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Abstract

When a degraded two-tone image such as a ‘‘Mooney’’ image is seen for the first

time, it is unrecognizable in the initial seconds. The recognition of such an image is

facilitated by giving prior information on the object, which is known as top-down

facilitation and has been intensively studied. Even in the absence of any prior

information, however, we experience sudden perception of the emergence of a

salient object after continued observation of the image, whose processes remain

poorly understood. This emergent recognition is characterized by a comparatively

long reaction time ranging from seconds to tens of seconds. In this study, to explore

this time-consuming process of emergent recognition, we investigated the

properties of the reaction times for recognition of degraded images of various

objects. The results show that the time-consuming component of the reaction times

follows a specific exponential function related to levels of image degradation and

subject’s capability. Because generally an exponential time is required for multiple

stochastic events to co-occur, we constructed a descriptive mathematical model

inspired by the neurophysiological idea of combination coding of visual objects. Our

model assumed that the coincidence of stochastic events complement the

information loss of a degraded image leading to the recognition of its hidden object,

which could successfully explain the experimental results. Furthermore, to see

whether the present results are specific to the task of emergent recognition, we also

conducted a comparison experiment with the task of perceptual decision making of

degraded images, which is well known to be modeled by the stochastic diffusion

process. The results indicate that the exponential dependence on the level of image

degradation is specific to emergent recognition. The present study suggests that
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emergent recognition is caused by the underlying stochastic process which is

based on the coincidence of multiple stochastic events.

Introduction

Visual object recognition requires a match to be established between an input

image and an appropriate object representation stored in the high-level visual

system [1, 2]. When an image is severely degraded, as in the cases of the

‘‘Dalmatian dog’’ [3] or Mooney images [4–8], it appears meaningless when seen

for the first time because the bottom-up processing of the image, whose

descriptions of objects are partly lost owing to degradation, does not provide

sufficient information to determine an object representation to match. This deficit

of information can be supplemented by top-down processing, in which higher-

order cognitive processes of expectations or attentional controls based on

knowledge about the object guide lower levels of processing such as interpolation

or segmentation of the defective image [9, 10]. Many studies have shown that the

top-down processing of object information, which is provided by previous

viewing of the original undegraded image [5–8, 11–13], a visual context [14], or

an instruction using a nonvisual context [15, 16], effectively facilitates recognition

of an object hidden in a degraded image. However, even in the absence of any

such information for top-down processing, with continued observation, hidden

objects in degraded images can be recognized in an emergent manner, being

frequently accompanied by a feeling similar to the ‘‘Aha!’’ [13] or Eureka

experience [17]. This emergent recognition (ER) is characterized by a

comparatively long reaction time (RT) ranging from seconds to tens of seconds,

whereas detection or recognition of unambiguously depicted objects typically

requires a RT of within a second or so as shown by many studies [18–21]. This

long RT, which has seldom been investigated in quantitative studies, does not

seem to be explained by simple combinations of bottom-up and top-down

processes, suggesting that a separate neural mechanism is involved in the search

for object representations that can match defective input patterns.

To explore this time-consuming process of ER, we measured the RTs for

recognition of degraded images in this study. Subjects (n591) were asked to

recognize degraded images of various objects. In total, 90 degraded images of

objects in various categories were used, all of which were newly created through

monochromatic binarization of color images to prevent recognition based on

prior knowledge of the objects. Our results demonstrated that the time for

recognition of degraded images follows a particular exponential function, which is

determined by two parameters: subject’s capability and task difficulty caused by

image degradation. To explain this function, we developed a neurophysiology-

inspired theoretical model of stochastic process. In this model, although some

components of the object’s representation are eliminated by image degradation, a
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stochastic process is employed to search for the missing components that

complete the representation of the object. This process requires a certain amount

of time, which explains the delay in RTs for recognition of degraded images. The

results showed that our model successfully accounted for the function obtained in

the experiment, suggesting that the stochastic search process underlies the ER.

To see whether the obtained results were specific to the ER task, we also

conducted a comparison experiment in which the task of perceptual decision

making that is known to involve a certain stochastic process was compared with

the ER task. The result showed a remarkable difference in their RT distributions

suggesting that the exponential increase of time according to task difficulty may

be a characteristic specific to ER.

Results

Measurement of time for recognition of degraded images

Ninety new degraded images were created using monochromatic binarization of

color images, each of which contained a distinct object that could be easily

described verbally. Examples of the degraded images and their original color

images are shown in Figs. 1A and 1B, respectively. Subjects were instructed to

press a key as quickly as possible when they recognized something meaningful in

each degraded image presented on a monitor. The image on the monitor was

turned off immediately when the key was pressed, and the RT was recorded.

Subjects were then required to report verbally what they had recognized to the

experimenter. Although a degraded image may have multiple interpretations, only

the object shown in the original image was accepted as correct. So that trials were

not interminable, the presentation time of each image was limited to 30 s, after

which the image was turned off without revealing the correct answer, and the next

trial was initiated. To estimate delay in RT for recognition of each degraded

image, separate sessions were conducted for measuring RTs for recognition of

degraded images and their original color images. We subtracted RT values for the

original images from those for their corresponding degraded images, assuming

that this subtraction eliminates the time taken for the common processes. We

refer to this time difference as the ‘‘search time’’ required for recognition of

degraded images, based on the idea that this delay reflects the time-consuming

search process for an object representation that matches the degraded image.

Fig. 2A shows the cumulative distributions of the search times for all subjects

on a logarithmic scale. Distributions for each degraded image were well fitted to a

normal distribution (average goodness of fit: r250.97 across images). A highly

correlated linear relationship was found between the means, m, and standard

deviations (SDs), s, of the fitted normal distributions (s~AmzB, r2~0:89;

Fig. 2B). The means, m, can be reasonably regarded as indicating the difficulty of

recognition of each image.

Individual subject’s performance in each trial was rated using a standard score

(z-score) that represents a standardized value for each subject’s logarithmic search
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time, log t, in the distribution for each image: z~{
log t{m

s
~{

log t{m
AmzB

. Here

the sign is reversed so that a shorter search time corresponds to a higher z-score.

Fig. 3 shows scatterplots of the z-score and the distribution mean, m, of three

typical subjects. The two parameters are apparently independent. The average

correlation coefficient across subjects was 0.09¡0.27. (In this paper X¡Y always

indicates mean ¡ standard deviation.) The histograms show normal distributions

for each subject’s z-scores. The mean z-scores, �z, differed significantly among the

subjects. Therefore, �z can be considered as indicating each subject’s capability to

recognize degraded images irrespective of image difficulty. This knowledge of

subject-intrinsic capability allows us to express an expected value (i.e., a within-

subject intertrial mean) of log t, logt, for an image with the mean m by using the

relation of �z~{
log t{m
AmzB

~{
log t{m
AmzB

, although in actual experiments each

image was presented only once to each subject. With simple transformations of

M~
1

log e
mz

B
A

� �
and Z~

1
1{A�z

, this relationship is converted to a more

implicative form:

Fig. 1. Examples of degraded images and their original color images used in the experiment. (A)
Degraded images were created using monochromatic binarization of color images (see Materials and
Methods). The examples represent various levels of difficulty. The numerical labels used in Figs. 1B, 2A, 2B,
5A, 5B, and 8 are consistent with those presented here. (B) The original images of the examples in Fig. 1A.

doi:10.1371/journal.pone.0115658.g001

Emergent Recognition of Degraded Images

PLOS ONE | DOI:10.1371/journal.pone.0115658 December 26, 2014 4 / 32



t̂~Ce
M
Z ð1Þ

where t̂ is the mean search time (10log t averaged on a logarithmic scale), and C is a

time constant (C~10{B
A). Considering the indications of m and �z described

above, hereafter we refer to M and Z as ‘‘image difficulty’’ and the ‘‘subject’s

capability,’’ respectively. Thus, equation (1) indicates that the search time for

recognition of a degraded image follows the function of the image difficulty and

the subject’s capability.

Furthermore, a periodic distribution was found for image difficulty, M,

indicating that the difficulty could be scaled by the set of natural numbers (Fig. 4).

Thus, the mean search time is given by an exponential function of the natural

number that reflects M in equation (1). One of the most likely cases in which the

time until a certain outcome is given by an exponential function of a natural

Fig. 2. Distributions of search times across subjects. (A) Cumulative distributions of logarithmic search
times (obtained within the time limit) across subjects, each of which represents one of the 90 degraded
images. Broken lines indicate the presentation time limit (30 s). Numerical labels from 1 to 10 indicate the
example stimulus images from Fig. 1. Inset: normal probability plots of logarithmic search times versus normal
scores for the example stimuli, each of which is optimally fitted by a line that represents a normal distribution.
(B) Relationships between means, m, and SDs, s, of the normal distributions fitted to logarithmic search time
distributions for all stimuli of degraded images. The linear regression s~AmzB provided the values A~0:328
and B~0:439. Thus, the time constant C~10{B

A~0:046 [s] in equation (1).

doi:10.1371/journal.pone.0115658.g002
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number is that the outcome is defined by the simultaneous occurrence of multiple

stochastic events. As a similar example, the mean number of trials until a

gambling machine shows an assigned picture on all reels is given by an

exponential function of the number of the reels. Therefore, the present result

suggests that the time-consuming process of ER may be theoretically accounted

Fig. 3. z-score distributions of examples of individual subjects. Left panel shows scatterplots of z-scores
versus distribution mean, m, for three typical subjects [the mean z-scores of subjects A, B, and C were the
fourth highest (�zA~1:05), median (�zB~0:04), and fourth lowest (�zC~{0:89) of all subjects, respectively].
Broken lines indicate regression lines of z-scores on the distribution mean for each subject. The correlation
coefficients for Subjects A, B, and C were 20.06, 0.07, and 20.05, respectively. Right panels show
histograms of z-scores from these three subjects. Each bar has a bin width of 0.5. Thus, the number of
observed z-scores (indicated by a bar at z0) includes z0{0:25vzƒz0z0:25. Each curve is a fitted normal
distribution (r2~0:95, averaged over all 91 subjects). Mean z-scores significantly differed between subjects
(unpaired, two-tailed t tests, �zA versus �zB: t82~5:12, Pv10{5; �zB versus �zC : t71~5:74, Pv10{6).

doi:10.1371/journal.pone.0115658.g003

Fig. 4. Histogram of image difficulty,M, scaled by distribution period, k. The period, k, was determined to
equal 1.17 by scanning from 0.5 to 5.0 at 0.01 intervals to maximize the observed frequency of the decimal
fraction of M/k in the interval {0:125vM=kƒ0:125. Inset: ratios of observed decimal fractions (error bars
indicate standard errors of means (SEM)). The ratio in the quarter interval centered at 0 was significantly
larger than those at 0.25, 0.5, and 0.75 (paired, one-tailed z test for two population proportions [57], n590,
*Pv0:05, **Pv0:005).

doi:10.1371/journal.pone.0115658.g004
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for by a stochastic process model of coincidence of multiple stochastic events,

whose number reflects M.

A neurophysiology-inspired theoretical model of emergent

recognition

To construct a theoretical model that accounts for the empirical formulation (1)

of ER, we considered neural representations of visual objects in the high-level

visual system with reference to the knowledge accumulated in neurophysiological

studies. The inferior temporal (IT) cortex of human and monkey contains high-

level visual areas (e.g., [22]), and neuronal representations of objects in the IT

cortex have been well investigated in monkeys. Neurons in the IT cortex

selectively respond to particular objects (e.g., a face or a hand) or an object’s local

features (e.g., a rectangle or a star shape) [23–25]. IT neurons with similar

selectivity are clustered into columnar structures [25]; an object’s image activates

multiple neural clusters, each of which represents a visual feature of the object or a

spatial relationship between the features [26–28]. In particular, neural clusters

that responded to certain features were effectively silenced when these features

were removed from the images [26]. These findings support the idea of

‘‘combination coding,’’ which proposes that an object is represented by a

combination of simultaneously activated neural clusters, each of which represents

a visual feature of that object [24, 26–29]. Because the removal of local features

silences the corresponding neural clusters, it seems to be natural to assume that

bottom-up processing of a degraded image of an object fails to activate clusters in

the high-level visual system that respond to the features eliminated by image

degradation. It is known that even in the absence of selective sensory signals

cortical neurons generate spontaneous firings [30]. These firings can be

approximated by a Poisson process (i.e., a typical stochastic process of

independent discrete events) [31, 32]. Thus it seems to be plausible to presume

that neural clusters that are selective to the eliminated features would exhibit

stochastic activity despite the absence of the selective sensory signals.

Being inspired by the idea of combination coding of visual objects as

mentioned above, we constructed a descriptive theoretical model of ER based on

the following assumptions. Recognition of an object hidden in a degraded image

is assumed to be due to the combination of components representing the object.

The components are assumed to be missing when their corresponding sensory

signals are eliminated by the image degradation (hereafter, referred to as ‘‘missing

components’’). We assumed that each of the missing components shows

stochastic activation in a Poisson-process manner and that coincidental (i.e.,

simultaneous in a stochastic manner) activation of all the missing components

leads to the complete combination representing the object. Here, for an object in

the image, n and t respectively denote the number of missing components of the

object and the time interval within which all the n missing components must

become active enabling the simultaneous activation required for representing the

object. For a given subject, p denotes the probability of the Poisson process of
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activation of a missing component during the interval t. Then the occurrence rate

of the Poisson process of effective coincidental activation is given by

l~
1{e{pð Þn

t
%

pn

t
. The search time is defined as the time interval from the onset

of steady activation caused by bottom-up processing until the occurrence of

coincidental activation. The probability density function of the search time t is

given by f (t)~lexp({lt) [33]. The mean of log t is given by

log t~
ð?

0
log t:f (t)dt~{ log l{c log e,

where c is Euler’s constant (%0:5772) [34], so that an expected value of the search

time averaged on a logarithmic scale is given by

t̂~10log t~e{cte{nlnp:

This expression shows the same mathematical structure as equation (1). Thus,

we can relate the parameters of the experiment and the model by regarding both

the equations as equivalent and noting that n and p are given for an image and a

subject, respectively:

M~kn, Z~{
k

ln p
, C~e{ct ð2Þ

where k is a constant. Because M divided by its distribution period (51.17) results

in a natural number (Fig. 4), setting k to this period constrains n to the set of

natural numbers. In the second expression, letting p0 denote the probability, p, of

a subject whose score �z is the population mean (�z~0, equivalently Z~1), we

obtain k~{lnp0, which indicates that for the subject with the mean score, the

activation probability of a missing component is given by p0~e{k~0:310 during

the interval, t~Cec~0:082 s.

Using values of n (rounded to the nearest natural number) and p, which were

respectively obtained from the 90 values of M of the experiment and from the 91

values of �z generated with a standard normal distribution, Monte Carlo

simulations of the Poisson processes of coincidental activation were conducted.

Fig. 5 shows that the model successfully accounted for the characteristics of the

experimental results regarding the normal distributions of logarithmic search

times (Fig. 5A), the linear relationship between the distribution means and SDs,

and the discreteness of the means (Fig. 5B). On the other hand, the model showed

slight but systematic differences from the experimental results of the SDs

(Fig. 5B). In the next section, we show that these differences in SDs can be

eliminated using the model-based corrected method of data analysis, in which the

model provides a rationale for evaluating the distribution SD.
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Model-based analysis of search time distribution

In this section, relying on the validity of the model, which was demonstrated by its

success in accounting for the characteristics of the phenomenon, the distribution

of search times is theoretically analyzed based on the model to find causes of the

observed differences in the SDs between the experiment and the model (Fig. 5B).

As described above, the probability density function of the search time t for a

given subject is denoted by fl(t)~l exp ({lt), where the subscript l indicates that

the rate of coincidental activation is fixed for the subject, and the within-subject

(i.e., intertrial) mean of log t is given by log twithin~{ log l{c log e. The within-

subject variance of log t is given by

Fig. 5. Monte Carlo simulations of the theoretical model. (A) Cumulative distributions of logarithmic search
times, defined as the time from search onset until coincidental activation of the missing components (see main
text). The numbers of missing components, n, for example stimuli (1) to (10) were 2, 2, 3, 3, 4, 4, 5, 6, 7, and
11, respectively. Broken line indicates the presentation time limit (30 s) used in the experiment. (B)
Relationships between means and SDs of logarithmic search time distributions of the model results (blue
triangles) in comparison with those of the experimental results (red dots; the same as in Fig. 2B, including
labels for example stimuli).

doi:10.1371/journal.pone.0115658.g005
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s2
within~

ð?
0

log t{log twithin

� �2
fl(t)dt

~ log eð Þ2
ð?

{?
x{�xð Þ2exp ({xz ln l) exp { exp ({xz ln l)f gdx,

~( log e)2:p
2

6
%0:55702

where x~{lnt and the integral of the function by x gives the variance of a

Gumbel distribution, which is a constant regardless of the value of l [35]. As for a

population of subjects, where the rate l varies among the subjects, g (l) denotes

the between-subject probability density function of l in the population. The mean

and variance of log t observed in the population are given by

log t~
ð?

0
log t:

ð?
0

fl(t)g(l)dl

� �
dt~{log l{c log e,

where log l~

ð?
0

log l:g(l)dl, which denotes the between-subject mean of log l,

and

s2~

ð?
0

log t{log t
� �2

ð?
0

fl(t)g(l)dl

� �
dt

~

ð?
0

ð?
0

log t{log twithin

� �2
fl(t)dtz

ð?
0

log twithin{log t
� �2

fl(t)dt

� �
g(l)dl,

~s2
withinzsbetween

2

where s2
between~

ð?
0

log l{log l
� �2

g(l)dl, which denotes the between-subject

variance of log l in the population. Therefore, the observed variance of log t is the

sum of within- and between-subject variance as follows:

s2~0:5572zsbetween
2: ð3Þ

Although equation (3) requires that the SD observed in the experiment, s, be

larger than 0.557, Fig. 6A shows SD of ,0.557 for some experimental data,

particularly in cases where the difficulty level was low, indicating that the

experimental distributions were narrower than the theoretical ones to a certain

degree. This discrepancy may have been caused by differences in the estimation of

experimental search times for the following reason: we estimated the search time

for each degraded image by subtracting the RT for its corresponding color image

from that for the degraded image, with the intention of eliminating the time taken

for processes common to the two images, thereby, obtaining the search process.
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These common processes include making decisions on what is being recognized

prior to the motor response of key pressing. Recent studies on perceptual decision

making have shown that the decision-making process is a separate stage from the

preceding sensory processing and subsequent motor response stages. In this

decision stage, sensory information is integrated to allow formation of a judgment

irrespective of sensory and motor modalities [20, 36, 37]. The rate of decision

making depends on the amount of sensory information provided by the preceding

sensory processing, taking longer time to integrate poorer sensory information to

obtain the amount necessary for making a decision [38–40]. In addition, it is

shown that the RT required to recognize an unambiguously drawn object in a

color image is approximately 100 ms shorter than that required to recognize the

same object in a gray-textured image, indicating that sensory information

provided in color accelerates decision making of object recognition [21].

Therefore, in the present study, the decision-making stage of original color images

might take shorter time than that of degraded images because the sensory

processing of color images provided sufficient sensory information to aid in

decision making, while sensory processing of degraded images provided only

minimal information to represent the object with the help of stochastic activation

of the missing components. If this is the case, the search time for a degraded

image is estimated to be longer than its true value because the subtraction of RT

for its corresponding original image is inadequate to eliminate the entire time

taken for processes other than the search process for the degraded image. This

leads to a rightward shift of the distribution of search times on a logarithmic scale,

Fig. 6. Model-based corrections. (A) Relationship between means and SDs of the distributions of logarithmic search times for all stimuli without and with
the model-based interval correction. Original data without the interval correction (open black dots; the same as in Fig. 2B) reveals a substantial number of
stimuli with SDs of less than the constant of within-subject SD (50.557) indicated by the broken line, which is the theoretical minimum of the SD. The interval
correction using reduction by 300 ms resulted in SDs effectively exceeding 0.557 (red dots) (see Material and Methods for details of the interval correction).
(B) Relationship between means and between-subject SDs of the distributions of logarithmic search times. To obtain between-subject SD, s between, the
model-based SD correction, sbetween ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2{0:5572
p	 


, was applied to the observed SD, s, after the interval correction had been applied (see main text for the
SD correction). Values of s below 0.557 were converted to sbetween~0 (12% of all data points). The linear regression equation sbetween~AcmzBc, which was
applied to all data including those with sbetween~0, had an r250.68, Ac~0:304, and Bc~0:364.

doi:10.1371/journal.pone.0115658.g006
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and a compression in width, resulting in a smaller SD for the degraded image

compared with the true value. Although a detailed investigation of the time

required for decision making of the ER task is beyond the scope of this study, we

found that reducing the experimental search times by 300 ms effectively improved

the SDs such that the results satisfied the model’s requirements (Fig. 6A). We

refer to this reduction of search time by a certain interval (300 ms) as the model-

based ‘‘interval correction,’’ and hereafter we employ the search times to which

the interval correction has been applied.

The present model also provides a rationale for the linear relationship between

the means and SDs of search time distributions, which is critical for obtaining a

consistent relationship between the experiment and the model. Using the above

relations, including l~
pn

t
, we obtain

m~log t~{log l{cloge~{nlog pz log e{ct

and

sbetween~slog l~nslog p,

thus

sbetween~AcmzBc ð4Þ

where Ac~{
slog p

log p
, Bc~

slog p

log p
loge{ct, and the subscript c denotes ‘‘corrected.’’

Equation (4) indicates that the between-subject SD, s between, has an exactly linear

relationship to the mean, m. Although the observed SD, s, was empirically found

to have a linear relationship to m in Fig. 2B, equations (3) and (4) show that this

linearity is an approximation of the relation s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AcmzBcð Þ2z0:5572

q
, whose

slope approaches Ac with increasing m. To determine Ac and Bc using the

experimental results, we applied a conversion of the experimental values of s (red

dots in Fig. 6A) to sbetween~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2{0:5572
p

(dots in Fig. 6B), which we refer to as

the model-based ‘‘SD correction.’’ The linear regression of s between on m provided

the corrected values of the parameters of Ac and Bc (Fig. 6B).

With the SD correction, we obtained a corrected value of a subject’s mean z-

score using s between instead of s as follows:

zc~{
log t{m
sbetween

~{
log twithin{m

sbetween
~

log p{log p
slog p

,

which indicates that the corrected mean z-score of a subject is a standard score of

the subject’s log-activation probability, log p. Actually, zc, calculated using the

experimental values, followed a standard normal distribution (r2~0:98;

20.16¡0.93, averaged across subjects). Defining the corrected values of M as

Mc~
1

log e
mz

Bc

Ac

� �
gave discrete periodic peaks of Mc~kcnc, where
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kc~{ ln p0c~1:44 (Fig. 7), offering p0c~0:237. The number of missing

components, nc, was obtained by rounding the experimental values of Mc/kc to the

nearest natural number. Using the corrected values of kc,

Fig. 7. Histogram of image difficulty scaled by distribution period after application of the model-based
corrections. The period, kc, of the distribution of image difficulty, Mc, was determined to be 1.44 according to
the same procedure as that in Fig. 4. Inset: ratios of observed decimal fractions of Mc/kc (error bars indicate
SEM). The ratio in the quarter interval centered at 0 was significantly larger than those at 0.25, 0.5, and 0.75
(paired, one-tailed z test for two population proportions [57], n590, *Pv0:05, **Pv0:005). Values ofMc/kc were
rounded to the nearest natural numbers to be used as the numbers for the missing components, nc, in the
model. Although the three smallest values of Mc/kc were rounded to nc~0, these were regarded as nc~1
because the search times in case of nc~0 should be zero after application of the interval correction but this
was evidently not the case for their corresponding stimuli (Fig. 2A).

doi:10.1371/journal.pone.0115658.g007

Fig. 8. Relationships between means and SDs of search time distributions after application of the
model-based corrections. Relationships between means and SDs of logarithmic search times of the
experimental results, which are shown by red dots in the same manner as in Fig. 6A with the labels for the
example stimuli, and model results, which are shown by blue triangles, after application of the model-based
corrections. The numbers of the missing components, nc, for example stimuli (1) to (10) were 1, 1, 2, 2, 3, 3, 4,
5, 6, and 9, respectively. The model-based corrections improved agreement between the experimental and
model results with the SD differences observed before the corrections (Fig. 5B) being successfully eliminated.

doi:10.1371/journal.pone.0115658.g008
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tc ~10
{

Bc
Acec~0:113½s�

� �
, and the sets of zc and nc obtained above, we conducted

Monte Carlo simulations of the Poisson processes of coincidental activation.

Fig. 8 shows that the differences in SDs observed between the model results and

the experimental results (Fig. 5B) are successfully eliminated using the model-

based corrections.

To summarize these results, the model-based analysis improved agreement

between the experimental results and the model results, and enhanced the

consistency of the explanation in terms of the standard normality of subject’s z-

score distribution and the smallest image difficulty corresponding to one (it was

two without the corrections in Fig. 4).

Comparison with other cognitive phenomenon involving

stochastic process

While the present results show that the properties of ER can be explained by the

underlying stochastic process model, it is well known that stochastic processes also

play an essential role in some other cognitive tasks (e.g., [18]). One of the most

intensively studied among these tasks is perceptual decision making (PDM), in

which subjects are required to discriminate perceptual stimuli (e.g., degraded

object images) as belonging to one of two response categories [20, 36–42]. The

variation of responses in PDM is not only due to the quality of the stimuli, but

also from the intrinsic intertrial variability, leading to a statistical distribution of

the RTs and the occurrence of error responses. Such statistical properties of PDM

are successfully explained by the Ratcliff drift diffusion model (DDM) [41, 42]. In

DDM the decision time is determined as the time for the system state to reach one

of the two decision criteria (boundaries) for the responses. The system state is

subject to two components of drift and diffusion. The drift component represents

the accumulation rate of sensory information of the stimulus, while the diffusion

component represents random fluctuations, which give rise to stochastic

variations in the accumulation path and time to reach the boundary, and also

probabilistic arrivals at the wrong boundary leading to error (i.e., incorrect)

responses. The combination of accumulation (i.e., the drift component) and

stochasticity (i.e., the diffusion component) makes the DDM explain a wide range

of properties observed in PDM (see Materials and Methods for details of the

DDM). Since we expect similar general structures of PDM and ER in terms of

statistical distributions of RTs, longer RTs for more difficult images, and between-

subject variability, we conducted a comparison experiment of PDM and ER in

order to see whether alternative explanations similar to the DDM can also be

applied to ER (or vice versa) and what characteristics are specific to ER.

Employing another twenty-four subjects, who had not participated in the

original ER experiment, we conducted the comparison experiment that consisted

of two sections of PDM and ER, in which all subjects participated in this order.

The ER section and its data analysis were conducted in the same way as the

original ER experiment. In the PDM section we used 200 face images and 200

Emergent Recognition of Degraded Images

PLOS ONE | DOI:10.1371/journal.pone.0115658 December 26, 2014 14 / 32



house images, which were degraded to various degrees by randomizing the phase

of their Fourier components according to the weighted mean phase (WMP)

technique [43] (see Materials and Methods) (e.g., Fig. 9). Subjects were required

to discriminate between face and house images by pressing the assigned keys as

quickly as possible while maintaining a high level of accuracy.

To see whether the experiment of the PDM section captured characteristics of

the two-choice PDM tasks established in the previous studies, we obtained

latency–probability functions of the data (Fig. 10), in which mean RT is plotted

against the response probability (i.e., ratio of correct and error responses) for

classes of the signal-to-noise (SN) weight of stimuli (see Materials and Methods

for SN weight). This function can be seen as a parametric plot where the varying

Fig. 9. Examples of degraded images used in the perceptual decision making (PDM) section of the
comparison experiment. The examples are face and house images of Class 1, 6, and 10 of the signal-to-
noise (SN) weight (see Materials and Methods).

doi:10.1371/journal.pone.0115658.g009

Fig. 10. Latency–probability functions. (A) Latency–probability functions (see main text for explanation) of two typical subjects. Mean RT and response
probability were calculated in every two classes of the SN weight of stimuli (Class 1 & 2, 3 & 4, 5 & 6, 7 & 8, and 9 & 10). The results for face and house
stimuli are represented by the circles and squares respectively, and error bars indicate 2 standard deviations. The continuous lines are results of computer
simulations using the drift diffusion model (DDM) (see main text). Red and blue colors respectively stand for face and house stimuli. (B) Latency–probability
functions using the median of within-subject mean RT and the average of response probability across subjects.

doi:10.1371/journal.pone.0115658.g010
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parameter is stimulus difficulty, that is, class of the SN weight of images here

[42, 44, 45]. In this plot, at first the response data are separated into correct and

error, and each correct response with probability p, which is generally larger than

0.5, has a corresponding error response with probability 12p. As shown in

Fig. 10B, many subjects in this experiment showed asymmetric latency–

probability functions in which error responses were faster than their corre-

sponding correct responses to easy stimuli and were slower than those to

intermediate or difficult stimuli. This result is consistent with the view that the

asymmetry of the latency–probability function is a typical property of two-choice

PDM, which can be explained by the DDM whose intertrial-variability parameters

can be adapted to the asymmetric patterns [42, 45]. We fitted the DDM to the RT

data of each subject using the software fast-dm [46] to estimate the parameters of

the DDM that explain the empirical data optimally. Fig. 11 shows that the

estimated values of drift rates of the DDM increased according to the class of the

SN weight of stimuli, demonstrating that reasonable relationships were obtained

between stimulus quality (i.e., the SN weight) and drift rate that is a parameter

representing mean rate of information accumulation determined by the stimulus

quality. Using the obtained values of all the parameters of DDM we performed

Monte Carlo computer simulations of the drift diffusion process of DDM to

predict RTs and accuracy of each subject. The results showed that the predicted

and empirical values were generally close in most subjects (e.g., Fig. 10A). These

results indicated that the present experiment captured the primary characteristics

known about the PDM tasks.

Fig. 11. Means of estimated drift rates of the DDM averaged across subjects. Drift rate of each subject
was estimated for each class of the SN weight (see Materials and Methods). Error bars represent standard
deviation. (All the distributions across subjects passed the Kolmogorov-Smirnov test for normality (Pw0:2).)
Although the mean drift rates for house stimuli were estimated to be negative since the decision boundary for
house was lower (i.e., at zero) in the DDM, they are plotted with the reversed signs here.

doi:10.1371/journal.pone.0115658.g011
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To compare PDM and ER in a direct manner, we analyzed the PDM data in the

same way as the ER data. In the following analyses we dealt only with correct

responses of the PDM task because the error responses are related to the correct

responses in a certain manner predicted by the DDM as described above. Since RT

of PDM consists of decision and nondecision components, we first subtracted the

nondecision component, which was estimated by the DDM fitting (using fast-dm)

to data of each subject, from the RT to determine its decision component. For

each of the 400 images, the cumulative distribution of the decision times over all

subjects on a logarithmic scale was well fitted to a normal distribution (average

goodness of fit on a normal probability plot: r2~0:92+0:07 across images)

(Fig. 12A). The SN weight of image showed a high correlation with the mean of

logarithmic decision times over subjects (r~{0:87, Pv10{6 for face images;

Fig. 12. Distributions of decision times across subjects. (A) Cumulative distribution functions of
logarithmic decision times over subjects for the 20 classes of the SN weight, each of which includes about 20
images. Each line includes data points whose number is between 206 and 644. (Here, for the graph’s clarity
we drew 20 lines of the 20 classes instead of 400 lines of all the stimuli, but the statistical tests in the main text
were applied to each stimuli.) (B) Relationships between means and SDs of the distributions of logarithmic
decision times of Fig. 12A.

doi:10.1371/journal.pone.0115658.g012
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r~{0:84, Pv10{6 for house images, excluding far out outliers (0.6%))

indicating that the mean logarithmic decision time represents the image difficulty

in a similar manner to the ER experiment.

The mean and the SD of logarithmic decision times of the PDM, however, did

not show a significant correlation for face images (r~{0:009, P~0:89) and

showed a significant but not strong correlation for house images (r~0:47,

Pv10{6) (Fig. 12B). This small dependence of the SD on the mean is a

remarkable difference from the result of ER, in which the SD notably increased

with the mean (compare Fig. 12 with Fig. 2). In the following, we show that this

difference between PDM and ER can be explained based on their theoretical

models. Here we refer to the mean of logarithmic decision times over subjects as

image difficulty of the PDM task, denoted by d. As shown in Fig. 13, the drift rate

of DDM depended on the image difficulty in an approximately linear manner for

each subject. The average correlation coefficient between drift rate and image

difficulty was 20.919¡0.076 across subjects and image categories. Because these

linear relationships between drift rate and image difficulty showed a narrow range

of the intercepts along the image difficulty axis (the average of the d-axis

intercepts was 20.364¡0.077 across subjects and image categories), we regard the

d-intercept as a constant value of d0. Then we obtain a linear relation:

u~k(d0{d),

where u is a drift rate, dvd0, and k is a positive constant that depends on subjects

and image categories. (The average of k was 10.50¡2.66 across subjects and image

categories.) The mean decision time �t of a subject for an image of difficulty d is

approximately given by a=u, where a is the boundary separation of the subject,

unless u is very small [47], so that we obtain

Fig. 13. Relationships between drift rate of the DDM and image difficulty for two typical subjects. Drift
rates of the DDM were obtained for the SN weight classes of each stimulus category, and image difficulty was
defined as the mean logarithmic decision time over subjects (see main text).

doi:10.1371/journal.pone.0115658.g013
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log�t~ log (a=u)~ log a{ log k{ log (d0{d):

Because a and k depend on subjects but not on image difficulty, variability of

log�t over subjects is constant regardless of image difficulty. This leads to the

substantial independence of the SD of logarithmic decision times on the mean,

because the difference between the SDs of log�t and log t over subjects was

negligible (less than 0.03) according to our computer simulations of the DDM for

all the subjects. On the other hand, difficulty of the ER stimuli is connected to the

number, n, of stochastic events that co-occur to complement missing sensory

information (equation (2)). As described above, the co-occurrence of n stochastic

events can be modeled by a Poisson process with rate l~pn=t, so that the mean of

log t is given by log t~{n log pz log (te{c), where p is the event probability

relating to the subject’s capability and t and c are constant. Therefore, the

between-subject variability of logarithmic time of ER is determined by n times of

the between-subject variability of log p, leading to the notable dependence of the

SD on the mean of the observed distribution. Summarizing the explanation here,

the observed difference in the logarithmic time distributions of PDM and ER can

be accounted for by the different types of rate-limiting processes underlying the

two phenomena: in PDM the stimulus difficulty slows the process in a linear

manner while in ER the process is slowed according to the exponential function of

the difficulty.

To quantify between-subject variability of PDM, we adopted z-scores in

logarithmic decision time distributions over subjects following the ER analysis.

(The sign of z-score was reversed so that a shorter decision time corresponds to a

higher z-score.) We found that a subject’s z-score was independent of the image

difficulty because the correlation between a subject’s z-score and the mean of the

logarithmic decision time distribution was so low as 20.002¡0.132 averaged

across subjects. The within-subject mean z-scores differed significantly among

subjects (Fig. 14A). Thus we defined a subject’s capability of PDM (with regard to

the degree of quickness) as the mean z-score in a similar way to subject’s

capability of ER. The capability of PDM was correlated strongly with two

parameters of the DDM: the response-boundary separation (r~{0:907,

Pv10{6) (Fig. 14B) and the within-subject mean of drift rates standardized over

subjects (r~0:606, Pv0:005) (Fig. 14C), indicating that subjects with smaller

boundary separation and larger drift rate have larger capability. Thus, this

capability effectively captures between-subject variability in quickness of the PDM

in a manner consistent with the DDM framework. Since all subjects of the PDM

experiment also participated in the ER experiment, we obtained their capabilities

of ER (with the model-based corrections). As shown in Fig. 15, the capability of

ER had no correlation with the capability of PDM (r~0:097, P~0:653) (not with

either boundary separation (r~{0:145, P~0:498) or mean standardized drift

rate (r~0:134, P~0:533) of the DDM). The results suggest that neural modules

Emergent Recognition of Degraded Images

PLOS ONE | DOI:10.1371/journal.pone.0115658 December 26, 2014 19 / 32



associated with the rate-limiting processes of PDM and ER may be different

although both functions are related to visual recognition of degraded images.

To summarize the comparison experiment, the results showed remarkable

differences between PDM and ER in the properties of time distributions and the

subjects’ capabilities, suggesting that fundamental stochastic processes of the two

phenomena are of different types and that neural modules determining rate-

Fig. 14. Subject’s capability of PDM. (A) Histograms of z-scores of three typical subjects whose mean z-scores were the second highest (Subject F,
�zF~0:75), median (Subjects G, �zG~0:12), and second lowest (Subject H, �zH~{1:09) of all the subjects. Each bar has a bin width of 0.3. Each curve is a
normal distribution with the same mean and SD as the histogram data. Mean z-scores significantly differed between subjects (unpaired, two-tailed t tests, �zF

versus �zG: t673~10:24, Pv10{6; �zG versus �zH : t694~19:51, Pv10{6). (B) Relationship between subject’s capability of PDM and boundary separation. The
capability was defined as the mean z-score of the subject (see main text). (C) Relationship between subject’s capability of PDM and within-subject mean of
drift rates each of which was standardized over subjects in a stimulus class of the SN weight.

doi:10.1371/journal.pone.0115658.g014

Fig. 15. Scatterplot of capability of PDM and capability of ER over subjects. Data were obtained from
twenty-four subjects who participated in both PDM and ER experiments (see main text).

doi:10.1371/journal.pone.0115658.g015
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limiting stages may be different. In contrast to PDM, ER was characterized by an

exponential increase of time according to the image difficulty, which covered a

wide range of RTs from less than one second to tens of seconds.

Discussion

The present study of ER shows that the time-consuming process of recognizing an

object in a degraded image without any prior top-down information follows an

exponential function related to two independent parameters: image difficulty and

subject’s capability. This function was successfully accounted for by the stochastic

process model in which coincidental activation of the missing components of an

object leads to the complete representation of the object. The agreement between

the experiment and the model was improved by the model-based corrections of

data analysis, supporting the notion that the stochastic process is the underlying

mechanism of ER. To see whether the present results were specific to the ER task,

we conducted the comparison experiment in which the PDM task, which is

known to involve a certain stochastic process, was compared with the ER task. The

results showed that stimulus difficulty slowed the process in a linear manner in

PDM in contrast to exponential dependence in ER. The exponential time can

cover a very wide range of RTs from tenths to tens of seconds, which seems to be

specific to ER. Under situations requiring ER, it seems to be a reasonable strategy

for the visual system to keep every possibility open in attempting to identify an

obscure object by employing nonselective stochastic neural activation that may

match the deficient input pattern of the object by coincidence.

A study of functional magnetic resonance imaging in humans showed that the

timing of recognition of Mooney face images without prior exposure to

undegraded versions correlated with the activity in face-selective areas in the high-

level visual cortex, but not with that in the frontal or parietal areas, suggesting that

face-selective areas may play an important role as a rate-limiting step of Mooney

image recognition in the absence of sufficient top-down information [4]. This

result is consistent with the present study with respect to the critical role of the

high-level visual representations as a rate-limiting step of the ER. This result seems

to be in contrast to recognition facilitated by prior top-down information, in

which the frontal and parietal areas also play important roles [6, 7, 13, 16].

The hypothesis that stochastic activation of high-level visual system causes ER

may raise the question of why arbitrary neural activation does not normally lead

to visual hallucination of objects (i.e., perception accompanied with the reality of

objects that do not exist) in the absence of sensory stimuli. With regard to visual

perception with reality, studies using transcranial magnetic stimulation have

shown that disruption of the activity of the primary visual area V1, even after

activation of high-level visual areas, impairs visual awareness of percepts [48] or

perceptual clearness of objects [49, 50]. Physiological studies have shown that

feedback signals from high-level visual areas to the visual area V2 lacking

feedforward signals from V1 cannot drive neurons in V2 [51], an area responsible
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for representing illusory contours. These contours may be critical for recognizing

degraded images. These findings regarding the critical role of V1 suggest that

object perception with reality requires V1 activity to be driven at least partly by

the sensory stimulus of the object. Then, recurrent interactions between V1 and

the higher areas, which are thought to integrate complementary information of

spatiality of an image held by V1 and high-level representations into conscious

perception [52–55], may play an important role in selecting high-level activation

that can be compatible with V1 activity driven by sensory signals of a degraded

image in a manner that prevents hallucinations.

Materials and Methods

Ethics Statement

This study was approved by the Ethics Committee for Human and Animal

Research of the National Institute of Information and Communications

Technology, Japan. All subjects gave prior written informed consent in accordance

with the guidelines approved by this committee.

Subjects

Ninety-one healthy subjects (59 males and 32 females), aged 21.7¡1.8 years,

participated in the (original) emergent recognition (ER) experiments. (In this

paper X¡Y always indicates mean ¡ standard deviation.) All subjects were

recruited from academic environments and were paid for their participation. Each

subject had normal or corrected-to-normal vision and passed the tests of Visual

Object and Space Perception Battery (Thames Valley Test Company, Bury St

Edmunds, Suffolk, England). (Subjects of the comparison experiment are

described in the dedicated section below.)

Stimuli

Ninety digital color images were selected from clip-art collections (MasterClips

Image Collection (IMSI, Novato, California, USA), Photo Mantan

(DesignEXchange, Tokyo, Japan)) and personal photographs (e.g., see Fig. 9).

Each image contained a distinct object that could be easily described verbally (e.g.,

‘‘a dog lying with its head turned to the left’’). In the original image session

(described below), all subjects were able to identify the object in each image

correctly (with very few exceptions) with short reaction times (RTs) of

0.77¡0.42 s (averaged over stimuli and subjects). Thus, all subjects had

knowledge of all the tested objects, and all original images contained sufficient

information for the objects to be recognized. To avoid any interference due to

categorical bias, images of objects from various categories were selected: 5 were

images of human figures, 11 of domestic mammals, 17 of wild mammals, 11 of

birds, 9 of other animals, 5 of flowers, 11 of tools or foods, 12 of transportation,

and 9 of natural or architectural scenes.
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These color images were degraded by monochromatic binarization. A

binarization threshold was set for each image manually using Photoshop (Adobe

Systems, San Jose, California, USA) with the intention of distributing the

subjective difficulty of the degraded images within a recognizable range. Because

the binarization threshold for each image was arbitrarily determined on a 256-step

gray scale, this degradation process was unlikely to cause any artifactual

discreteness of the image difficulty found in this study (Fig. 4 and Fig. 7). Subjects

were seated 100 cm from a CRT monitor on which the stimulus images were

presented subtending 10˚ of visual angle on the longer sides (573 pixels) with

luminances of 40 and 0 cd?m22 in the white and black regions, respectively. The

images were presented on a black background.

Experimental sessions

Experiments were conducted with one subject at a time in a dark soundproof

room. They consisted of four separate sessions in the following order: practice,

degraded image viewing, original color image viewing, and simple RT

measurement. In the practice session, subjects experienced recognition of an

object hidden in a sample degraded image and were asked to be sure of their

recognition of the object referring to its original color image. Then, the

instructions were provided about the tasks for degraded images and color images

(as described below), and several practice trials were conducted using degraded

and original images specific to the practice session. In the sessions of degraded

image viewing and original image viewing, each image was used in a single trial

with a random turn. Each experiment required about one hour for completion

including short breaks provided between the sessions.

Tasks

For both degraded and original images, subjects were instructed to gaze at a

fixation point centered on the monitor until the image was presented in order to

control for their initial observation. Free eye movements were allowed after the

presentation of each image. Subjects were required to press a key as quickly as

possible when they recognized something meaningful in the stimulus image. The

image was turned off immediately after the key was pressed, and the RT was

recorded by a computer as the time interval between the stimulus onset and the

subject’s key press with a precision level of 30 ms. Subjects were then asked to

report verbally what they had recognized to the experimenter. Although degraded

images may have multiple interpretations (like the vase and faces in Rubin’s

ambiguous figure [9]), only the object shown in its original image was accepted as

correct. Subjects were encouraged to be as descriptive as possible. Similar but

distinct answers such as ‘‘a small animal like a squirrel’’ and ‘‘a prairie dog’’ that

described the correct object were equally acceptable. When answers were unclear,

the experimenter prompted the subjects to add more detail in order to confirm

recognition (e.g., ‘‘Please describe the position and posture of the object that you
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saw in the image’’). Subjects were informed if their answers were correct. When

the correct answer was provided, the next trial was conducted. When an incorrect

answer was provided, in order to prevent hesitation, repeated observations of the

same image were allowed until the accumulated presentation time reached the

time limit. The time limit was set to prevent trials of long duration. Each image

was presented for a maximum of 30 s, after which the image was turned off

without revealing the correct answer and the next trial followed. For each image,

at least five of the 91 subjects achieved correct answers within this time limit. Only

4% of all the successful trials of degraded images were obtained from the repeated

observations, and we included these data in the further analyses because

eliminating them had no qualitative influence on the results of this study.

In the session of simple RT measurement, a white disk was briefly presented 30

times at random intervals, and the subjects were required to press the key as

quickly as possible when they saw the disk. The grand mean value of simple RTs

was 0.26¡0.04 s (averaged across subjects). No correlation was found between

mean simple RTs and mean z-scores, �z, of subjects (two-tailed t test for

correlation: r~{0:0086 across subjects, t79~0:076, P~0:94), indicating that the

subjects’ capabilities were not influenced by their scores of simple RT.

Normal probability plot of logarithmic search times

For each degraded image, a normal distribution was fitted to the distribution of

logarithmic search times on a normal probability plot (Fig. 2A, inset) using the

least squares method excluding far out outliers that were larger than the upper

quartile plus 3 times the interquartile range (6.6% on average). The z-score of the

logarithmic search time was given by the inverse function of the standard normal

distribution whose probability was i=(Nz1), where i is the ascending ordered

rank of the logarithmic search time and N is the total number of subjects (N591).

Negative search times were given by a very low percentage (1.6%) of correct

answers mostly for the easiest degraded images. For example, RTs for a degraded

image and its original image were as short as 0.65 s and 0.80 s, respectively,

indicating that their difference was critically influenced by fluctuations in RT.

These cases did not provide logarithmic values, but were counted as the smallest

values in the cumulative distributions.

Subject’s capability

Subject’s capability, Z, was determined by using the definition, Z~
1

1{A�z
, where

�z was obtained by averaging z-scores for each subject. Because z-scores were

obtained only for correct answers achieved within the time limit (30 s), difficult

degraded images provided only high values, causing a bias in the z-scores toward

higher values. To avoid this bias, z-scores for the 43 easiest degraded images were

used for determining the averages. For these 43 images, at least 85% of subjects

achieved correct answers within the time limit. The mean of �z for all the subjects

was close to zero (0.03), which shows that the bias was minimal. In addition, �z
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followed a normal distribution (r2~0:98). Although it was based on only the 43

easiest images, �z was effectively applicable to all 90 images; for the other 47

images, an adequate ratio (95.1%; averaged across subjects) of logarithmic search

times was observed within the 95% prediction intervals of log t, which were

calculated from the 95% intervals of the z-scores.

To obtain a subject’s mean z-score with the model-based corrections, zc, the

corrected z-scores, zc, of each subject were selected for the 50 easiest degraded

images to avoid the bias. Then, zc for the five easiest images were excluded from

the averaging because they showed very large fluctuations due to extremely small

s between as the denominator in obtaining the corrected z-score by

zc~{
log t{m
sbetween

~{
log t{m
AcmzBc

(see Fig. 6B). The corrected z-scores for the

remaining 45 images were averaged to determine the corrected value of a subject’s

mean z-score, zc.

Monte Carlo simulation

The time until coincidental activation of n missing components of a subject with

mean z-score �z was calculated by computer simulation using Matlab (MathWorks,

Natick, Massachusetts, USA). Given the parameters t and k (see main text), a

Poisson process with a rate of
pn

t ~
e(A�z{1)kn

t
was simulated using the Monte Carlo

method, in which the occurrence of an activation over a time step of Dt~t=1000

with the probability
pn

t Dt v10{4ð Þ was determined using random numbers.

When the first Poisson event occurred at the j-th step, the corresponding search

time was given by jDt.

The model-based interval correction

Based on the argument that experimental search times may be longer than their

true values in the first analysis of the original ER experiment, resulting in their

narrower distributions on a logarithmic scale (see main text), the effects of

reducing search times to increase their SD were investigated. According to a

previous study of image discrimination, times required for decision making could

be shorter by approximately 300 ms to 400 ms for easy tasks than for difficult

tasks [40]. Therefore, reduction times of 0 (i.e., no reduction), 100, 200, 300, and

400 ms were applied to all search times obtained in the experiment. The results

showed that for each of the respective reduction intervals, the numbers of stimuli

with SD of ,0.557, which is the theoretical minimum of SD, were 46, 34, 19, 11,

and 5, indicating that the reduction of search times effectively increased the SDs.

In order to determine the appropriate reduction interval, these numbers were

compared with the expected values obtained in the Monte Carlo simulations of

our model. The simulations showed that SDs of ,0.557 were possible for a certain

ratio of stimuli owing to statistical fluctuations in the Poisson process that occur
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when a finite number of subjects (n591) is tested. The simulation results

(averaged over 1000 repetitions) showed that the ratios of stimuli with SD of

,0.557 were 38.1%, 5.2%, and 0.0% for the number of missing components of

n51, 2, and 3 or greater, respectively. Using these ratios and the number of n
values observed in the first and second peaks of their distribution, which were

respectively 16 and 25 (Fig. 4), the expected number of stimuli with SD of ,0.557

was estimated to be 7.4, which was closest to and not more than the experimental

number with a reduction interval of 300 ms (11). Using 300 ms as the reduction

interval, the interval correction together with the SD correction effectively

improved agreement between the experimental and model results (see main text).

As a result, the observation frequencies of 1 and 2 of n obtained after application

of the model-based corrections (Fig. 7) were respectively equal to those of 2 and 3

of n in the first analysis (Fig. 4), showing that this technique allowed the discrete

structure of the distribution of n values to be maintained.

Comparison experiment

For the comparison experiment we employed twenty-four healthy subjects (14

males and 10 females), aged 22.1¡2.1, who had not participated in the original

ER experiment. The same procedures as the original ER experiment were applied

to all subjects: receipt of the written informed consent, test of basic visual

functions, and payment for participation. The comparison experiment consisted

of two sections of perceptual decision making (PDM) and ER, in which all

subjects participated in this order. The ER section and its data analysis were

conducted in the same way as the original ER experiment.

For stimuli of the PDM section, we used a set of 235 face and 235 house

grayscale images, of which 35 face and 35 house images were used for practice and

200 each for the test sessions. The original images were obtained from clip-art

collections (Sozaijiten (Datacraft, Sapporo, Japan) in addition to the collections

described above) and from various sites on the web. They were cropped to

5126512 pixels in size, and converted to 8-bits/pixel gray-level depth. Fast

Fourier transforms (FFT) of these images were computed to produce their

magnitude and phase matrices. The phase matrix of each image was modified

using the weighted mean phase (WMP) technique [43, 39], in which a vector of

length w (in the range of 0ƒwƒ1) and phase of the image was combined with

another vector of length (12w) and phase of a uniform random noise in the range

of {pƒwnoisevp to generate a vector having the w-weighted mean phase with the

random noise. A different noise phase was used for each value in the phase matrix

under a fixed w for the image. For the magnitude components, the average

magnitude matrix across all the 400 original images (for the test sessions) was

stored, and the magnitude matrix of each image was linearly combined with the

average matrix using the same weight w as the phase matrix of that image.

Stimulus images were produced by the inverse FFT of these modified magnitude

and phase matrices. Thus the parameter w represents the signal-to-noise (SN)

weight of the original image, or the inverse of the image degradation level. The SN
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weight of each image was a uniformly distributed random number between 0.2

and 0.6 to see if any discreteness in the task difficulty like the ER experiment was

detected under the continuous distribution of image degradation levels. (As a

result of the experiment, we could not detect any discreteness of difficulty of the

PDM task.) We defined the SN weights of §0:2 and v0:24 as Class 1, and in the

same manner, ranges of the SN weights, [0.24, 0.28), [0.28, 0.32), [0.32, 0.36),

[0.36, 0.40), [0.40, 0.44), [0.44, 0.48), [0.48, 0.52), [0.52, 0.56), and [0.56, 0.6] as

Class 2 to 10, respectively. Each class of face and house stimuli included 20¡4

images. All the images were normalized by the average luminance (11 cd?m22)

and RMS contrast (9 cd?m22), and were surrounded by a gray background of the

average luminance. Stimuli were presented on the same CRT monitor at the same

distance as the original ER experiment (resulting in an image size of 9˚69 )̊ using

the software Presentation (Neurobehavioral Systems, Berkeley, California, USA).

The PDM section consisted of sessions for practice and test, in which 70 and

400 different images were respectively used. Each image was presented in a single

trial in a randomized order. On each trial the stimulus image was presented after a

fixation point displayed on a gray background of average luminance for a random

time interval (1000–2000 ms). Subjects were required to discriminate between

face and house images by pressing the assigned keys as quickly as possible while

maintaining a high level of accuracy. The presentation was terminated by the

subject’s key press. A feedback message was presented for 500 ms following each

response to indicate whether the response was correct or error. The instruction

did not emphasize particularly on speed and accuracy of performance (i.e., no

speed-accuracy manipulation type) [42]. (When subjects did not respond within

5 s, a ‘‘too slow’’ message was indicated, but these occurred only in 0.02% of all

the trials.)

The drift diffusion model (DDM) [41, 42] is a theoretical model which is

known to be successful in explaining a wide range of observed relationships

between RTs and accuracy of two-choice PDM tasks [20, 42, 45]. As illustrated in

Fig. 16, the DDM assumes that noisy information about the stimulus is

accumulated over time from a starting point, z, toward one of the two decision

boundaries for the responses and that a decision is formed once the boundary has

been reached. The mean rate of information accumulation is represented by the

drift rate, u, which is determined by the quality of information that is extracted

from the stimulus. The boundary separation, a, represents the distance between

the two decision boundaries. Larger values of a indicate that more information

must be accumulated to make a decision. The starting point, z, represents the

initial position between the two boundaries, representing the subjects’ a priori

bias for one of the two alternatives by the degree of deviation from a/2. The

nondecision time, t0, quantifies the duration of sensory and motor processes that

are unrelated to the decision process. In addition to these principal parameters,

the model assumes parameters quantifying intertrial variability in the drift rate

(normal distribution with mean u and standard deviation su), the starting point

(uniform distribution around z with range sz), and the nondecision time (uniform

distribution around t0 with range st0). The parameters of su and sz are particularly
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important because they enable the DDM to predict the asymmetric latency–

probability functions (see main text) [42]. The noise magnitude in the model is

defined by intratrial variability of the drift rate, which brings about stochasticity in

the information accumulation process and is modeled by a Wiener process that is

a stochastic process of diffusion (see the next paragraph). The magnitude of this

variability, s, is a scaling parameter of the DDM and is set a priori to a fixed value,

which was s~1 in the present study. All parameters (except for t0 and st0) are

identified by ratios to this scaling parameter. We fitted the DDM to the

experimental data of each subject using the software fast-dm developed by [46]

(version 30, available from the website: www.psychologie.uni-heidelberg.de/ae/

meth/fast-dm). Fast-dm estimates all parameters of the DDM from the empirical

RT distributions of two categories of responses, by means of efficiently computing

the cumulative RT distributions predicted by DDM parameters [56] and

minimizing the Kolmogorov–Smirnov statistic that is the maximal distance

between the predicted and the empirical cumulative RT distribution. In the

present estimation we assumed that drift rate depended on stimulus difficulty,

thus requiring separate values for drift rates of the ten classes of the SN weight of

each stimulus category, whereas all other six parameters were assumed to be

constant within a subject. The parameter of calculation precision was set to 3.0

(default value of fast-dm). The estimated values of parameters averaged across

Fig. 16. The drift diffusion model (DDM). The vertical axis represents the accumulation of sensory
information. The nondecision time, t0, consists of two components before and after the decision time. For
other parameters and details of the DDM, see Materials and Methods. Two simulated paths are drawn with a
positive drift rate, u, which means that a face response is correct in this example. The RT is indicated for the
correct response.

doi:10.1371/journal.pone.0115658.g016
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subjects were: a~1:632+0:621, z=a (starting point relative to a) ~0:538+0:031,

t0~0:345+0:050(s), su~0:357+0:237, sz=a~0:134+0:115, and

st0~0:091+0:060(s). As for u (drift rate), see Fig. 11. (All the parameter

distributions passed the Kolmogorov-Smirnov test for normality using Matlab

(Pw0:1).)

Using the estimated values of parameters of DDM, we performed Monte Carlo

computer simulations of the drift diffusion processes of the DDM. For each

subject we set a and t0 to the estimated values, and the starting point in each trial

was selected randomly from a uniform distribution whose center and range were

the estimated values of z and sz respectively. We varied the mean drift rate u over

an appropriate range, and for each value of u we repeated 20,000 trials, in each of

which an actual value of drift rate, u’, was selected randomly from a normal

distribution with mean u and standard deviation of the estimated value of su. The

drift diffusion process was simulated using the Monte Carlo method, in which the

displacement on the information accumulation axis over a time step Dt was the

sum of the drift component of u’Dt and the diffusion component of a random

number from a normal distribution whose mean was zero and standard deviation

was s
ffiffiffiffiffi
Dt
p

(displacement of a Wiener process) [47]. We set Dt to 0.001 and s to 1

(see above). We averaged the time until one of the two boundaries was reached

and the number of boundary crossings over the 20,000 trials to obtain the mean

RTs and response probabilities for correct and error responses.
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