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Abstract

Vitamin A (retinol) is a micronutrient critical for cell proliferation and differentiation. 

In adults, vitamin A and metabolites such as retinoic acid (RA) play major roles in 

vision, immune and brain functions and tissue remodelling and metabolism. This review 

presents the physiological interactions of retinoids and endocrine tissues and hormonal 

systems. Two endocrine systems have been particularly studied. In the pituitary, retinoids 

target the corticotrophs with a possible therapeutic use in corticotropinomas. In the 

thyroid, retinoids interfere with iodine metabolism and vitamin A deficiency aggravates 

thyroid dysfunction caused by iodine-deficient diets. Retinoids use in thyroid cancer 

appears less promising than expected. Recent and still controversial studies investigated 

the relations between retinoids and metabolic syndrome. Indeed, retinoids contribute 

to pancreatic development and modify fat and glucose metabolism. However, more 

detailed studies are needed before planning any therapeutic use. Finally, retinoids 

probably play more minor roles in adrenal and gonads development and function apart 

from their major effects on spermatogenesis.

Introduction

Vitamin A (retinol) is a lipophilic micronutrient that 
is critical for embryo and child development (1, 2). 
In adults, vitamin A and metabolites (mainly retinoic 
acid) are critical for the control of cell proliferation and 
differentiation, and for the maintenance of some very 
specific cell functions such as photo-transduction. Vitamin 
A deficiency is a marker of malnutrition that correlates 
with infection and mortality in children and possibly in 
childbearing women. Vitamin A is present in foods of 
animal origin such as liver, eggs and dairy products. An 
alternative source of vitamin A is the absorption of pro-
vitamin A – carotenoids – from plants. However, although 
carotenoids are abundant, their absorption is about one 
order of magnitude less efficient compared to vitamin 
A. Thus, in populations from low-income countries, to 
depend solely on vegetable intakes for vitamin A sources 

increases the risk of vitamin A deficiency. The latter causes 
anomalies of development such as childhood blindness 
as vitamin A and metabolites act as morphogens that 
modulates gene transcription during embryogenesis. In 
developed adults, vitamin A and metabolites play key 
roles in vision, immune and brain functions and tissue 
remodelling and metabolism.

To paraphrase Shearer and coworkers (3): is vitamin A 
a vitamin for the glands? To endocrinologists, vitamin A 
presents some similarities to vitamin D: it is a necessary 
lipophilic nutrient, it is transported by carrier proteins 
in the blood, it may be metabolised in the organism 
according to its needs, and it acts on nuclear receptors to 
modify gene transcription. Conversely, it is not regulated 
by a specific endocrine system (such as the calcium-
PTH duet for vitamin D) and thus less known by the 
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endocrinologist community than vitamin D. This review 
will present the known physiological interactions of 
vitamin A and endocrine tissues and hormonal systems 
in normal adults with minor incursions in childhood or 
pathology when appropriate. When available, we cited 
reviews; we thus apologize not to be able to cite multiple 
pertinent references as space is constrained.

Brief physiology of the retinoids

Natural retinoids absorption

Retinoids constitute the family of molecules that includes 
both naturally occurring compounds with vitamin A 
activity as well as synthetic analogues of retinol or retinoic 
acid. Some of the latter are clinically used. Vitamin A in 
the body derives from the diet either of animal sources 
(all-trans retinol or retinyl esters) or plants sources 
(carotenoids). A simplified view of natural retinoids 
metabolism is presented here but detailed reviews can be 
found (4, 5, 6). To summarise, retinol, retinyl esters and 
carotenoids absorption depends both on common lipid 
absorption and on specific enzymes, binding proteins 
and transporters (4, 5, 7). Retinol is directly taken up by 
enterocytes, whereas retinyl esters must be hydrolysed 
by extracellular retinyl ester hydrolases (REH) within the 
lumen (8). Retinoids are hydrophobic and thus are usually 
bound in the cells to specific retinoid-binding proteins. 
For instance, cellular retinol-binding protein Type II 
(CRBPII) is expressed in the intestinal mucosa to facilitate 
retinol and retinal uptake and enterocyte storage (6). In 
enterocytes, retinol is esterified with long-chain fatty acids 
by lecithin:retinol acyltransferases to retinyl esters that 
are delivered via chylomicrons to hepatocytes that thus 
uptake about 70% of dietary retinol (4, 5, 9). Retinyl esters 
are hydrolysed in hepatocytes and transferred – possibly 
via cellular retinol-binding protein (RBP) Type I – for 
re-esterification and storage into hepatic stellate cells (4, 5, 
10). Via yet unknown sensing mechanisms when retinol is 
needed in other tissues, the stellate cells hydrolyse retinyl 
esters. Retinol is then back-transferred to hepatocytes 
and liberated along with retinol-binding protein (RBP). 
In plasma, retinol and RBP form a ternary complex with 
transthyretin that may also transport thyroxin to tissues 
(11). These non-hepatic tissues may also incorporate the 
ingested retinol not uptaken by hepatocytes (about 30%).

Carotenoids may be imported through a scavenger 
receptor, gatekeeper of their absorption as its expression 
is controlled by vitamin A metabolites (12). They are 

subsequently enzymatically converted to retinoid or 
incorporated unmodified into chylomicrons. Although 
abundant in food, the amount of retinol originating 
from carotenoids is limited: the conversion of 12 µg beta-
carotene generates about 1 µg vitamin A (9).

Thus, the delivery of retinoids to the non-hepatic cells 
depends on the temporal distance from the previous meal: 
in fasting-state cells are mainly delivered retinol bound to 
RBP and transthyretin, in post-prandial state retinyl esters 
are mainly delivered by lipoproteins.

Retinoids cellular effects

In tissues, retinol cellular uptake can depend on passive 
diffusion. In cells that have high needs of retinol uptake is 
usually facilitated by a RBP transporter, STRA6 (STimulated 
by Retinoic Acid 6) (13) (Fig. 1). STRA6 can also facilitate 
retinol efflux. Mutations of this protein cause severe and 
often lethal development abnormalities (14). Within 
cells, retinol is metabolised and most of its functions 
are in fact exerted by its metabolites. The intracellular 
concentrations of these retinoids are controlled by the 
activities of several metabolic enzymes. The expression 
and activity of the latter vary among cell types and 
differentiation. Partially redundant dehydrogenases 
metabolise all-trans retinol in all-trans retinaldehyde and 
the latter in all-trans retinoic acid (atRA) by retinaldehyde 
dehydrogenases (RALDH) (Fig. 1) (4). atRA is degraded by 
hydroxylation by cytochrome P450 enzymes mainly by 
CYP26A1, a RA-induced p450 enzyme (15). Mutations of 
this enzyme are possibly a cause of sirenomelia through 
RA excessive signalling at the caudal end of the embryo 
(16). Various isomers of RA exist. The major one is atRA 
(tretinoin); a minor one is 13-cis RA (isotretinoin) and a 
possible one is 9-cis RA (alitretinoin). There is however 
no large body of evidence of the natural occurrence of 
9-cis RA, a potent RXR agonist. To assay sub-picomolar 
amounts of RA isomers is indeed technically challenging 
and 9-cis RA is yet to be found in tissues other than the 
pancreas (17). Thus, it is difficult to be precise about 
the relative concentrations of these isomers in given 
tissues. Indeed, it seems that different equilibria occur 
as a function of ‘isomerisation chaperones’ such as 
glutathione S-transferase that can act as isomerases (18). 
Finally, the retinol metabolite 11-cis-retinal is essential for 
photo-transduction in the retina (19).

The physiological actions of atRA are mediated 
primarily by its binding to RA receptors (RAR α, β and γ 
isoforms) and subsequent formation of heterodimers of 
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RAR and retinoic X receptors (RXR α, β and γ isoforms) 
(20). RAR and RXR are members of the large family of 
hormones, vitamins and lipid receptors: receptors for 
steroids, thyroid hormones, vitamin D and peroxisome 
proliferator–activated receptors (PPAR). They act as ligand-
dependent transcription factors. RAR and RXR form 
heterodimers that regulate the transcriptional activation 
on the RA response elements (RAREs) of retinoids target 
genes. Most tissues are targets of retinoids through 
different heterodimeric complexes. There is apparently 
a large degree of functional redundancy between the 
various heterodimers of RAR α, β and γ and RXR α, β 
and γ. Interestingly, in the absence of retinoid ligand,  
RAR/RXR heterodimers act as transcriptional repressors 
via a corepressor complex that includes N-CoR1 or 
N-CoR2 (SMRT, Silencing Mediator of Retinoic acid and 
Thyroid hormone receptors) and proteins with histone 
deacetylase activity. Upon retinoid ligand binding, the 
RAR/RXR heterodimers modify their structure and interact 
with a higher affinity with coactivator proteins that 
include SRC 1, 2 and 3 and proteins with histone acetyl-
transferase activity such as p300 (2, 20). Of note, Dax1 
(NR0B1) a critical developmental transcription factor 
in steroidogenic tissues has initially been described as a 
competitor of RAR/RXR heterodimers on the RAREs (21).

RA action through so-called nuclear receptors may 
not be limited to RAR-induced transcriptional effects. 
Firstly, RA could act on RXR receptors through one of 
its metabolite: 9-cis RA. However, although 9-cis RA is a 

powerful agonist of RXR, extensive proof of its presence 
within cells is lacking apart from few publications (17). 
Secondly, RA may exert non-genomic effects through 
receptors present in the cytosol or in membranes 
(20). Indeed, RA can rapidly modulate MAP kinases, 
phosphatidylinositol 3-kinase, calmodulin-dependent 
kinases, etc (20, 22). This could establish crosstalks 
between kinase cascades and RAR-activated genomic 
pathways leading to coordinated phosphorylations 
targeting RAR themselves, other receptors, coregulators 
and histones (20, 23).

In conclusion, vitamin A metabolites act as 
intracellular ligands on identified receptors and other 
cellular targets. Unknown or controversial steps persist 
such as: what are the sensor mechanisms promoting 
the liberation of stocks of retinol from the liver, are 
the oxidised metabolites of RA really inactive, are there 
mechanisms specifically responsible of isomerisation of 
RA, are there specific cellular actions of the RA isomers, 
are there hormonal controls of RA signalling, etc?

Keeping these interrogations in mind, we will present 
the known interactions of vitamin A and metabolites with 
endocrine tissues and hormones action.

Vitamin A and the hypothalamo–pituitary–
peripheral gland axes

There are arguments for a role of retinoids in the 
development and function of the hypothalamus, the 

Figure 1
Retinol bound in the plasma to retinol-binding 
protein (RBP) and transthyretin is uptaken by an 
RBP-binding transporter, STRA6. Retinyl esters 
enter the cells associated with chylomicrons (4) to 
be transformed into retinol by retinyl ester 
hydrolase. This step can be reversed by 
lecithin:retinol acyltransferase (2). All-trans 
retinol is metabolised by retinol dehydrogenases 
(3) into all-trans retinaldehyde. This step can be 
reversed by retinal reductase (4). All-trans 
retinaldehyde is metabolised into all-trans 
retinoic acid (atRA) by retinaldehyde 
dehydrogenase (5). atRA is degraded by 
oxidation/catabolised by cytochrome P450 
enzymes (mainly CYP26A1) (6). atRA actions are 
mediated primarily by RA receptors via 
heterodimers of retinoic acid receptor (RAR) and 
retinoic X receptors (RXR) acting with cofactors 
(CoF) on RA response elements (RAREs) of target 
genes. In the absence of retinoid ligand, RAR/RXR 
heterodimers are bound to transcriptional 
repressors. Upon retinoid ligand binding, the 
heterodimers are bound to coactivator proteins. 
atRA may also exert non-genomic effects through 
cytoplasmic kinases (20, 22).

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1530/EC-17-0101


This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International License.

DOI: 10.1530/EC-17-0101
http://www.endocrineconnections.org © 2017 The authors

Published by Bioscientifica Ltd

Review J Brossaud et al. Vitamin A and hormones
En

d
o

cr
in

e 
C

o
n

n
ec

ti
o

n
s

6:R124R124–R130

pituitary and the peripheral glands they act upon. Indeed, 
in these tissues, there are RAR and RARE-bearing genes 
(24, 25, 26, 27) and retinoids-metabolising enzymes 
(28, 29, 30). In vivo studies also show modifications of 
hypothalamo–pituitary–peripheral gland axes upon 
retinoid deprivation or treatment (31, 32, 33, 34, 35, 36).

Vitamin A and the  
hypothalamo–pituitary–thyroid axis

RA does not seem to be involved in thyroid organogenesis 
(37). Conversely, RA appears involved in maintaining 
a developed thyroid cell phenotype both in animals 
and humans. In animals, vitamin A deficiency causes 
thyroid hypertrophy with a reduction of iodine uptake, 
of thyroglobulin and of thyroid hormones synthesis ((38) 
and older publications within). Combined iodine and 
vitamin A-deficient diets produce greater impairments in 
thyroid metabolism than either isolated iodine or vitamin 
A-deficient diets. In children with moderate vitamin 
A deficiency, TSH concentrations, thyroid volume and 
total T4 are increased (38). A very important point 
about vitamin A and thyroid metabolism is the possible 
co-existence of iodine and vitamin A deficiencies because 
of their high prevalence in developing countries: more 
than 30% children had simultaneous vitamin A deficiency 
and goitre in Côte d’Ivoire (32). There are interactions 
between vitamin A and iodine metabolism as indicated 
by observational and interventional studies. In iodide-
deficient children, vitamin A increases TSH stimulation 
and thyroid size but reduces risk of hypothyroidism 
(31, 33). In these children, vitamin A supplementation 
improves iodide efficiency (31, 32).

Thus, various works investigated the actions of RA 
on thyrocytes (mainly expression and function of key 
proteins). Retinyl palmitate administration decreases 
thyroid gland size and serum thyroid hormones and 
conversely increases thyroidal iodine uptake and hepatic 
conversion of T4 to T3 in rats (39). Interestingly, a low 
dose of atRA decreased iodine uptake, whereas the same 
dose of 13-cis RA increased iodine uptake (29). RA isoforms 
may thus have different consequences on thyrocyte 
functions. TSH-induced thyroid hormones synthesis 
requires the incorporation of iodide into the thyrocytes 
via the sodium–iodide symporter (NIS), its transport 
through the cell with pendrin to thyroglobulin (Tg) in the 
lumen. Iodide oxidation and organification are catalysed 
by thyroperoxidase (TPO) with H2O2 produced by a dual 
oxidase. Various steps in this process depend on RA with 

noticeable differences related to the different cell models 
used complicating the description of the physiological 
role of RA. RA reduces TSH receptor mRNA levels (40). 
The dual oxidase is upregulated in animal treated by an 
isomer of RA, 13-cis RA, but downregulated by atRA (29). 
As 13-cis RA does not bind efficiently to RAR or RXR, 
this suggests either different cellular targets for these two 
retinoids or a critical role for the inter isomer conversion. 
RA may suppress the accumulation of TPO and Tg mRNA 
stimulated by TSH in a time- and dose-dependent manner 
in cultures of human thyrocytes (41, 42).

The main recent reason for the interest about the role 
of RA in the thyroid is probably its potential therapeutic 
use in thyroid cancer. The rational for this interest is 
precisely the potential ability of RA isoforms to sustain 
cell differentiation or to reverse cell dedifferentiation in 
various models of cancer. With regards to a potential use 
to eradicate cancer cells with 131I, NIS was particularly 
investigated. In rat follicular cell lines, RA increases NIS 
mRNA levels and iodide uptake, but this effect was not 
seen in untransformed cells (43, 44). More importantly, 
an increase of iodide uptake was described in human 
thyroid cancer (43, 44). Thus, the use of RA in thyroid 
through the increased expression of NIS to increase 131I 
uptake has been under careful investigation in human 
cancers (45, 46, 47, 48). Unfortunately, different studies 
did not report a clear usefulness for such a treatment in 
thyroid cancer (49). Though, for a similar expected action 
on NIS, RA is under consideration for the treatment of 
breast cancer (50).

RA can also modulate the effects of thyroid hormones 
on target tissues. Firstly, RA induces the expression of 
the thyroid hormone transporter, monocarboxylate 
transporter (51). This is responsible for a crosstalk 
between RA and thyroid hormones signalling at least 
during critical steps of embryo brain development (52). 
Secondly, although RAR and thyroid receptors do not 
seem to directly physically interact, they share some 
cofactors such as CART1 a de-repressor in the cytoplasm 
and NCoR2 a corepressor in the nucleus (53, 54). It is then 
likely that some form of competition occurs between the 
two ligands and their receptors. Subsequent consequences 
would then depend on resulting gene trans-activations 
and trans-repressions. Lastly, there are interferences 
between thyroid and retinoid signalling. For instance, 
during a vitamin A-deficient diet or in aged rats, retinoid 
and thyroid nuclear receptor expressions decrease. 
This can be corrected by either thyroid hormone or RA 
treatments (55). In humans, such a link is likely since a 
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decreased expression of RAR occurs in mononuclear cells 
of hypothyroid patients (56). Conversely, an increased 
concentration of retinol was seen in hypothyroidism. 
Currently, it is not known if a thyroid hormone 
replacement therapy restores RA signalling back to a 
status seen in euthyroidism.

In conclusion, there are many levels where RA 
can interact with the physiology of hypothalamo–
pituitary–thyroid axis including through vitamin A and 
iodine co-deficiency in low-income living conditions. 
Unfortunately, the hopes raised by early work in thyroid 
cancers are probably dashed now because of the absence 
of clear usefulness.

Vitamin A and thyroid C cells

No information has been reported about a role of RA and 
calcitonin secretion by normal thyroid C cells. In  vitro, 
9-cis RA decreases the release of calcitonin in the rat C 
cell line CA-77 (57), but no data are available about the 
spontaneous presence of 9-cis RA in C cells. atRA had 
no significant effect on a human medullary thyroid 
carcinoma cell line (58).

Vitamin A and the hypothalamo–pituitary–adrenal 
(HPA) axis

There are arguments for an action of RA on the HPA 
axis. For instance, chronic treatment of young rats by 
RA increases basal corticosterone concentration (59). 
However, most of the recent literature refers to its possible 
use or role in pituitary or adrenal tumours.

Firstly, RAR-α is co-localised with corticotrophin-
releasing hormone and vasopressin in neurons of the 
hypothalamic paraventricular nucleus suggesting a 
regulation of these cells by RA (24, 25). Furthermore, 
RA is localised in some hypothalamic neurons although 
it is not yet known whether these neurons regulate the 
HPA axis (60). Retinaldehyde dehydrogenase enzymes 
are also localised in the hypothalamus (60). Altogether 
these data strongly supports a role of RA in regulating 
hypothalamic functions.

Secondly, RA could act on the secretion of 
corticotrophs, but there are apparently conflicting 
data. In normal rat, atRA administration increases basal 
serum corticosterone concentration possibly through 
the increased mRNA expression of corticotrophin release 
factor and RAR-α in the hypothalamus (59). No in vitro 
data are available about RA and normal corticotrophs. 

An apparently opposite effect has been shown in tumoural 
cells as RA reduces growth and secretion of AtT20 cells 
(61) possibly through bone morphogenic protein 4 action 
(61, 62, 63, 64). This explains recent papers about the 
possible use of retinoids to treat Cushing’s disease (65). 
Ectopic ACTH secretion may also be affected by retinoids. 
Indeed, the nuclear co-repressor SMRT is over-expressed 
in ACTH-secreting thymic carcinoids suggesting that 
aberrant expression might be involved in the pathogenesis 
of tumoural cortisol resistance (66).

Thirdly, RA could possibly act on adrenals and 
especially on adrenal ontogeny, physiology and 
tumorigenesis through SMRT (67) and bone morphogenic 
Proteins (BMP) signalling (68). BMP are known modulators 
of different hormonal systems including the adrenal. On 
one hand, RA regulates BMP signalling by promoting 
the degradation of phosphorylated Smad1. On the other 
hand, RA promotes the transcription of GATA-6 that in 
turn promotes BMP2 transcription. Whether reactivating 
BMP signalling in adrenocortical tumour tissues by 
therapeutic retinoids is yet unknown (68). Finally, a meta-
analysis of adrenocortical tumour genomics data also 
revealed a putative role of RA signalling (69).

Lastly, part of the interaction between vitamin  A 
and glucocorticoid action may occur downstream 
of adrenal hormone production as vitamin A and 
glucocorticoid receptors may interact directly or 
indirectly. As a consequence, RA is for instance able to 
decrease glucocorticoid receptor expression and modify 
glucocorticoid signalling in a neuronal model (23, 70, 71). 
In addition, RA may modulate local glucocorticoid 
activation by 11β-hydroxysteroid dehydrogenase 1 
(HSD1)(72). This has been shown, in vitro in muscle cells 
in which RA exerts a dose-dependent downregulation of 
11β-HSD1mRNA expression and activity (73). Similarly, 
in the liver of obese rats 11β-HSD1 activity and gene 
expression are significantly reduced by vitamin A 
supplementation (74). Similarly, in vitamin A-deficient 
LOU/C rats, the expression of 11β-HSD1 is increased in 
the hypothalamus and the hippocampus. This increase, 
as well as the associated increased HPA axis activity, is 
normalised by RA administration (75).

Vitamin A and the  
hypothalamo–pituitary–gonads axis

RA is a critical factor for the formation of the gonads 
in man and one of the major consequences of vitamin 
A deficiency apart from blindness is infertility (35,  76). 
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In  Leydig as well as ovarian cells, RA stimulates 
steroidogenic acute regulatory protein (StAR) and P450 
17α-hydroxylase expression and thus steroidogenesis (77). 
The role of RA in the production of gonadic hormones 
of developed gonads appears less important although RA 
stimulates steroid hormone synthesis.

It has been suggested that there is an interesting 
interplay between RA and oestrogen signalling in breast 
cancer cells particularly with opposite actions on cell 
proliferation. RARα could be an integral part of the ERα 
transcriptional complex (2, 78). Whether this is true in 
normal breast cells is yet unknown and putative preventive 
action of breast cancer is unknown.

Vitamin A and the somato-lactotroph axis

RA probably plays a role not only in the differentiation 
of somatotrophs through pit-1 transcription factor (79) 
but also in the expression of growth hormone-releasing 
hormone (GH-RH) receptors in somatotrophs as there 
is a RARE in the promoter of GH-RH receptor gene (80). 
In developed somatotrophs, retinoids affect basal and 
GH-RH-induced GH secretion (80). Insulin growth factor 
1 and 2 (IGF1 and IGF2) synthesis is increased by retinoids 
in some skin models (81) but no data are available about 
the most important GH-induced hepatic IGF 1 production. 
In pituitary tumours including somatotroph tumours, RA 
increases the expression of type 2 dopamine receptors; 
hence, a possible therapeutic use to control these tumours 
using routine dopaminergic drugs (82).

RA action has also been described in prolactin-
secreting cells either normal or tumoural as demonstrated 
for corticotrophs. Again, a possible mechanism of action 
is the role of BMP-4, a member of the transforming 
growth factor β (TGFβ) family, overexpressed in different 
prolactinoma models and induces the development of 
these lineage adenomas (83).

Vitamin A and the pancreas

RA receptor signalling is required in early pancreatic 
progenitor cells for pancreatic development (84). It is also 
required for maintaining both beta-cell function and mass 
in the adult pancreas (85).

There are different lines of arguments linking 
endocrine β cells function to RA. Hereafter are some of 
the main arguments developed in recent years (6, 86). 
Vitamin A plasma concentrations are higher in subjects 
with glucose intolerance and the RBP/retinol ratio is 

elevated in patients with type 2 diabetes. RA restores an 
insulin-secreting function of vitamin A-deprived rats. 
In pancreatic β cells, atRA increases the transcription of 
glucokinase, glucose transporter 2 and pre-pro-insulin 
genes and promotes insulin secretion. Furthermore, 
some RXR-γ haplotypes are associated with indicators of 
pancreatic β-cell function.

Conversely, 9-cisRA, the ligand of RXR receptors, 
decreases glucose-induced insulin secretion (87). 
Interestingly, the pancreas is one of the few (if any 
others) tissues where endogenous 9cisRA has been 
detected (17, 88). RXR agonists have been proposed to 
improve insulin sensitivity as 9cisRA/RXR might inhibit 
excessive insulin release under – only under – high-
glucose conditions. This action may be obtained through  
PPAR/RXR heterodimerisation. 13-cis RA may also be a 
player as it alters pancreatic cell viability (89). Furthermore, 
Raldh3 (retinaldehyde dehydrogenase 3) is present in the 
pancreas and promotes the formation of 13-cis RA from 
13-cis retinal (90). In diabetic mice, Raldh3 expression 
is increased, and this is correlated with reduced insulin 
and increased glucagon secretions. Thus, in the pancreas, 
unusual RA isomers may play a role in pancreatic function, 
but confirmation of these studies has to be obtained.

Finally, we will not cover the very interesting topic 
of glucose and lipid metabolism here because many 
interesting studies and reviews detailed the relations of 
vitamin A, lipids and binding protein (91, 92, 93, 94, 95).

Miscellaneous

There are in vivo and in vitro arguments in animals 
reporting the effects of RA on renin or angiotensin 
production (96, 97, 98, 99). atRA treatment increased the 
expression of angiotensin-converting enzyme 2 with a 
subsequent reduction of blood pressure in hypertensive 
rats. (96) To our knowledge, no clinically useful data are 
available neither for renin or aldosterone levels nor for 
the effect of RA on blood pressure.

RA seems to play neither a remarkable role in adrenal 
medulla organogenesis nor function in adults. In vitro, 
RA could initiate neuronal differentiation in PC12 cells 
eliciting the expression of a nerve growth factor receptor 
as well as tyrosine hydroxylase expression (100). This 
is usually considered as a differentiating action on cells 
sharing a common origin with neurons.

RA stimulates the erythropoietin synthesis in foetal 
rats via a RARE in the erythropoietin gene dependent on 
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RAR/RXR receptors (101, 102). In adult rats, however, this 
effect disappears and adult erythropoiesis takes place. 
The RAR/RXR complex is replaced by an orphan receptor, 
hepatocyte nuclear factor 4, which binds to the same cis 
element to facilitate an interaction with the hypoxia-
inducible factor 1 bound to an adjacent site (103).

Conclusion

It is now known that vitamin A and RA and metabolites 
are involved in some glands development as well as 
functions in adults. Indeed, one of the most critical roles 
of vitamin  A in human health is its effect on thyroid 
function as simultaneous iodine and vitamin A deficiencies 
potentiate to affect thyroid function. To achieve adequate 
intake of these micronutrients, among others, is indeed 
a challenge in developing countries. Similarly, the role 
of vitamin A and metabolites is certainly important in 
the regulation of the HPA axis although the endocrine 
consequences on the whole population is more difficult 
to assess.

Thanks to a better understanding of vitamin A and 
RA metabolites mechanisms of action through their 
various receptors some interesting pathways in normal 
or tumoural endocrine tissues have been uncovered. 
However, useful therapeutic use of agonists or antagonists 
of these pathways is not available yet. A use of retinoids in 
pituitary tumours especially corticotroph adenomas may 
be emerging. Well-tolerated, clinically available retinoids 
used for skin or hematologic diseases, renders clinical 
studies comparing other medical options readily possible.
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