (<1.26) and higher values
of RMSEP and REP (>7.71 w w−1) (Table 2). Furthermore, a permutation test indicated
that models were not significantly different from the unpermuted ones at the 95% level.
Conversely, the models developed using CWFP-T1 data showed to be suitable with R2

pred
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of 0.92, RMSEP of 4.71% w w−1, REP of 8.79% w w−1 and RPDpred of 2.92 for fat in wet
matter, R2

pred of 0.85, RMSEP of 3.28% w w−1, RPDpred of 16.68% w w−1 and RPDpred of
2.32 for fat in wet matter the model and R2

pred of 0.70, RMSEP of 3.00% w w−1, REP of
4.65% w w−1 and RPDpred of 1.77 for moisture.

Table 2. PLS models obtained for FDM, FWM, and moisture quantification using the OPS algorithm.

CPMG CWFP-T1

Fat in Dry
Matter

Fat in Wet
Matter Moisture Fat in Dry

Matter
Fat in Wet

Matter Moisture

RMSEP * 10.90 6.12 4.97 4.71 3.28 3.00
R2

pred 0.28 0.23 0.050 0.92 0.85 0.70
RPDpred 1.26 1.24 1.07 2.92 2.32 1.77
REPpred * 20.35 31.13 7.71 8.79 16.68 4.65

* % w w−1.

The reference vs. predicted values for (a) FWM (% w w−1), (b) FDM (% w w−1) and (c)
moisture content (% w w−1) by using CWFP-T1 decays combined with the OPS selection
variable method are shown in Figure 4.

Figure 4. Plots of the reference versus predicted values for the calibration (black circles) and validation
(white circles) samples for (a) FWM, (b) FDM, and (c) moisture obtained with CWFP-T1 data.

Regression models were also evaluated by correlating the T1 or T2 values against the
moisture, fat, and defatted dry matter contents (univariate approaches) and combining T1
and T2 values (multivariate approaches). However, results obtained with the full TD-NMR
decays showed better predictability, with a higher correlation coefficient. Therefore, only
these results were shown in detail in the manuscript.

Methods based on near- and mid-infrared spectroscopy have been reported in the
literature for moisture and fat determination in dairy products, especially in cheese [40].
Nevertheless, no study on RC samples was found. A procedure to quantify fat and moisture
in cow mozzarella cheeses by using reflectance near-infrared spectroscopy has been devel-
oped and validated [37]. The PLS models were constructed within the ranges from 38.7 to
58.0% w w−1 on dry basis for fat and from 41.5 to 55.1% w w−1 for moisture, providing
RMSEP of 2.1 and 0.9%, respectively. The performance of near- and mid-infrared spec-
troscopy to determine several quality parameters of cheese, including moisture and fat was
compared [41] and the results showed that near-infrared spectroscopy was more accurate
than mid-infrared, with RPD of 2.14 and 3.38% for fat and moisture, respectively [41]. These
infrared procedures showed better predictability than the results acquired with TD-NMR.
However, the proposed TD-NMR relaxometry method is interesting because it is applicable
in through-package determinations, which is not possible with the infrared ones. Thus, the
RC parameters can be predicted using TD-NMR relaxometry and chemometrics without
violating the seal of packages.
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4. Conclusions

Wide bore low field time domain NMR (TD-NMR) relaxometry data, modeled by
chemometrics methods, can be a fast and non-invasive procedure to predict fat, defat-
ted dry mass, and moisture content in RC samples. The models were developed using
45 commercially available RC samples (27 traditional, 9 light, 4 vegan, 3 lactose-free, and
2 fibers). The PLS models obtained with T1 relaxation time measured with a single shot
CWFP-T1 pulse showed better predictability than the models evaluated with T2 relaxation
time measured with the CPMG pulse sequence. In addition, the PLS model performances
were improved when combined with OPS variable selection method. Therefore, CWFP-T1
data modeled with chemometrics can be a fast method to monitor the quality of RC directly
in commercial packages. However, the potential of CWFP-T1 sequence in TD-NMR spec-
trometer still needs to be verified with a larger number of RC samples to obtain a robust
regression model to predict fat, moisture, and defatted dry matter.
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