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Simple Summary: The second most common childhood leukemia, acute myeloid leukemia (AML),
is a heterogeneous disease with a poor prognosis. In order to improve outcomes, efforts to under-
stand the genomic/transcriptomic landscape of AML have been performed. However, there is a
significant gap in our understanding of leukemic cell proteomics. In comparison to the proteome,
the transcriptome alone cannot adequately represent the biological functions within cells and it is
often not a target for immediate drug development. In the current study, we investigated cytogenetic
differences at the proteomic level and sought potential predictive biomarkers and druggable proteins.

Abstract: Acute Myeloid Leukemia (AML) is a heterogeneous disease with several recurrent cytoge-
netic abnormalities. Despite genomics and transcriptomics profiling efforts to understand AML’s
heterogeneity, studies focused on the proteomic profiles associated with pediatric AML cytogenetic
features remain limited. Furthermore, the majority of biological functions within cells are operated by
proteins (i.e., enzymes) and most drugs target the proteome rather than the genome or transcriptome,
thus, highlighting the significance of studying proteomics. Here, we present our results from a
pilot study investigating global proteomic profiles of leukemic cells obtained at diagnosis from 16
pediatric AML patients using a robust TMT-LC/LC-MS/MS platform. The proteome profiles were
compared among patients with or without core binding factor (CBF) translocation indicated by a
t(8;21) or inv(16) cytogenetic abnormality, minimal residual disease status at the end of the first cycle
of chemotherapy (MRD1), and in vitro chemosensitivity of leukemic cells to cytarabine (Ara-C LC50).
Our results established proteomic differences between CBF and non-CBF AML subtypes, providing
insights to AML subtypes physiology, and identified potential druggable proteome targets such as
THY1 (CD90), NEBL, CTSF, COL2A1, CAT, MGLL (MAGL), MACROH2A2, CLIP2 (isoform 1 and 2),
ANPEP (CD13), MMP14, and AK5.

Keywords: pediatrics acute myeloid leukemia; leukemic cells; untargeted labeled proteomics; tandem
mass tag; transcriptomics

1. Introduction

Acute myeloid leukemia (AML) is the second most common childhood leukemia
with five-year survival rates of approximately 60% [1]. AML is an aggressive and het-
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erogenous malignancy characterized by clonal disorder of hematopoietic stem or pro-
genitor cells, resulting in the accumulation of deformed, immature, and nonfunctional
myeloid cells in bone marrow and blood. Genetic abnormalities play a critical role in the
pathogenesis of AML. Specifically, core binding factor (CBF) AML with the presence of
t(8;21)(q22;q22) or inv(16)(p13q22)/t(16;16)(p13;q22) cytogenetic abnormalities, resulting
in RUNX1/RUNX1T1 and CBFβ/MYH11 fusions, respectively, account for approximately
30% of pediatric AML [2]. The CBF AML subtype is associated with a better prognosis,
while outcomes are inferior in patients with non-CBF AML [3].

Recent advances in next-generation sequencing technologies have significantly expanded
researchers’ understanding of pediatric AML heterogeneity. However, most of these studies
have focused on differential transcriptomic profiles [4–6]. Whether transcriptome features
translate to the protein level remains to be investigated. Additionally, uncovering genetic
mutations and abnormal gene expressions is less likely to lead to the immediate therapeu-
tic option, as most druggable targets are proteins rather than genes/transcripts. Therefore,
the characterization of the proteomic landscape is critical. Although, as of April 2021, an on-
going effort by the National Cancer Institute in Proteomics Data Commons database has
data concerning ~15,000 proteins in 11 different cancer primary sites, there are no data for
AML (https://pdc.cancer.gov/pdc/ accessed on 13 May 2021). Currently, only a handful of
studies have investigated proteome profiles in AML, none of which have focused on global
untargeted proteomic profiling in pediatric AML [7–13]. It is well established that the molec-
ular landscape of pediatric AML is distinct from adult AML with age-specific mutational
interactions, highlighting the need for proteomic investigation in the pediatric population
in order to further characterize the heterogeneity and develop treatments with age-specific
targeted therapies for pediatric AML [14].

The objective of this pilot study is to examine proteomic features and biological
differences in CBF and non-CBF pediatric AML, as well as to uncover proteomic markers
that are associated with the therapeutic responses through minimal residual disease post
first induction (MRD1) and in vitro leukemic cell cytarabine chemosensitivity (Ara-C
LC50). Our exploratory objective was to estimate the correlation between proteome and
transcriptome from available transcriptome data.

2. Materials and Methods
2.1. Study Cohort, Proteomic and Transcriptomic Expression Profiling

The study cohort included bone marrow leukemic blasts obtained at diagnosis from
16 pediatric AML patients treated on the multicenter AML02 clinical trial (NCT00136084).
Details of study design and clinical outcomes have been previously described [15]. Sum-
marily, patients were randomized to receive high (3 g/m2, given every 12 h on days 1, 3,
and 5) or low dose (100 mg/m2 given every 12 h on days 1–10) cytarabine with daunoru-
bicin and etoposide as a first course of chemotherapy, and treatments were subsequently
tailored to response and risk classification. Cytogenetic analysis, FLT3 internal tandem
duplications (ITD), and FLT3 point mutations were identified by conventional cytogenetics
and/or PCR. CBF AML included t(8;21)(q22;q22) or inv(16)(p13q22)/t(16;16)(p13;q22),
while non-CBF AML was defined as the absence of t(8:21) or inv(16). MRD1 was mea-
sured by flow cytometry and was defined as positive with the presence of one or more
leukemic cells per 1000 mononuclear bone marrow cells (i.e., ≥0.1%). Ara-C LC50 (the
concentration of cytarabine required for 50% leukemic cell kill) values were determined
from leukemic cells treated with varying concentrations (ranging from 0.002 to 2.5 ng/µL)
of cytarabine as described previously [16,17]. Furthermore, the 16 pediatric AML were
randomly selected from AML02 patients with bone marrow aspirate available, balancing
CBF vs. non-CBF, MRD1 status, and Ara-C LC50 level. The St. Jude Institutional Review
Board approved this study, and consent was secured from both parents/guardians and the
consenting individuals.

Proteomic profiling was performed using an untargeted global approach a with
16-plex isobaric tandem mass tag (TMT) labeling reaction, two-dimensional reversed-phase
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liquid chromatography (LC/LC) fractionation, and tandem mass spectrometry (MS/MS),
followed by computational data processing. A complete detail of the TMT-LC/LC-MS/MS
procedure has been previously described [18]. Briefly, 20 µg of extracted proteins from bone
marrow samples with appropriately 1 million leukemic blasts were digested and labeled
with 16 different TMT tags. Samples from 16 channels were then pooled equally into a
mixture, and the mixture was fractionated into 60 fractions by basic pH reverse-phase
LC. Each fraction was further analyzed by acidic pH reverse phase nanoscale LC and
high-resolution mass spectrometry (Q Exactive HF, Thermo Fisher Scientific, Waltham, MA,
USA). The raw data was processed by in-house JUMP (Jumbo Mass Spectrometry-based
Proteomics Tool) software (https://github.com/JUMPSuite/JUMP accessed on 13 May
2021, Peng Lab, St. Jude Children’s Research Hospital, Memphis, TN, USA), and spectra
were searched against the Uniport human database with proteins identified at a 1% false
discovery rate (FDR) [19,20]. For quantification, preprocessed peptides/proteins were
measured by the TMT reporter ions [21]. Data were further normalized and transformed
by variance stabilizing transformation (vsn) in order to reduce intragroup variation prior
to any downstream analysis [22,23]. Vsn was observed to perform the best in reducing the
intragroup variation compared to other normalization methods including log2, median,
mean, and quantile for TMT proteomic quantification normalization [24]. Moreover, the vsn
normalization performed a transformation similar to the log transformation and required
the input to be untransformed [22].

Gene expression profiling of bone marrow leukemic blasts at diagnosis was obtained
using the GeneChip® Human Genome U133A [Affymetrix, Santa Clara, CA, USA] as
described previously [25]. The MAS 5.0 algorithm was used to achieve normalized gene
expression signals. Vsn was also applied to improve the low-intensity expression estimates
and ensure variance stabilization and calibration in microarray data [22].

2.2. Differential Expression Analysis of Proteomics Data and Integrative Analysis

Differential protein expression analysis was analyzed in R studio software (ver-
sion 4.0.3, R Foundation for Statistical Computing, Vienna, Austria) with Bioconductor
packages. Normalized proteomic data for each patient sample were grouped for categorical
analysis in three comparisons: (1) CBF status (CBF vs. non-CBF AML); (2) MRD1 status
(positive vs. negative); and (3) Ara-C LC50 status (high vs. low by LC50 values median).
Herein, differential protein expression for each comparison was performed using rank-sum
analysis for unpaired cases via the “RankProd 2.0” package, a non-parametric method
for identifying differentially expressed omics datasets [26]. A threshold for significant
differentially expressed proteins (DEPs) was set at FDR < 0.05 and |Log2FC| > 1 for the
differential comparison unless otherwise indicated. Hierarchical clustering of significant
DEPs was evaluated for each comparison, and heatmaps were plotted with scaled relative
expression among samples. Since CBF status was a comparison between CBF vs. non-CBF
AML, proteins with a positive Log2FC were classified as upregulated in CBF AML, whereas
proteins with a negative Log2FC as upregulated in non-CBF AML.

Integrative analysis among three differential comparisons (CBF, MRD1, and LC50
status) were executed in order to identify proteins with significant prognoses and/or
potential drug targets.

2.3. Protein–Protein Interaction (PPI), Pathway Analysis, and Gene Set Enrichment Pathway
(GSEA) of CBF Status Comparison

To investigate the biological functions and processes which are different between CBF
and non-CBF AML, we utilized various publicly accessible databases. First, STRING database
version 11.0 was utilized to construct an entire PPI network of significant DEPs [27], in-
cluding interactions from experiments, databases, co-expression, co-occurrence, gene fu-
sion, homology, neighborhood, and text mining. Minimum required interactions were
set at a default score of 0.400 with FDR < 0.05. Next, Cytoscape open-source software
(https://cytoscape.org/ accessed on 13 May 2021, version 3.8.2,) was employed to visualize the
PPI network relationship between significant DEPs with exclusion of singleton interactions [28].

https://github.com/JUMPSuite/JUMP
https://cytoscape.org/
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Subsequently, we used ClueGO version 2.5.7, a Cytoscape plug-in, to visualize the
non-redundant biological terms utilizing three signature databases (Gene Ontology [GO]
with three major sub-ontologies with Biological Process [BP], Cellular Component [CC],
and Molecular Function [MF] [29]; Reactome [30]; and Kyoto Encyclopedia of Genes and
Genomes [KEGG] [31]) for large clusters of genes in a functionally grouped network [32].
The grouping network was set at a kappa score threshold of 0.4 with FDR < 0.05. We then
performed the Pathview analysis of the most common significant abundance grouped
network with KEGG pathway on significant DEPs regarding CBF status [33].

GSEA was achieved using pre-ranked scores from proteins, with Log2FC indicating
the direction of enrichment and p-values indicating the degree of significance (pre-rank
scores were calculated by the sign of Log2FC multiplied by −log10 of p-values) [34].
The default-weighted enrichment-based statistic was adapted to conduct 10,000 permu-
tations with a minimum and maximum criterion for selecting gene/protein sets from
database collections were 10 and 500 gene/protein, respectively. FDR < 0.05 was consid-
ered significantly enriched. The “ClusterProfiler” R package [35] was used to analyze and
visualize the GSEA in GO, Reactome, and KEGG databases.

2.4. Correlation Analysis between Proteomics and Transcriptomics Data

Within-gene pairwise correlations of observed transcripts and proteins expression
were conducted for the 15 samples with paired gene expression profiles. The Spear-
man’s rank correlation coefficient was calculated between proteome and transcriptome
with a matched gene symbol among 15 samples. A correlation estimate percentage was
then computed for negative correlation, positive correlation, and significant correlation
(p-value < 0.05) at a global level and on significant DEPs of three differential comparisons.
For genes that have multiple protein–transcript combinations (i.e., one protein with mul-
tiple transcript probes for a common gene and vice versa), only protein–transcript pairs
with the lowest p-value for that gene were selected in the final correlation estimation.

3. Results
3.1. Study Cohort and Proteomic Profiling

Sixteen pediatric AML patients treated on the AML02 clinical trial were randomly
selected and included in this study. The median age was 11.4 years with a range of 3 to
21.2 years; 88% were white; the median white blood cell count was 33 with a range of
6 to 351 × 109/L; and 50% of patients were positive for MRD1 (Table 1). Among these
patients, six had CBF and ten had non-CBF AML, eight were MRD1-positive, and eight
were MRD1-negative. In vitro Ara-C LC50 data on diagnostic leukemic cells was available
from 13 patients, and the median Ara-C LC50 was 0.29 with a range of 0.1 to 1.79 ng/µL.
Thus, seven patients were classified into the LC50-high and six into the LC50-low group.

Table 1. Characteristics of 16 pediatric AML patients with CBF or Non-CBF AML.

Sample ID Age (Year) Race WBC (109/L) CBF Status FLT3 Status MRD1 Treatment Arm Ara-C LC50 (ng/µL)

S1 3.71 White 38.9 CBF WT Negative HDAC 1.18
S2 21.20 White 70.2 NON-CBF Mutation Negative LDAC NA
S3 10.29 Black 35.2 CBF WT Negative HDAC 0.23
S4 6.16 White 28.7 NON-CBF WT Positive HDAC 0.39
S5 12.58 White 24.3 NON-CBF WT Negative HDAC 0.13
S6 15.29 White 15.0 NON-CBF WT Positive LDAC NA
S7 11.23 White 351.0 CBF WT Negative HDAC 0.14
S8 4.07 White 39.9 NON-CBF WT Positive LDAC 1.79
S9 11.70 Black 76.6 NON-CBF ITD Positive HDAC 0.37
S10 13.05 White 34.3 NON-CBF WT Positive LDAC NA
S11 3.04 White 5.9 NON-CBF WT Positive HDAC 0.70
S12 5.46 White 24.6 CBF WT Positive HDAC 0.34
S13 12.69 White 247.9 NON-CBF ITD Positive LDAC 0.21
S14 5.39 White 6.7 NON-CBF WT Negative HDAC 0.12
S15 16.53 White 19.0 CBF WT Negative LDAC 0.29
S16 11.52 White 32.0 CBF WT Negative LDAC 0.01

WBC, White Blood Cells; CBF, Core Binding Factor; MRD1, Minimal Residual Disease Post Induction 1; Ara-C, Cytarabine; WT, Wild type;
ITD, Internal tandem duplication.



Cancers 2021, 13, 3161 5 of 15

Global untargeted proteomic profiling with 16-plex TMT-LC/LC-MS/MS identified and
quantified a total of 10,634 proteins for each sample (FDR < 0.01). Following additional quality
control, a total of 9800 annotated proteins per sample were included for downstream analysis.

3.2. Proteomic Profiling of CBF Compared to Non-CBF AML Patients and Functional Analysis

Comparing proteomic profiles of CBF to non-CBF AML resulted in 117 significant
DEPs (FDR < 0.05, |Log2FC| > 1) with 51 positive and 66 negative Log2FC as shown in the
volcano plot (Figure 1A). Fifty-one proteins were significantly upregulated in CBF AML,
and sixty-six proteins were significant upregulated in non-CBF AML. A comprehensive list
of DEPs with CBF compared to non-CBF is given in Table S1. A heatmap with hierarchical
clustering of 117 DEPs resulted in a successful separation of patients with CBF and non-
CBF AML patients into two discrete groups, indicating a differential proteins signature for
CBF vs. non-CBF AML (Figure 1B). The top 10 differential proteins included upregulated
proteins TPPP3, CRIP2, SLC9A3R2, and VAMP5 in CBF AML, and upregulated proteins
MGLL, MYT1L, CAT, TESC, CLIP2, and CS in non-CBF AML.
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Figure 1. Leukemic cell proteomic profiles comparing CBF AML with non-CBF AML patients: (A) Volcano plot illustrating
differentially regulated protein expression in patients with CBF AML (n = 6) compared with non-CBF AML (n = 10).
Differential protein expression revealed a total of 51 upregulated proteins in CBF (red) and 66 upregulated proteins in
non-CBF (blue) (FDR < 0.05, |Log2FC| > 1); (B) Heatmap with hierarchical clustering of the 117 differentially expressed
proteins between CBF and non-CBF AML, color scaled by row Z-score indicates relative expression (high levels of expression
in red and low levels of expression in blue).
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The STRING database was used in conjunction with Cytoscape in order to construct
a protein–protein interaction (PPI) network on 117 significant DEPs in order to identify
significant PPIs. STRING analysis resulted in 112 nodes with more interactions than ex-
pected with at least one direct or indirect association (115 connected edges vs. 49 expected
edges with an average node degree of 2.05 and PPI enrichment p-value = 1.33 × 10−15)
(Figure 2A). ClueGO functional grouped network analysis among significant DEPs showed
15 significant grouped enrichment (FDR < 0.05) by the percentage of terms per group
(Figure 2B). ClueGO grouped term network was further illustrated with Cytoscape, show-
ing that the hemopoietic cell lineage grouped term is highly connected with other grouped
terms including platelet activation, signaling and aggregation, and endothelial cell prolifer-
ation (Figure 2C).
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Figure 2. Interaction and functional analysis of 117 significant DEPs present in CBF and non-CBF AML comparison:
(A) STRING protein–protein interaction (PPI) network of significant DEPs. Nodes represent proteins, and edges connecting
nodes represent interaction. The PPI network has been simplified by concealing singletons. Red positive Log2FC nodes
are upregulated proteins in CBF AML, while blue negative Log2FC nodes are upregulated proteins in non-CBF AML;
(B) Functional grouped network enrichment by ClueGO with percent terms per group, and the most significant enriched
grouped terms is hematopoietic cell lineage (* or ** indicate significant terms at the p < 0.05 and p < 0.01 statistical levels,
respectively); (C) Functional grouped terms are nodes showing only terms with most significance (FDR < 0.05), and nodes
are linked base on their kappa score level (>0.4). The node size represents the number of terms enrichment significant,
and functionally related groups partially overlap.

Together, these findings suggested that CBF and non-CBF AML are both involved
in hematopoietic cell lineage with distinct protein profiles in myeloid cell differentiation.
Pathview analysis further illustrated expression levels of significant DEPs in hematopoietic
cell lineage via KEGG pathway (individual KEGG term FDR = 6 × 10−5 and grouped
KEGG term network FDR = 1.8 × 10−9) (Figure 3). Interestingly, CD34 and CD13 are
significantly overexpressed in CBF AML compared to non-CBF AML, while CD41, CD42,
and CD61 are significantly overexpressed in non-CBF AML compared to CBF AML within
myeloid cell differentiation.
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Figure 3. KEGG Pathview of hematopoietic cell linage of significant DEPs in CBF AML compared to non-CBF AML.
Pathview analysis demonstrated majority of significant DEPs involved in the myeloid lineage differentiation. Proteins are
indicated as significantly overexpressed in CBF AML (red), unchanged (gray), or overexpressed in non-CBF AML (blue).
ANPEP also known as CD13; ITGA2B as CD41; GP9 as CD42a; GP1BA as CD42b; and ITGB3 as CD61.

Additionally, the top gene-sets enriched in CBF AML by GSEA using the GO (includ-
ing BP, MF, and CC), Reactome, and KEGG databases resulted in common protein functions
particularly linked to oxidative phosphorylation, RNA synthesis/processing, and multiple
pathways with metabolic processes. On the other hand, gene-sets enriched in non-CBF
AML revealed common functions in the regulation of transport, membrane trafficking,
cellular protein catabolic process, and myeloid leukocyte mediated immunity (Figure 4).
The full results of GSEA (FDR < 0.05) are included in Table S2, with positive normalized
enrichment score (NES) indicating gene-sets enriched in upregulated CBF, and negative
NES score indicating gene-sets enriched in upregulated non-CBF.
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3.3. Proteomic Profiling by MRD1 Status and by In Vitro Ara-C LC50 Level

Since most proteins are druggable targets, we were interested in investigating the
proteomic profile between MRD1-positive and negative patients, as well as proteomic
feature profile between LC50-high vs. low. One limitation to be noted is that only 1/6 of
the CBF-AML was MRD1-positive and 7/10 non-CBF AML cases were MRD1-positive.
Thus, we expect some overlap in the proteomic profiles between MRD1 status and CBF
status evaluations. Comparing the proteomic profile of MRD1-positive and negative
status among 16 patients revealed 65 significant DEPs (p-value < 0.05, |Log2FC| > 1),
with 17 upregulated and 48 downregulated proteins in MRD1-positive AML (Figure S1A).
Hierarchical clustering of 65 significant DEPs resulted in partial separation of patients with
MRD1-positive vs. negative (Figure S1B). A detailed list of the 65 DEPs can be found in
Table S3. Proteins with significant overexpression within MRD1-positive group included
NT5DC3, CLIP2 (both isoform 1 and 2), MACROH2A2, NEBL, MGLL (MAGL), HLA-DPA1,
HLA-DPB1, CAT, TTC41P, ICA1, TBC1D8B, GOLGA8K, THY1 (CD90), HOXC10, HOXD10,
and SNRPE.

With respect to in vitro leukemic cell chemosensitivity, 13 samples had the available
cytarabine concentration needed to kill 50% of leukemic cells (Ara-C LC50). Comparison of
proteomic profiles between leukemic cells from patients with high vs. low Ara-C LC50 level by
median value (0.29 ng/µL) identified 24 significant DEPs (p-value < 0.05, |Log2FC| > 1) with
three upregulated and 21 downregulated proteins in high Ara-C LC50 group (Figure S2A).
Hierarchical clustering of the 24 DEPs indicated the moderate separation of this group of
patients (Figure S2B). Significantly overexpressed proteins for Ara-C LC50-high level are
CTSF, GATM, COL2A. A full list of DEPs comparing Ara-C LC50-high to LC50-low groups
is provided in Table S4.

3.4. Integrative Analysis of Three Comparison Strategies (CBF, MRD1, and Ara-C LC50)

Integrating the 177 significant differentially expressed proteins across the three compar-
isons described above resulted in three common significant DEPs. Among all comparisons,
19 DEPs overlapped between CBF and MRD1 status, and four DEPs between MRD1 and
Ara-C LC50 status along with expression direction for each contrast as shown in the Venn
diagram in Figure 5. Detailed information of these 26 DEPs in at least two of the three
comparative analyses (CBF, MRD1, and Ara-C LC50) are included in Table S5.
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Figure 5. Integrative analysis of three differential comparisons (CBF, MRD1, and Ara-C LC50): (A) Venn diagram illustrating
unique and overlapping significant DEPs between all comparisons (n = 177). Purple circle, CBF AML versus non-CBF
AML; Pink circle, MRD1-positive versus MRD1-negative; Brown circle, Ara-C LC50-high versus Ara-C LC50-low; (B) 3D
scatterplot with log2FC of the three comparisons: x-axis is the log2FC of CBF status with bidirectional, where positive
values are upregulated in CBF and negative values are upregulated in non-CBF; y-axis is the log2FC of Ara-C LC50 (high vs.
low); and z-axis is the log2FC of MRD1 (positive vs. negative). Red proteins in (A) table and dots are common significant
proteins among three comparisons, blue proteins in (A) table and dots are significant proteins between CBF and MRD1
status, and green proteins in (A) table and dots are significant proteins between Ara-C LC50 and MRD1 status.

Given the superior prognostic nature of CBF compared to non-CBF AML subtypes,
we observed the concordance of dysregulated direction between CBF status with MRD1-
positive and high Ara-C LC50 level. The common significant DEPs of three comparisons
included ANPEP, MMP14, and AK5 proteins that were upregulated in CBF AML and
downregulated in MRD1-positive and high Ara-C LC50 groups. Likewise, CAT, MGLL,
HOXC10, MACROH2A2, and CLIP2 (both isoform 1 and 2) were upregulated in the non-
CBF and overexpressed in the MRD1-positive group. Moreover, IGSF6, RBPMS, HLA-B,
and PRG3 are also in concordance with downregulation in both MRD1 and Ara-C LC50
differential comparisons.

3.5. Correlation Analysis of Matched Proteome and Transcriptome

Among 15 matched bone marrow samples with available transcriptomic and pro-
teomic expression, there were 7039 common genes with 7887 proteins and 12,674 transcript
probes. Within-gene pairwise Spearman’s Rho correlation with a selection of lowest p-
value for all protein–transcript pairs, only 13.4% (n = 942/7039) demonstrated a significant
correlation (p-value < 0.05) (Figure 6A) in leukemic cells from diagnosis. We also separately
evaluated the 177 significant DEPs identified in our comparative analyses described above
(CBF-AML vs. non-CBF-AML; MRD1-positive vs. MRD1-negative; and low vs. high Ara-C
LC50) for correlation with gene expression levels from matching leukemic cells at diagnosis.
Out of 177 proteins across three comparisons, only 129 protein–transcript pairs were avail-
able for correlation analysis. Our results showed significant correlation (p < 0.05) in only
9.3% (12/129) of the mRNA-protein pairs. (Figure 6B). Among all significant correlations,
the positive significant correlation for global and significant DEPs was 10.7% and 7.0%,
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respectively. Furthermore, where applicable, correlation results of proteome and transcript
with p-value and coefficient are included in all Supplementary Tables.
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4. Discussion

Despite the growing interest in investigating proteins as functional molecules in cells,
no global proteomic studies of leukemic cells in children with AML studies are currently
available. In this study, we reported the proteomic profiles of pediatric bone marrow-
derived AML cells at diagnosis in three differential comparison strategies: (1) core binding
factor (CBF; t(8;21), inv(16)) AML vs. non-CBF AML; (2) MRD1-positive vs. MRD1-negative
status; and (3) in vitro chemosensitivity of Ara-C LC50-high vs. low level. Within the first
comparison, we identified a total of 117 proteins that were dysregulated between CBF
AML and non-CBF AML subtypes. Interestingly, several significant DEPs have shown
to be of relevance to AML at the transcriptome level such as CRIP2. Overexpression of
CRIP2 in CBF AML was previously reported to be highly overexpressed in leukemic stem
cells (LSC) and is associated with chemotherapy resistance in AML in response to EZH2
inactivation [36]. Moreover, CRIP2 promotes oxidative phosphorylation and regresses gly-
colysis, which stabilizes metabolic features characteristic for AML stem cells [8]. Likewise,
GSEA from CBF status results revealed that involvement of several metabolomics pathways
such as ATP synthesis coupled proton transport, TCA cycle, and oxidative phosphorylation
to biosynthesis of various metabolic precursors, suggesting the need for studying metabolic
processes and profiling, especially in the CBF subset of pediatric AML. The overexpression
of SLC9A3R2 in CBF AML has previously been shown to be upregulated at relapse [37].
Among proteins relevant to non-CBF, the overexpression of TESC also shown to be highly
expressed in FLT3-ITD(+) AML mediating sorafenib resistance [38], suggesting potential
drug resistance in non-CBF AML. The overexpression of CLIP2 (both isoform 1 and 2) in
non-CBF was reported for poor progression in upregulating at the transcriptome level in
large AML multi-studies [39]. This corresponded with our finding that CLIP2 was also
shown to be upregulated in an inferior clinical endpoint with MRD1-positive.

Using pathway analysis to compare CBF and non-CBF AML proteomic profiles re-
vealed involvement in hematopoietic cell lineage development, platelet activation/signal-
ing/aggregation, and endothelial cell proliferation. Between CBF and non-CBF AML,
the KEGG pathway within Pathview showed distinct hematopoietic stem cell (HSC) pro-
files with unique biomarkers. Thus, this validated the observed biological functions of
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RUNX1 and CBFβ genes in CBF AML as the transcription factor complex that is important
for HSC’s emergence from an endothelial cell stage. Previously, CBFβ-MYH11 transduc-
tion of CD34+ cells were shown to enhance proliferation [40]. In line with these results,
CD34 protein was significantly overexpressed in CBF AML compared to non-CBF AML
patients, suggesting CBF AMLs carry unique protein expressions that resemble CD34+
progenitor cells. Fascinatingly, CBF AML protein expressions resemble the earliest identifi-
able megakaryocyte progenitor with the burst-forming unit, megakaryocyte (BFU-MK),
while non-CBF AML has protein features of later progenitor with colony-forming unit,
megakaryocyte (CFU-MK) and megakaryocyte.

The proteins that were overexpressed in non-CBF and in MRD1-positive included
CAT, MGLL (MAGL), MACROH2A2, and CLIP2 (both isoform 1 and 2). Of these, CAT
represents catalase, a key antioxidant enzyme which has been implicated in resistance to
antileukemic agents such as doxorubicin [41], and MGLL (also known as MAGL) represents
monoglyceride lipase, which has been shown to be overexpressed in aggressive cancers.
Given its involvement in oncogenic lipid signaling, MGLL represents an exciting pharma-
cological target and there are ongoing efforts to identify the inhibitors of MAGL [42–45].
MACROH2A2, (also known as H2AFY) is a fusion partner of MECOM in AML [46]. Collec-
tively, the overexpression of CAT, MGLL (MAGL), MACROH2A2, and CLIP2 (both isoform1
and isoform2) in non-CBF AML were also significantly upregulated in MRD1-positive
samples, indicating possible noteworthy prognostic factors and druggable targets that
would require further evaluation. Other significant DEPs among MRD1-positive and the
Ara-C LC50-high level that have been shown to be relevant to AML were identified in
this study. The overexpression of THY1 (also known as CD90) in MRD1-positive was
reported to be preferentially expressed on blast cells of high-risk AML, and CD90+ AML
has been associated with shorter patient survival [47]. Hence, THY1 protein could carry
potential prognostic significance in pediatric AML. Remarkably, the overexpression of
NEBL in MRD1-positive was shown to be involved in MLL rearrangement, which is the
most frequently identified genetic aberration in early infancy AML [48]. Among the three
overexpressed proteins for high Ara-C LC50 level, CTSF was shown to have a function in
azurophil granules and was found to be overexpressed in acute promyelocytic leukemia
(APL) FLT3-ITD [49]. GATM was reported to be associated with increased reactive oxygen
species within mitochondria, and found to enriched in chemo-resistant leukemic cells to
Ara-C in vitro [50]. COL2A1 was studied to be highly correlated to granulocyte–monocyte
progenitor (GMP), which is closely associated with AML [51]. Together, the significant
overexpression of proteins for MRD1-positive and high Ara-C LC50 level are in consistent
with previous studies for poor clinical outcomes and/or AML progression, demonstrating
that inhibition of these proteins could be attractive therapeutic targets.

Integrative analysis of significant DEPs among three comparisons with cytogenetics
such as CBF, MRD1, and Ara-C LC50 clinical endpoints, revealed 100% concordance
between cytogenetic features and clinical endpoints in our results. This suggested that the
difference in prognosis between AML subtypes based on CBF status could also be explained
at the proteome level. The three proteins that were significantly identified among three
differential strategies included ANPEP (also known as CD13), MMP14, and AK5. ANPEP
(CD13) as a potential target in AML is being investigated in a bispecific, and split CAR-T
cells targeting CD13 and TIM3 as CD13 was shown to be overexpressed in AML cells [52].
MMP14 is in the matrix metalloproteinase family and is involved in the breakdown of the
extracellular matrix in normal physiological processes. MMP inhibitor (MMPI) is also being
investigated in the context of AML, as MMPI reduces AML growth, prevents stem cell loss,
and improves chemotherapy effectiveness [53]. Next, AK5 is a member of adenylate kinase
family that was previous shown to be highly expressed in leukemia stem cells (LSCs)
compared to human hematopoietic stem cells (HSCs), indicating potential therapeutic
targets for quiescent and chemotherapy-resistant human LSCs [54]. Overall, our study
suggested that ANPEP (CD13), MMP14, and AK5 are overexpressed in non-CBF compared
to CBF AML and could be interesting drug targets. However, they are underexpressed in
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both MRD1-positive and Ara-C LC50-high level, suggesting further studies are needed to
investigate this phenomenon.

Finally, the significant correlation between the proteome and transcriptome within
15 samples was lower than expected, implying that changes in the transcriptome only re-
sulted in minor or transient changes in the proteome of leukemic cells. However, this could
be due to the small sample size, a limitation in our pilot study.

5. Conclusions

In conclusion, we report the first global untargeted proteomic analysis of leukemic
cells in pediatric AML, leading to the validation of biological function between CBF and
non-CBF AML subtypes and new insights into AML pathobiology and potential druggable
targets. This pilot study also demonstrates the high feasibility and importance of global
proteomic analysis in pediatric AML. To further support these results, we are currently
expanding our proteomic research in a larger cohort.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/cancers13133161/s1, Figure S1: Leukemic cell proteomic profiles comparing MRD1 positive with
negative in 16 AML patients, Figure S2: Leukemic cell proteomic profiles comparing Ara-C LC50 high
with negative in 13 patients with available LC50 level, Table S1: Significant differential expressed
proteins between CBF and non-CBF AML, Table S2: Significant results of GSEA (FDR < 0.05) on
9800 proteins in CBF status comparison utilizing GO, KEGG, and REACTOME databases, Table S3:
Significant differential expressed proteins between MRD1 positive and negative in 16 AML patients,
Table S4: Significant differential expressed proteins between Ara-C LC50 high and low in 13 pa-
tients with available LC50, and Table S5: Integrative Analysis of at least two significant differential
expressed proteins among three comparator status (CBF, MRD1, and Ara-C LC50).
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